【常考题】高三数学上期末试卷(及答案)
- 格式:doc
- 大小:1.16 MB
- 文档页数:17
高三上学期期末考试数学试卷(附答案解析)班级:___________姓名:___________考号:______________一、单选题1.已知集合12|log (1)0A x ax ⎧⎫=->⎨⎬⎩⎭,若1A ∈,则a 的取值范围是( )A .(,2)-∞B .31,2⎛⎫ ⎪⎝⎭C .(1,2)D .(2,)+∞2.设函数f (x )=cosx+bsinx (b 为常数),则“b=0”是“f (x )为偶函数”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件3.给出如下几个结论:①命题“R,cos sin 2x x x ∃∈+=”的否定是“R,cos sin 2x x x ∃∈+≠”; ②命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<”; ③对于π10,,tan 22tan x x x⎛⎫∀∈+≥ ⎪⎝⎭;④R x ∃∈,使sin cos x x +=其中正确的是( ) A .③B .③④C .②③④D .①②③④4.已知a 、b 为正实数,a+b=1,则2134a b+的最小值是( ) A .1112 B .116C .1112+D .1112+5.函数2441()2x f x x -+=的大致图象是( )A .B .C .D .6.当()0,x ∈+∞时幂函数()2531m y m m x --=--为减函数,则实数m 的值为( )A .2m =B .1m =-C .1m =-或2m =D .m ≠7.若0.110a =与lg0.8b =和5log 3.5c =,则( ) A .a b c >> B .b a c >> C .c a b >>D .a c b >>8.已知函数()f x 是定义在R 上的函数,()11f =.若对任意的1x ,2x R ∈且12x x <有12123f x f x x x ,则不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为A .2,13⎛⎫⎪⎝⎭B .4,3⎛⎫-∞ ⎪⎝⎭ C .24,33⎛⎫ ⎪⎝⎭ D .4,3⎛⎫+∞ ⎪⎝⎭9.已知0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,且()2sin 2cos 2cos 1sin αβαβ=+,则下列结论正确的是( )A .22παβ-=B .22παβ+=C .2παβ+=D .2παβ-=10.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,其图象相邻的最高点之间的距离为π,将函数()y f x =的图象向左平移12π个单位长度后得到函数()g x 的图象,且()g x 为奇函数,则( ) A .()f x 的图象关于点,06π⎛⎫⎪⎝⎭对称B .()f x 的图象关于点,06π⎛⎫- ⎪⎝⎭对称C .()f x 在,63ππ⎛⎫- ⎪⎝⎭上单调递增D .()f x 在2,36ππ⎛⎫-- ⎪⎝⎭上单调递增 11.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )A.2,3π-B.2,6π-C.4,6π-D.4,3π12.已知函数()2ln,01,0xxf x xx x⎧>⎪=⎨⎪-≤⎩若函数()()g x f x k=-有三个零点,则()A.1ek<≤B.1ek-<<C.1e<<k D.11ek<<二、填空题13.若22x x a++≥对Rx∈恒成立,则实数a的取值范围为___.14.已知实数0a≠,函数2,1()2,1x a xf xx a x+<⎧=⎨--≥⎩,若(1)(1)f a f a-=+,则a的值为________ 15.已知1cos63πα⎛⎫⎪⎝=⎭+,则5cos6πα⎛⎫-⎪⎝⎭的值为______.三、双空题四、解答题17.已知幂函数()2()294mf x m m x=+-在(,0)-∞上为减函数.(1)试求函数()f x解析式;(2)判断函数()f x的奇偶性并写出其单调区间.18.已知函数()e ln exf x a x=--.(1)当1a=时讨论函数()f x的零点存在情况;(2)当1a>时证明:当0x>时()2ef x>-.19.已知函数2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭.(1)求()f x 的最小正周期和最大值;(2)讨论()f x 在2,63ππ⎡⎤⎢⎥⎣⎦上的单调性.20.已知函数()()2112122f x cos x sin x cos x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭.()1求()f x 在区间,02π⎡⎤-⎢⎥⎣⎦上的最大值和最小值;()2若7224f απ⎛⎫-=⎪⎝⎭2sin α的值. 21.已知函数()||1()f x x x a x =--+∈R .(1)当2a =时试写出函数()()g x f x x =-的单调区间; (2)当1a >时求函数()f x 在[1,3]上的最大值.22.已知函数π()e sin sin ,[0,π]4xf x x x x ⎛⎫=-∈ ⎪⎝⎭.(1)若1a ≤,判断函数()f x 的单调性; (2)证明:e (π)1sin cos x x x x -+≥-.参考答案与解析1.C【详解】1A ∈12log (1)0a ∴-> 011a ∴<-<,即12a <<则实数a 的取值范围是(1,2) 故选:C. 2.C【分析】根据定义域为R 的函数()f x 为偶函数等价于()=()f x f x -进行判断. 【详解】0b = 时()cos sin cos f x x b x x =+=, ()f x 为偶函数;()f x 为偶函数时()=()f x f x -对任意的x 恒成立()cos()sin()cos sin f x x b x x b x -=-+-=-cos sin cos sin x b x x b x +=- ,得0bsinx =对任意的x 恒成立,从而0b =.从而“0b =”是“()f x 为偶函数”的充分必要条件,故选C.【点睛】本题较易,注重重要知识、基础知识、逻辑推理能力的考查. 3.B【分析】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题可判断①,②;利用基本不等式判断③;结合三角函数恒等变换以及性质判断④,可得答案.【详解】根据全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题 知①不正确 命题“1R,cos 2sin x x x ∃∈+≥”的否定是“1R,cos 2sin x x x∀∈+<或sin 0x = ”,故②不正确;因为π10,,tan 22tan x x x ⎛⎫∀∈+≥ ⎪⎝⎭当且仅当1tan tan x x=即π0,2π4x ⎛=∈⎫ ⎪⎝⎭ 时取等号,③正确;由πsin cos [4x x x ⎛⎫+=+∈ ⎪⎝⎭,比如π4x =时π4x ⎛⎫+ ⎪⎝⎭故R x ∃∈,使sin cos x x += 故选:B 4.D 【分析】将2134a b +与a b +相乘,展开后利用基本不等式可求得2134a b+的最小值.【详解】由已知条件可得()2118318311111113412121212b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝=时等号成立.因此,2134a b +的最小值是1112+故选:D. 5.D【分析】判断函数的奇偶性可排除B ,C ;利用特殊值可判断A,D,即得答案.【详解】因为函数2441()2x f x x -+=的定义域为(,0)(0,)-∞+∞ ,且2441()()2x f x f x x -+-== 故2441()2x f x x -+=是偶函数,排除选项B ,C ;当2x =时15(2)032f -=<,对应点在第四象限,故排除A 故选:D. 6.A【分析】根据幂函数的定义和单调性可得答案.【详解】因为函数()2531m y m m x --=--既是幂函数又是()0,+∞的减函数所以211530m m m ⎧--=⎨--<⎩解得:m=2.故选:A. 7.D【分析】根据指数函数以及对数函数的性质,判断a,b,c 的范围,即可比较大小,可得答案. 【详解】由函数10x y =为增函数可知0.1110a =>由lg y x =为增函数可得lg0.80b =<,由由5log y x =为增函数可得50log 3.51c <=<0.15101log 3.50lg0.8a c b ∴=>>=>>=a cb ∴>>故选:D 8.C【解析】因为等式12123f x f x x x 可化为()()()12123f x f x x x -<--,即()()112233f x x f x x +<+,令函数()()3F x f x x =+,根据函数()F x 是R 上的增函数,即可求得答案.【详解】 不等式12123f x f x x x 可化为()()()12123f x f x x x -<--即()()112233f x x f x x +<+令函数()()3F x f x x =+,由()()112233f x x f x x +<+ 可得()()21>F x F x ,结合12x x <∴ 函数()()3F x f x x =+是R 上的增函数又()14F =不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦ ∴ ()()2log 321F x F -<⎡⎤⎣⎦ ∴ ()2log 321x -<,即0322x <-< ∴2433x <<不等式()()222log 32log 163log 32f x x -<--⎡⎤⎣⎦的解集为:24,33⎛⎫⎪⎝⎭. 故选:C.【点睛】利用函数性质解抽象函数不等式,解题关键是根据已知构造函数,利用对应函数单调性进行求解函数不等式,考查了转化能力和分析能力,属于中档题. 9.A【分析】用二倍角公式、两角差的正弦公式和诱导公式化简()2sin 2cos 2cos 1sin αβαβ=+,由此得出正确结论.【详解】有()2sin 2cos 2cos 1sin αβαβ=+,得()22sin cos cos 2cos 1sin ααβαβ=+sin cos cos sin cos αβαβα-= ()πsin cos sin 2αβαα⎛⎫-==- ⎪⎝⎭,由于0,,0,22ππαβ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭,所以ππ,222αβααβ-=--=,故选A. 【点睛】本小题主要考查三角恒等变换,考查二倍角公式、两角差的正弦公式和诱导公式,属于中档题. 10.C【分析】根据函数()f x 图象相邻的最高点之间的距离为π,得到T π=,易得()()2sin 2f x x ϕ=+.将函数()y f x =的图象向左平移12π个单位长度后,可得()2sin 26g x x πϕ⎛⎫++ ⎪⎝⎭=,再根据()g x 是奇函数,得到()2sin 26f x x π⎛⎫=- ⎪⎝⎭,然后逐项验证即可.【详解】因为函数()f x 图象相邻的最高点之间的距离为π 所以其最小正周期为T π=,则22Tπω==. 所以()()2sin 2f x x ϕ=+. 将函数()y f x =的图象向左平移12π个单位长度后 可得()2sin 22sin 2126x x g x ππϕϕ⎡⎤⎛⎫⎛⎫++=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=的图象又因为()g x 是奇函数,令()6k k Z πϕπ+=∈所以()6k k ϕπ=π-∈Z .又2πϕ<所以6πϕ=-.故()2sin 26f x x π⎛⎫=- ⎪⎝⎭.当6x π=时()1f x =,故()f x 的图象不关于点,06π⎛⎫⎪⎝⎭对称,故A 错误; 当6x π=-时()2f x =-,故()f x 的图象关于直线6x π=-对称,不关于点,06π⎛⎫- ⎪⎝⎭对称,故B 错误; 在,63ππ⎛⎫- ⎪⎝⎭上2,622x πππ⎛⎫-∈- ⎪⎝⎭,()f x 单调递增,故C 正确;在2,36ππ⎛⎫-- ⎪⎝⎭上3,2262x πππ⎛⎫-∈-- ⎪⎝⎭,()f x 单调递减,故D 错误. 故选:C【点睛】本题主要考查三角函数的图象和性质及其图象变换,还考查了运算求解的能力,属于中档题. 11.A【分析】根据()f x 的图象求得T π=,求得2ω=,再根据5()212f π=,求得2,3k k Z πϕπ=-+∈,求得ϕ的值,即可求解.【详解】根据函数()f x 的图象,可得353()41234T πππ=--=,可得T π=所以22Tπω== 又由5()212f π=,可得5sin(2)112πϕ⨯+=,即52,62k k Z ππϕπ+=+∈ 解得2,3k k Z πϕπ=-+∈因为22ππϕ-<<,所以3πϕ=-.故选:A. 12.C【分析】将问题转化为()y f x =与y k =图象有三个交点,分析分段函数的性质并画出()f x 图象,即可确定k 的范围.【详解】由题意,()y f x =与y k =图象有三个交点 当0x >时()ln x f x x=,则()21ln xf x x -'=∴在()0,e 上0fx,()f x 递增,在()e,+∞上0fx,()f x 递减∴0x >时()ln x f x x =有最大值()1e ef =,且在()0,e 上()1(,)e f x ∈-∞,在()e,+∞上()1(0,)ef x ∈.当0x ≤时()21f x x =-+单调递增∴()f x 图象如下∴由图知:要使函数()g x 有三个零点,则10e<<k . 故选:C. 13.94a ≥【分析】根据一元二次不等式对R x ∈恒成立,可得Δ14(2)0a =--≤ ,即可求得答案. 【详解】220x x a ++-≥对R x ∈恒成立,9Δ14(2)0,4a a ∴=--≤∴≥ 故答案为:94a ≥14.34-【解析】分当0a >时和当a<0时两种分别讨论求解方程,可得答案. 【详解】当0a >时11,1+>1a a -<,所以(1)(1)f a f a -=+ ()()211+2,a a a a -+=--解得302a =-<,不满足,舍去;当a<0时1>1,1+1a a -<,所以()()1221,a a a a ---=++解得304a =-<,满足.故答案为34-.【点睛】本题考查解分段函数的方程,在分段函数求函数值的时候,要把自变量代入到所对应的解析式中是解本题的关键,属于基础题.15.13-【分析】由已知条件,利用诱导公式化简5cos cos 66ππαπα⎡⎤⎛⎫⎛⎫-=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦即可求解.【详解】解:因为1cos 63πα⎛⎫ ⎪⎝=⎭+所以51cos cos cos 6663πππαπαα⎡⎤⎛⎫⎛⎫-=-+=-+=-⎪⎛⎫⎪⎢⎥⎝⎭⎝⎭⎣⎦⎪⎝⎭ 故答案为:13-.16. sin x - 【分析】对()cos f x x '=求导可得()sin f x x ''=-,由正弦函数的图象可知()0f x ''<成立 根据函数的性质123123sin sin sin 3sin 3x x x x x x ++⎛⎫++≤ ⎪⎝⎭,即可求得123sin sin sin x x x ++的最大值. 【详解】设()sin f x x =,()0,πx ∈则()cos f x x '= 则()sin f x x ''=-,()0,πx ∈由于()0f x ''<恒成立 故()f x 有如下性质()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭.则123123πsin sin sin 3sin 3sin 33x x x x x x ++⎛⎫++≤=⨯= ⎪⎝⎭∴123sin sin sin x x x ++故答案为 sin x -17.(1)5()f x x -=(2)奇函数,其单调减区间为(,0)-∞ (0,)+∞【分析】(1)根据幂函数的定义,令22941m m +-=,求解即可; (2)根据幂函数的性质判断函数的单调性,继而可得其单调区间. 【详解】(1)由题意得22941m m +-=,解得12m =或5m =- 经检验当12m =时函数12()f x x =在区间(,0)-∞上无意义所以5m =-,则5()f x x -=. (2)551()f x x x -==,∴要使函数有意义,则0x ≠ 即定义域为(,0)(0,)-∞+∞,其关于原点对称.5511()()()f x f x x x-==-=--∴该幂函数为奇函数.当0x >时根据幂函数的性质可知5()f x x -=在(0,)+∞上为减函数函数()f x 是奇函数,∴在(,0)-∞上也为减函数故其单调减区间为(,0)-∞ (0,)+∞.18.(1)两个零点;(2)证明见解析.【分析】(1)将1a =代入可得(1)0f =,求出函数()f x 的导数,利用导数探讨函数的单调性并借助零点存在性定理即可求解;(2)根据已知条件构造函数()e ln 2x g x x =--,证明()0g x >在0x >时恒成立即可得解.【详解】(1)当1a =时()e ln e x f x x =--,显然(1)0f =,即1是()f x 的一个零点求导得()1e x f x x '=-,()f x '在(0,)+∞上单调递增,且131e 303f ⎛⎫'=-< ⎪⎝⎭(1)e 10f '=-> 则()f x '在1(,1)3上存在唯一零点0x ,当00x x <<时()0f x '<,当0x x >时()0f x '> 因此,函数()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,而()0(1)0f x f <= 31e 31e 3e 0ef ⎛⎫=+-> ⎪⎝⎭ 从而得在()00,x 上函数()f x 存在一个零点所以函数()f x 存在两个零点;(2)令()e ln 2x g x x =--,x>0,则1()e x g x x'=-,由(1)知()g x '在(0,)+∞上单调递增,且在1(,1)3上存在唯一零点0x ,即001x e x = 当()00,x x ∈时()g x 单调递减,当()0,x +∞时()g x 单调递增因此()000000011()e ln 2e ln 220e x x x g x g x x x x ≥=--=--=+->,即ln 2x e x ->,则e ln e 2e x x -->- 而1a >,有e e x x a >,于是得()e ln e>e ln e 2e x x f x a x x =---->-所以当1a >,0x >时()2e f x >-.19.(1)最小正周期为π,最大值为1(2)在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【分析】(1)由条件利用三角恒等变换化简函数,再利用正弦函数的周期性和最值求得()f x 的最小正周期和最大值;(2)根据[]20,3x ππ-∈,利用正弦函数的单调性,分类讨论求得()f x 的单调性. 【详解】(1)2()sin sin 2f x x x x π⎛⎫=- ⎪⎝⎭2sin cos x x x =11cos 2sin 222x x +=sin 23x π⎛⎫=- ⎪⎝⎭则()f x 的最小正周期为22T ππ== 当22,32x k k Z πππ-=+∈,即25,1ππ=+∈x k k Z 时()f x取得最大值为1; (2)当2,63x ππ⎡⎤∈⎢⎥⎣⎦时[]20,3x ππ-∈ 则当20,32x ππ⎡⎤-∈⎢⎥⎣⎦,即5,612x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为增函数; 当2,32x πππ⎡⎤-∈⎢⎥⎣⎦时即52,123x ππ⎡⎤∈⎢⎥⎣⎦时()f x 为减函数 f x 在5,612ππ⎡⎤⎢⎥⎣⎦单调递增,在52,123ππ⎡⎤⎢⎥⎣⎦单调递减. 【点睛】本题考查正弦函数的性质,解题的关键是利用三角恒等变换化简函数.20.(1)3()4=max f x()min f x =;(2)2325 【分析】利用倍角公式降幂,再由辅助角公式化积.()1由x 的范围求得相位的范围,则函数最值可求;()2由已知求得145sin πα⎛⎫-= ⎪⎝⎭,再由诱导公式及倍角公式求2sin α的值. 【详解】解:()2112122f x cos x sin x cos x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭212111622222222sin x cos x cos x cos x x π⎛⎫+ ⎪⎛⎫+⎝⎭=+-=+ ⎪ ⎪⎝⎭131222222223cos x x sin x x x π⎛⎫⎫⎛⎫=+=+ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ()1,02x π⎡⎤∈-⎢⎥⎣⎦,22,333x πππ⎡⎤∴+∈-⎢⎥⎣⎦23sin x π⎡⎛⎫∴+∈-⎢ ⎪⎝⎭⎣⎦ 则3()4max f x =()min f x = ()2由7224f απ⎛⎫-= ⎪⎝⎭7123ππα⎛⎫-+= ⎪⎝⎭145sin πα⎛⎫∴-= ⎪⎝⎭. 2123221212242525sin cos sin ππααα⎛⎫⎛⎫∴=-=--=-⨯= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查三角函数的恒等变换应用,考查()y Asin x ωϕ=+型函数的图象与性质,考查计算能力,属于中档题.21.(1)单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭ (2)()()max 1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩【分析】(1)当2a =时求出()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩,利用二次函数的性质确定函数的单调区间; (2)作出函数()f x 的大致图象,数形结合,分类讨论,比较()f x 在[1,3]上的函数值(1)f (3)f ()f a 的大小关系,即可求得答案.(1)当2a =时()()2221(2)21212x x x f x x x x x x ⎧-+<⎪=--+=⎨-++≥⎪⎩所以()()()2231(2)12x x x g x f x x x x x ⎧-+<⎪=-=⎨-++≥⎪⎩当2x <时2()31g x x x =-+,其图象开口向上,对称轴方程为32x =所以()g x 在3,2⎛⎤-∞ ⎥⎝⎦上单调递减,在3,22⎛⎫ ⎪⎝⎭上单调递增; 当2x ≥时2()1g x x x =-++,其图象开口向下,对称轴方程为12x =所以()g x 在[2,)+∞上单调递减. 综上可知,()g x 的单调递减区间为3,2⎛⎤-∞ ⎥⎝⎦和[2,)+∞,单调递增区间为3,22⎛⎫ ⎪⎝⎭;(2)由题意知1a >,()()2211()x ax x a f x x ax x a ⎧-++≥=⎨-+<⎩作出大致图象如图:易得(0)()1f f a == 2124a a f ⎛⎫=- ⎪⎝⎭ 所以可判断()f x 在[1,3]上的最大值在(1)f (3)f ()f a 中取得.当13a 时max ()()1f x f a ==.当3a >时()f x 在1,2a ⎡⎤⎢⎥⎣⎦上单调递减,在,32a ⎛⎤ ⎥⎝⎦上单调递增 又13422a a a ⎛⎫⎛⎫---=- ⎪ ⎪⎝⎭⎝⎭ 所以,若34a <<,则max ()(3)103f x f a ==-;若4a ≥,则max ()(1)2f x f a ==-.综上可知,在区间[1,3]上()()max1(13)103(34)24a f x a a a a ⎧<≤⎪=-<<⎨⎪-≥⎩ . 22.(1)在3π[0,]4上,()f x 为增函数;在3π[,π]4上时()f x 为减函数. (2)证明见解析.【分析】(1)求出函数的导数,判断导数正负,从而判断函数单调性;(2)当1a =时结合(1)可得πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭,整理为e sin 1sin cos x x x x +≥-,然后构造函数()πsin g x x x =--,利用其导数证明结论.【详解】(1)因为π()e sin sin ,[0,π]4x f x x x x ⎛⎫=-∈ ⎪⎝⎭所以()π()e sin e cos cos()e sin cos )(cos sin )e (sin (cos )4x x x x f x x x x x x a x x a x x '=+-=+-+=-+因为1a ≤,所以在()0,π上e 0x a ->由()0f x '=,解得3π4x =. 当3π04x <<时()0f x '>,故()f x 在3π[0,]4上为增函数; 当3ππ4x <<时()0f x '<,()f x 在3π[,π]4上为减函数. (2)证明:由(1)知,当1a =时π()e sin 4x f x x x ⎛⎫=- ⎪⎝⎭在3π[0,]4上为增函数,在3π[,π]4上为减函数. 因为(0)1,(π)1f f ==-所以()(π)f x f ≥故πe sin 14x x x ⎛⎫-≥- ⎪⎝⎭所以e sin sin cos 1x x x x ≥--所以e sin 1sin cos x x x x +≥-.设()πsin ,()1cos 0g x x x g x x '=--=--≤所以()g x 在[0,π]上为减函数.又(π)0g =,则()(π)0g x g ≥=,所以πsin x x -≥所以e (π)1e sin 1sin cos x x x x x x -+≥+≥-.【点睛】本题考查了利用导数判断函数的单调性以及利用导数证明不等式问题,解答时要明确导数与函数的单调性之间的关系,解答的关键是根据题中要证明的不等式合理变式,构造函数,利用导数判断单调性进而进行证明.。
【常考题】高三数学上期末试卷(附答案)一、选择题1.下列结论正确的是( ) A .若a b >,则22ac bc > B .若22a b >,则a b > C .若,0a b c ><,则a c b c +<+D<a b <2.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .43.若正实数x ,y 满足141x y +=,且234yx a a +>-恒成立,则实数a 的取值范围为( ) A .[]1,4-B .()1,4-C .[]4,1-D .()4,1-4.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭5.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <6.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 7.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S,且2S =,则A 等于( )A .6π B .4π C .3π D .2π 8.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .39.设数列{}n a 是等差数列,且26a =-,86a =,n S 是数列{}n a 的前n 项和,则( ). A .45S S <B .45S S =C .65S S <D .65S S =10.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .3211.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63B .61C .62D .5712.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .60二、填空题13.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________; 14.若为等比数列的前n 项的和,,则=___________15.计算:23lim 123n n nn→+∞-=++++L ________16.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,若三角形的面积2223)S a b c =+-,则角C =__________. 17.若x ,y 满足约束条件1300x y x y x y -≥-⎧⎪+≤⎪⎨≥⎪⎪≥⎩,则2z x y =-的最大值是__________.18.设,x y 满足约束条件0{2321x y x y x y -≥+≤-≤,则4z x y =+的最大值为 .19.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 20.若无穷等比数列{}n a 的各项和为2,则首项1a 的取值范围为______.三、解答题21.设 的内角 的对边分别为 已知.(1)求角 ;(2)若,,求的面积.22.已知函数()()22f x x x a x R =++∈(1)若函数()f x 的值域为[0,)+∞,求实数a 的值;(2)若()0f x >对任意的[1,)x ∈+∞成立,求实数a 的取值范围。
2023-2024学年江苏省苏州市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合U =R ,集合M ={x |log 2x <1},N ={x |x >1},则集合{x |0<x ≤1}=( ) A .M ∪NB .M ∩NC .(∁U M )∩ND .(∁U N )∩M2.设i 为虚数单位,复数z 满足(3﹣i )z =4+2i ,则|z |=( ) A .√2B .√3C .2D .43.2023年9月28日,沪宁沿江高速铁路开通运营,形成上海至南京间的第二条城际高速铁路,沪宁沿江高速铁路共设8座车站(如图).为体验高铁速度,游览各地风光,甲乙两人准备同时从南京南站出发,甲随机选择金坛、武进、江阴、张家港中的一站下车,乙随机选择金坛、武进、江阴、张家港、常熟中的一站下车.已知两人不在同一站下车,则甲比乙晚下车的概率为( )A .320B .14C .120D .384.已知函数f (x )=cos (ωx +π3)+1(ω>0)的最小正周期为π,则f (x )在区间[0,π2]上的最大值为( ) A .12B .1C .32D .25.在梯形ABCD 中,AD ∥BC ,∠ABC =π2,BC =2AD =2AB =2,以下底BC 所在直线为轴,其余三边旋转一周形成的面围成一个几何体,则该几何体的体积为( ) A .2π3B .4π3C .5π3D .2π6.在平面直角坐标系xOy 中,已知A 是圆C 1:x 2+(y ﹣3)2=1上的一点,B ,C 是圆C 2:(x ﹣4)2+y 2=4上的两点,则∠BAC 的最大值为( ) A .π6B .π3C .π2D .2π37.已知正实数a ,b ,c 满足2a+1a=2a ﹣a ,3b+1b =3b ﹣b ,4c+1c=4c ﹣c ,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .a <c <bD .b <a <c8.若sin π10是函数f (x )=ax 3﹣bx +1(a ,b ∈N *)的一个零点,则f (1)=( )A .2B .3C .4D .5二、选择题:本题共4小题,每小题5分,共20分。
2023-2024学年山东省德州市高三(上)期末数学试卷一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.)1.设集合U=R,集合M={x||x|<2},N={x|y=lg(1﹣x)},则(∁U M)∩N=()A.(﹣∞,﹣2)B.(﹣∞,﹣2]C.(﹣∞,1)∪[2,+∞)D.(2,+∞)2.已知复数z=2i,则|z﹣2i|=()1+iA.√2B.2C.√5D.53.按从小到大顺序排列的两组数据:甲组:30,31,37,m,42,60;乙组:28,n,33,44,48,70,若这两组数据的第30百分位数,第50百分位数都分别对应相等,则m+n=()A.60B.65C.70D.714.设点P是直线3x﹣4y+7=0上的动点,过点P引圆C:(x﹣1)2+y2=3的切线P A,PB(切点为A,B),则当∠APB取最大值时,|PC|=()A.1B.2C.3D.45.米斗是古代官仓、米行等用来称量粮食的器具,鉴于其储物功能和吉祥富足的寓意,现今多在超市、粮店等广泛使用.如图为一个正四棱台形米斗(忽略其厚度),其上、下底面边长分别为30√2cm,20√2cm,侧棱长为2√61cm,若将该米斗盛满大米(沿着上底面刮平后不溢出),设每立方分米的大米重0.8千克,则该米斗盛装大米约()A.6.08千克B.10.16千克C.12.16千克D.11.16千克6.已知函数f(x)=2sin x﹣2x,若对任意m∈[﹣2,2],f(ma﹣8)+f(a2)>0恒成立,则a的取值范围是()A.(﹣2,2)B.(﹣∞,﹣2)∪(2,+∞)C.(﹣1,1)D.(﹣∞,﹣1)∪(2,+∞)7.设函数f(x)=sin(ωx−π)(ω>0)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()3A .10π9B .32π27C .4π3D .25π188.在三棱锥P ﹣ABC 中,△ABC 是以AC 为斜边的等腰直角三角形,△P AC 是边长为2的正三角形,二面角P ﹣AC ﹣B 的大小为150°,则三棱锥P ﹣ABC 外接球的表面积为( ) A .28π3B .52π9C .28√21π27D .52√13π81二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.) 9.下列四个表述中,正确的是( )A .设有一个回归直线方程y =3−5x ,变量x 增加1个单位时,y 平均增加5个单位B .在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高C .在一个2×2列联表中,根据表中数据计算得到K 2的观测值k ,若k 的值越大,则认为两个变量间有关的把握就越大D .具有相关关系的两个变量x ,y 的相关系数为r ,那么|r |越接近于0,则x ,y 之间的线性相关程度越高10.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,下列结论正确的是( ) A .点A 1到DC 1的距离为√62B .面BC 1D 与面AB 1D 1的距离为√33C .直线A 1C 1与平面ABC 1D 1所成的角为π3 D .点A 1到平面BC 1D 的距离为√2211.双曲线具有以下光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线平分该点与两焦点连线的夹角.已知F 1,F 2分别为双曲线C :x 23−y 2=1的左,右焦点,过C 右支上一点A (x 0,y 0)(x 0>√3)作双曲线的切线交x 轴于点M ,交y 轴于点N ,则( ) A .平面上点B (4,1),|AF 2|+|AB |的最小值为√37−2√3B .直线MN 的方程为xx 0﹣3yy 0=3C .过点F 1作F 1H ⊥AM ,垂足为H ,则|OH |=2(O 为坐标原点)D .四边形AF 1NF 2面积的最小值为412.已知定义域为(0,+∞)的函数f (x )满足f (x )+xf '(x )=e x ,f '(1)=1,数列{a n }的首项为1,且f(a n+1)=f(a n )−1a n+1,则( ) A .f (ln 2)=log 2e B .f (x )≥1 C .a 2023<a 2024D .0<a n ≤1三、填空题(本题共4小题,每小题5分,共20分)13.在(1−√2x)6的二项展开式中任取一项,则该项系数为有理数的概率为 .14.已知平行四边形ABCD 中,DE →=12DC →,若AE →=λAC →+μBD →,则λ﹣μ= .15.若直线l 过抛物线y 2=4x 的焦点F 且与抛物线交于A 、B 两点,AB 的中垂线交对称轴于点D ,则|AB||DF|= .16.已知函数f (x )=e x +alnx ﹣x a ﹣x (a >0),若f (x )≥0对∀x ∈(1,+∞)恒成立,则实数a 的取值范围为 .四、解答题(本题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.)17.(10分)已知等差数列{a n }的前n 项和为S n ,且a 2=3,S 5=20,数列{b n }的前n 项和T n 满足关系式T n =1−b n (n ∈N ∗).(1)求数列{a n }、{b n }的通项公式; (2)求数列{a n •b n }的前n 项和R n .18.(12分)在△ABC 中,AB =c ,AC =b ,BC =a ,a =c •cos B 且cosB =c−a2a. (1)求B 的大小;(2)若c =3,D 为AB 边上一点,且AD =1,求sin ∠BCD .19.(12分)如图,在四棱台ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是边长为2的菱形,∠DAB =π3,A 1D =A 1B ,A 1B 1=CC 1=1,AA 1=2,点E 分别为BC 的中点. (1)证明:直线B 1E ∥面A 1AC ; (2)求二面角C 1﹣BB 1﹣A 的余弦值.20.(12分)已知椭圆方程x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,且过焦点垂直于x 轴的弦长为1.左顶点为B ,定点C (4,0),过点C 作与x 轴不重合的直线l 交椭圆于P 、Q 两点,直线BP 、BQ 分别与y 轴交于M 、N 两点. (1)求椭圆方程;(2)试探究|OM |•|ON |是否为定值,若为定值,求出该定值;若不为定值,说明理由.21.(12分)某市号召市民尽量减少开车出行,以绿色低碳的出行方式支持节能减排.原来天天开车上班的王先生积极响应政府号召,准备每天在骑自行车和开车两种出行方式中随机选择一种方式出行.从即日起出行方式选择规则如下:第一天选择骑自行车方式上班,随后每天用“一次性抛掷4枚均匀硬币”的方法确定出行方式,若得到的正面朝上的枚数小于3,则该天出行方式与前一天相同,否则选择另一种出行方式.(1)设P n(n∈N∗)表示事件“第n天王先生上班选择的是骑自行车出行方式”的概率.①求P3;②用P n﹣1表示P n(n≥2);(2)依据P n值,阐述说明王先生的这种随机选择出行方式是否积极响应市政府的号召.22.(12分)已知常数a>0,函数f(x)=ln(2+ax)−2x.x+2(1)讨论f(x)在区间(0,+∞)上的单调性;(2)若f(x)存在两个极值点x1,x2,且f(x1)+f(x2)>0,求a的取值范围.2023-2024学年山东省德州市高三(上)期末数学试卷参考答案与试题解析一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.)1.设集合U=R,集合M={x||x|<2},N={x|y=lg(1﹣x)},则(∁U M)∩N=()A.(﹣∞,﹣2)B.(﹣∞,﹣2]C.(﹣∞,1)∪[2,+∞)D.(2,+∞)解:集合M={x||x|<2}={x|﹣2<x<2},∴∁U M={x|x≤﹣2或x≥2},又∵N={x|y=lg(1﹣x)}={x|x<1},∴(∁U M)∩N={x|x≤﹣2}.故选:B.2.已知复数z=2i1+i,则|z﹣2i|=()A.√2B.2C.√5D.5解:z=2i1+i=2i(1−i)(1+i)(1−i)=1+i,则|z﹣2i|=|1+i﹣2i|=√2.故选:A.3.按从小到大顺序排列的两组数据:甲组:30,31,37,m,42,60;乙组:28,n,33,44,48,70,若这两组数据的第30百分位数,第50百分位数都分别对应相等,则m+n=()A.60B.65C.70D.71解:因为6×30%=1.8,6×50%=3,则由题意甲组数据的第30百分位数为31,乙组数据的第30百分位数为n,所以n=31;甲组数据的第50百分位数为37+m2,乙组数据的第50百分位数为33+442=772,所以37+m2=772,解得m=40,则m+n=40+31=71.故选:D.4.设点P是直线3x﹣4y+7=0上的动点,过点P引圆C:(x﹣1)2+y2=3的切线P A,PB(切点为A,B),则当∠APB取最大值时,|PC|=()A.1B.2C.3D.4解:若∠APB取最大值,则∠APC=12∠APB亦取最大,又P A与圆C相切,故P A⊥AC,故sin∠APC=|AC||PC|,由|AC|=r,故需|PC|取最小,又点P是直线3x﹣4y+7=0上的动点,故|PC|最小为点C到直线3x﹣4y+7=0的距离,由C:(x﹣1)2+y2=3,可得C(1,0),故d=√3+4=105=2,即|PC|=2.故选:B.5.米斗是古代官仓、米行等用来称量粮食的器具,鉴于其储物功能和吉祥富足的寓意,现今多在超市、粮店等广泛使用.如图为一个正四棱台形米斗(忽略其厚度),其上、下底面边长分别为30√2cm,20√2cm,侧棱长为2√61cm,若将该米斗盛满大米(沿着上底面刮平后不溢出),设每立方分米的大米重0.8千克,则该米斗盛装大米约()A.6.08千克B.10.16千克C.12.16千克D.11.16千克解:设该正棱台为ABCD﹣A1B1C1D1,其中上底面为ABCD,取对角面为AA1C1C,由题意得四边形AA1C1C为等腰梯形,如图,∵上、下底面边长分别为30√2cm,20√2cm,侧棱长为2√61cm,且AC=60,A1C1=40,AA1=CC1=2√61,分别过点A1,C1作A1E⊥AC,C1F⊥AC,垂足分别为E,F,可得EF=A1C1=40,由等腰梯形的几何性质,可得AA1=CC1,∵∠A1AE=∠C1CF,∠AEA1=∠CFC1=90°,∴Rt△AA1E≌Rt△CC1F,∴AE=CF=AC−EF2=10,∴A1E=√AA12−AE2=12,即棱台的高为12cm,∴该米斗的体积为V=13×[(20√2)2+(30√2)2+√(20√2)2+(30√2)2]×12=15200cm3=15.2(立方分米),∴该米斗所成大米的质量为15.2×0.8=12.16(千克).故选:C.6.已知函数f(x)=2sin x﹣2x,若对任意m∈[﹣2,2],f(ma﹣8)+f(a2)>0恒成立,则a的取值范围是()A .(﹣2,2)B .(﹣∞,﹣2)∪(2,+∞)C .(﹣1,1)D .(﹣∞,﹣1)∪(2,+∞)解:由题意得函数定义域为R ,f (﹣x )=2sin (﹣x )+2x =﹣2(sin x ﹣x )=﹣f (x ),即f (x )是奇函数, f '(x )=2(cos x ﹣1)≤0,即f (x )在R 上单调递减,对任意m ∈[﹣2,2],f (ma ﹣8)+f (a 2)>0恒成立,即f (ma ﹣8)>﹣f (a 2)=f (﹣a 2), ∴ma ﹣8<﹣a 2对任意m ∈[﹣2,2]恒成立,即ma ﹣8+a 2<0, 令g (m )=ma ﹣8+a 2,m ∈[﹣2,2],∴{g(−2)<0g(2)<0,即{−2a −8+a 2<02a −8+a 2<0,解得﹣2<a <2,∴a 的取值范围是(﹣2,2). 故选:A .7.设函数f(x)=sin(ωx −π3)(ω>0)在[﹣π,π]的图象大致如图,则f (x )的最小正周期为( )A .10π9B .32π27C .4π3D .25π18解:根据f(x)=sin(ωx −π3)(ω>0)在[﹣π,π]的图象,∵图象过点(−4π9,0), ∴ω×(−4π9)−π3=k π(k ∈Z ),解得ω=−9k+34(k ∈Z ), 设函数的最小正周期为T ,由函数的图象得12T >−4π9−(﹣π)=5π9,T <π﹣(−4π9)=13π9,即10π9<T <13π9,∴10π9<2πω<13π9,∴1813<ω<95,当且仅当k =﹣1时,符合题意,此时ω=32,故f (x )的最小正周期为2πω=4π3.故选:C .8.在三棱锥P ﹣ABC 中,△ABC 是以AC 为斜边的等腰直角三角形,△P AC 是边长为2的正三角形,二面角P ﹣AC ﹣B 的大小为150°,则三棱锥P ﹣ABC 外接球的表面积为( )A.28π3B.52π9C.28√21π27D.52√13π81解:如图,取AC的中点H,连接BH,PH,由题意,AB=BC=√22AC=√2,PA=PC=2,所以BH⊥AC,PH⊥AC,所以∠BHP为二面角P﹣AC﹣B的平面角,所以∠BHP=150°,因为△ABC是以AC为斜边的等腰直角三角形,且AC=2,所以AH=BH=CH=1,H为△ABC外接圆的圆心,又△P AC是边长为2的等边三角形,所以HP=√3,过点H作与平面ABC垂直的直线,则球心O在该直线上,设球的半径为R,连接OB,OP,可得OH2=OB2﹣BH2=R2﹣1,在△OPH中,∠OHP=60°,利用余弦定理可得OP2=OH2+HP2﹣2HO•HP•cos60°,所以R2=R2−1+3−2×√R2−1×√3×12,解得R2=73,所以外接球的表面积为4πR2=28π3.故选:A.二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列四个表述中,正确的是()A.设有一个回归直线方程y=3−5x,变量x增加1个单位时,y平均增加5个单位B.在残差图中,残差点分布的水平带状区域越窄,说明模型的拟合精度越高C.在一个2×2列联表中,根据表中数据计算得到K2的观测值k,若k的值越大,则认为两个变量间有关的把握就越大D.具有相关关系的两个变量x,y的相关系数为r,那么|r|越接近于0,则x,y之间的线性相关程度越高解:对于A,因为y=3−5x,所以变量x增加一个单位时,y平均减少5个单位,故A错误;对于B,在残差图中,残差点分布的水平带状区域越窄,说明波动越小,即模型的拟合精度越高,故B 正确;对于C,观测值越大,则认为两个变量间有关的把握就越大,故C正确;对于D ,|r |越接近于1,则x ,y 之间的线性相关程度越高,故D 错误. 故选:BC .10.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,下列结论正确的是( ) A .点A 1到DC 1的距离为√62B .面BC 1D 与面AB 1D 1的距离为√33C .直线A 1C 1与平面ABC 1D 1所成的角为π3 D .点A 1到平面BC 1D 的距离为√22解:以D 为原点,DA 、DC 、DD 1所在的直线分别为x 、y 、z 轴正方向建立如图所示的空间直角坐标系, 对于A :A 1(1,0,1),C 1(0,1,1),D (0,0,0), C 1D →=(0,﹣1,﹣1),C 1A 1→=(1,﹣1,0),所以点A 1到DC 1的距离d =√|C 1A 1→|2−|C 1A 1→|cos 2<C 1A 1→,C 1D →>=√|C 1A 1→|2−|C 1A 1→⋅C 1D →|2|C 1D →|2=√62,故A 正确;对于B :B (1,1,0),C 1(0,1,1),A (1,0,0),B 1(1,1,1),D 1(0,0,1), AD 1→=(﹣1,0,1),AB 1→=(0,1,1),DC 1→=(0,1,1),DB →=(1,1,0), 设n 1→=(x 1,y 1,z 1),n 2→=(x 2,y 2,z 2)分别为平面AB 1D 1,平面BC 1D 的一个法向量, 所以{AD 1→⋅n 1→=−x 1+z 1=0AB 1→⋅n 1→=y 1+z 1=0,令x 1=1,可得y 1=﹣1,z 1=1,所以n 1→=(1,−1,1),{DC 1→⋅n 2→=y 2+z 2=0DB →⋅n 2→=x 2+y 2=0,令x 2=1,可得y 2=﹣1,z 2=1,所以n 2→=(1,−1,1), 所以n 1→=n 2→,所以平面BC 1D ∥平面AB 1D 1,可得B 1点到平面BC 1D 的距离即为所求, BB 1→=(0,0,1),所以B 1点到平面BC 1D 的距离为:|BB 1→|•|cos <BB 1→,n 2→>|=|BB 1→⋅n 2→||n 2→|=13=√33,故B 正确; 对于C :B (1,1,0),C 1(0,1,1),A (1,0,0),A 1(1,0,1), A 1C 1→=(﹣1,1,0),AB →=(0,1,0),BC 1→=(﹣1,0,1), 设n 3→=(x 3,y 3,z 3)为平面ABC 1D 1的一个法向量, 所以{BC 1→⋅n 3→=−x 3+z 3=0AB →⋅n 3→=y 3=0,令x 3=1,可得y 3=0,z 3=1,所以n 3→=(1,0,1),设直线A 1C 1与平面ABC 1D 1所成的角为θ(θ∈[0,π2]),所以sin θ=|cos <A 1C 1→,n 3→>|=|A 1C 1→⋅n 3→||A 1C 1→|⋅|n 3→|=1√2×√2=12, 因为θ∈[0,π2],所以θ=π6,故C 错误;对于D ,因为平面BC 1D的一个法向量为n 2→=(1,−1,1),A 1C 1→=(﹣1,1,0),所以点A 1到平面BC 1D 的距离为|A 1C 1→|•|cos <A 1C 1→,n 2→>|=|A 1C 1→⋅n 2→||n 2→|=√3×√2=√63,故D 错误. 故选:AB .11.双曲线具有以下光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线平分该点与两焦点连线的夹角.已知F 1,F 2分别为双曲线C :x 23−y 2=1的左,右焦点,过C 右支上一点A (x 0,y 0)(x 0>√3)作双曲线的切线交x 轴于点M ,交y 轴于点N ,则( ) A .平面上点B (4,1),|AF 2|+|AB |的最小值为√37−2√3B .直线MN 的方程为xx 0﹣3yy 0=3C .过点F 1作F 1H ⊥AM ,垂足为H ,则|OH |=2(O 为坐标原点)D .四边形AF 1NF 2面积的最小值为4解:对于A ,由双曲线定义得|AF 1|−|AF 2|=2a =2√3,且F 1(﹣2,0), 则|AF 2|+|AB |=|AF 1|+|AB |﹣2√3≥|BF 1|﹣2√3=√(4+2)2+1=√37−2√3, 所以|AF 2|+|AB |的最小值为√37−2√3,故A 正确; 对于B ,设直线MN 的方程为y ﹣y 0=k (x ﹣x 0),k ≠±√33,联立方程组{y −y 0=k(x −x 0)x 2−3y 2=3,消去y 整理得(1−3k 2)x 2+(6k 2x 0−6ky 0)x −3k 2x 02+6kx 0y 0−3y 02−3=0,∴Δ=0,化简整理得9y0k2−6x0y0k+x02=0,解得k=x03y0,可得直线MN的方程为y−y0=x03y0(x−x0),即x0x﹣3y0y=3,故B正确;对于C,由双曲线的光学性质可知,AM平分∠F1AF2延长F1H与AF2的延长线交于点E,则AH垂直平分F1E,即|AF1|=|AE|,H为F1E的中点,又O是F1F2中点,所以|OH|=12|F2E|=12(|AE|−|AF2|)=12(|AF1|−|AF2|)=a=√3,故C错误;对于D,由直线MN的方程为x0x﹣3y0y=3,令x=0,得y=−1y0,则N(0,−1y0),S AF1NF2=S△AF1F2+S△NF1F2=12|F1F2|×(|y0|+1|y0|≥12×4×2√|y0|×1|y0|=4,当且仅当|y0|=1|y0|,即y0=±1时等号成立,所以四边形AF1NF2面积的最小值为4,故D项正确.故选:ABD.12.已知定义域为(0,+∞)的函数f(x)满足f(x)+xf'(x)=e x,f'(1)=1,数列{a n}的首项为1,且f(a n+1)=f(a n)−1a n+1,则()A.f(ln2)=log2e B.f(x)≥1 C.a2023<a2024D.0<a n≤1解:∵[xf(x)]′=f(x)+xf′(x)=e x,则xf(x)=e x+c,取x=1可得f(1)=e+c,由f(x)+xf'(x)=e x,令x=1,得f(1)+f'(1)=e,∵f′(1)=1,∴c=﹣1,f(x)=e x−1 x,则f(ln2)=log2e,故A正确;令φ(x)=e x﹣x﹣1,则φ′(x)=e x﹣1,当x <0时,φ'(x )<0,当x >0时,φ′(x )>0,所以φ(x )在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,故φ(x )≥φ(0)=0,即e x ≥x +1,当且仅当x =0时,等号成立,故f (x )>1,故B 正确. 由f(a n+1)=f(a n )−1a n+1=e a n+1−1a n+1,得e a n+1=f (a n ),所以e a n+1=e a n −1a n, 即a n ⋅e a n+1=e a n −1≥1+a n ﹣1=a n ,即a n (e a n+1−1)≥0.因为函数f (x )定义域为(0,+∞),所以a n >0,e a n+1−1≥0,即a n +1≥0, 下证数列{a n }单调递减,即证e a n+1<e a n,即证e a n −1a n<e a n ,即证e a n −1<a n e a n ,即证(1﹣a n )e a n −1<0,令g (x )=(1﹣x )e x ﹣1,则g ′(x )=﹣xe x ,当x >0时,g '(x )<0,所以g (x )在(0,+∞)上单调递减, 因为a n >0,g (a n )<g (0)=0,所以a n +1<a n ,即数列{a n }单调递减, 所以0<a n ≤a 1=1,故D 正确,C 错误. 故选:ABD .三、填空题(本题共4小题,每小题5分,共20分)13.在(1−√2x)6的二项展开式中任取一项,则该项系数为有理数的概率为47. 解:(1−√2x)6的二项展开式中,通项公式为T r +1=C 6r •(−√2x)r =(−√2)r •C 6r •x r ,当且仅当r 为偶数时,该项系数为有理数,而r ∈[0,6](r ∈N ),所以r =0,2,4,6满足题意, 又因为展开式共有7项,所以所求的概率为P =47.故答案为:47.14.已知平行四边形ABCD 中,DE →=12DC →,若AE →=λAC →+μBD →,则λ﹣μ= 12.解:已知平行四边形ABCD 中,DE →=12DC →,如图所示:故AE →=12(AD →+AC →)=12AD →+12AD →+12AB →=AD →+12AB →,由于AE →=λAC →+μBD →=λ(AD →+AB →)+μ(AD →−AB →)=(λ+μ)AD →+(λ−μ)AB →, 故{λ+μ=1λ−μ=12,解得λ−μ=12.故答案为:12.15.若直线l 过抛物线y 2=4x 的焦点F 且与抛物线交于A 、B 两点,AB 的中垂线交对称轴于点D ,则|AB||DF|=2 .解:由抛物线的方程可得焦点F (1,0),准线方程x =﹣1, 显然直线AB 的斜率存在且不为0,设直线AB 的方程为x =my +1,设A (x 1,y 1),B (x 2,y 2), 联立{x =my +1y 2=4x,整理可得:y 2﹣4my ﹣4=0, 可得y 1+y 2=4m ,x 1+x 2=m (y 1+y 2)+2=4m 2+2, 所以AB 的中点M (2m 2+1,2m ),所以AB 的中垂线的方程为y ﹣2m =﹣m (x ﹣2m 2﹣1), 令y =0,可得x D =2m 2+3, 所以|DF |=2m 2+3﹣1=2m 2+2,由抛物线的性质可得:|AB |=x 1+x 2+2=4m 2+2+2=4m 2+4, 所以|AB||DF|=4m 2+42m 2+2.故答案为:2.16.已知函数f (x )=e x +alnx ﹣x a ﹣x (a >0),若f (x )≥0对∀x ∈(1,+∞)恒成立,则实数a 的取值范围为 (0,e ] .解:因为e x +alnx ﹣x a ﹣x ≥0对∀x ∈(1,+∞)恒成立, 所以lnx a ﹣x a ≥lne x ﹣e x 对∀x ∈(1,+∞)恒成立, 令m (t )=lnt ﹣t (t >1),则m ′(t)=1t −1=1−tt<0,所以m (t )=lnt ﹣t (t >1)在(1,+∞)单调递减, 因为m (x a )≥m (e x )对∀x ∈(1,+∞)恒成立,a >0, 所以x a ≤e x ,两边取对数得:alnx ≤x (x >1),即a ≤xlnx(x >1), 令g(x)=x lnx (x >1),则g ′(x)=lnx−1(lnx)2(x >1), 所以当x ∈(1,e )时,g '(x )<0,g(x)=xlnx在(1,e )单调递减; 当x ∈(e ,+∞)时,g '(x )>0,g(x)=xlnx在(e ,+∞)单调递增; 所以g(x)=xlnx(x >1)的最小值为g (e )=e , 故0<a ≤e . 故答案为:(0,e ].四、解答题(本题共6小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤.)17.(10分)已知等差数列{a n }的前n 项和为S n ,且a 2=3,S 5=20,数列{b n }的前n 项和T n 满足关系式T n =1−b n (n ∈N ∗).(1)求数列{a n }、{b n }的通项公式; (2)求数列{a n •b n }的前n 项和R n . 解:(1)设等差数列{a n }的公差为d ,由题意可知{a 1+d =35a 1+5×42×d =20,解得{a 1=2d =1, ∴a n =n +1(n ∈N ∗),当n ≥2时,b n =T n ﹣T n ﹣1=1﹣b n ﹣1+b n ﹣1,∴b n b n−1=12,又T 1=1﹣b 1,∴b 1=12,∴{b n }是以12为首项,12为公比的等比数列,∴b n =12n ; (2)由(1)知a n ⋅b n =(n +1)12n ,n ∈N ∗, R n =2×12+3×122+⋯+(n +1)12n ①,12R n =2×122+⋯+n ⋅12n+(n +1)12n+1②,①﹣②得12R n =12+12+122+⋯+12n −n+12n+1=12+1−12n −n+12n+1,∴R n=3−n+3 2n.18.(12分)在△ABC中,AB=c,AC=b,BC=a,a=c•cos B且cosB=c−a2a.(1)求B的大小;(2)若c=3,D为AB边上一点,且AD=1,求sin∠BCD.解:(1)由a=c•cos B得cosB=ac,又cosB=c−a2a,所以c−a2a=ac,整理可得:2a2﹣c2+ac=0,即(2a﹣c)(a+c)=0,可得c=2a,可得cosB=1 2,又B∈(0,π),所以B=π3;(2)由a=c cos B及正弦定理,得sin A=sin C•cos B,即sin(B+C)=sin C•cos B,即sin B cos C=0,因为sin B≠0,所以cos C=0,解得C=π2;由已知,c=3,AD=1,所以BD=2,BC=3 2,△BCD中,由余弦定理得CD2=BC2+BD2−2BC⋅BD⋅cosB=134,解得CD=√134=√132,在△BCD中,由正弦定理得:BDsin∠BCD=CDsinB,B=π3,所以sin∠BCD=BD⋅sinBCD=2√3913.19.(12分)如图,在四棱台ABCD﹣A1B1C1D1中,底面ABCD是边长为2的菱形,∠DAB=π3,A1D=A1B,A1B1=CC1=1,AA1=2,点E分别为BC的中点.(1)证明:直线B1E∥面A1AC;(2)求二面角C1﹣BB1﹣A的余弦值.解:(1)证明:如图,设AC与BD相交于点O,连接A1O,OE,∵O 、E 分别为AC 、BC 中点, ∴OE =12AB ,又 A 1B 1=12AB ,∵OE =A 1B 1,∴四边形A 1B 1EO 为平行四边形, ∴B 1E ∥OA 1,∵OA 1⊂平面AA 1C ,B 1 E ⊄面 AA 1C ,∴直线B 1E ∥面 AA 1C . (2)∵A 1D =A 1B ,O 为BD 中点,∴A 1O ⊥BD , 连接A 1C 1,则A 1C 1∥OC ,且A 1C 1=OC , ∴四边形A 1OCC 1 为平行四边形,∴C 1C =A 1O =1,等边△ABD 中,AO =√3,∴A 1O 2+AO 2=4=AA 12,从而AO ⊥AC ,∵A 1O ⊥BD ,AC ∩BD =O ,AC ,BD ⊂平面ABCD ,∴A 1O ⊥平面ABCD ,以O 为坐标原点,建立如图所示的空间直角坐标系, 则C 1(−√3,0,1),B 1(−√32,12,1),B (0,1,0),A(√3,0,0),设平面C 1B 1B 的法向量为m →=(x ,y ,z ),C 1B 1→=(√32,12,0),B 1B →=(√32,12,−1),则{m →⋅C 1B 1→=√32x +12y =0m →⋅B 1B →=√32x +12y −z =0,取x =1,得m →=(1,−√3,0), 设平面ABB 1的法向量为n →=(a ,b ,c ),AB →=(−√3,1,0), 则{n →⋅AB →=−√3a +b =0n →⋅B 1B →=√32a +12b −c =0,取a =1,得n →=(1,√3,√3), ∴cos <m →,n →>=m →⋅n →|m →|⋅|n →|=−22×√7=−√77,由图可知,二面角 C 1﹣BB 1﹣A 为钝角, ∴二面角C 1﹣BB 1﹣A 的余弦值为−√77.20.(12分)已知椭圆方程x 2a 2+y 2b 2=1(a >b >0)的离心率为√32,且过焦点垂直于x 轴的弦长为1.左顶点为B ,定点C (4,0),过点C 作与x 轴不重合的直线l 交椭圆于P 、Q 两点,直线BP 、BQ 分别与y轴交于M、N两点.(1)求椭圆方程;(2)试探究|OM|•|ON|是否为定值,若为定值,求出该定值;若不为定值,说明理由.解:(1)由已知:ca=√32,即c2a2=34,即a2−b2a2=34⇒a=2b,在x2a2+y2b2=1中,令x=c,解得y=±b2a,所以2b2a=1,即2b22b=b=1,所以a=2,b=1,所以椭圆方程为:x24+y2=1;(2)由题意设PQ:x=my+4,P(x1,y1),Q(x2,y2),联立方程{x=my+4 x24+y2=1,消去x化简得:(m2+4)y2+8my+12=0,Δ=(8m)2﹣4(m2+4)×12=16m2﹣192>0,即m2>12,所以y1+y2=−8mm2+4,y1y2=12m2+4,又B(﹣2,0),所以直线BP的方程:y=y1x1+2(x+2),令x=0得:y M=2y1x1+2,同理y N=2y2x2+2=2y2x2+2,所以|OM|⋅|ON|=|y M⋅y N|=|2y1x1+2⋅2y2x2+2|=|4y1y2(my1+6)(my2+6)|=|4y1y2m2y1y2+6m(y1+y2)+36|=|4×12m2+4m2×12m2+4+6m×(−8mm2+4)+36|=|4812m2−48m2+36(m2+4)|=|48144|=13,即|OM|⋅|ON|为定值1 3.21.(12分)某市号召市民尽量减少开车出行,以绿色低碳的出行方式支持节能减排.原来天天开车上班的王先生积极响应政府号召,准备每天在骑自行车和开车两种出行方式中随机选择一种方式出行.从即日起出行方式选择规则如下:第一天选择骑自行车方式上班,随后每天用“一次性抛掷4枚均匀硬币”的方法确定出行方式,若得到的正面朝上的枚数小于3,则该天出行方式与前一天相同,否则选择另一种出行方式.(1)设P n (n ∈N ∗)表示事件“第n 天王先生上班选择的是骑自行车出行方式”的概率. ①求P 3;②用P n ﹣1表示P n (n ≥2);(2)依据P n 值,阐述说明王先生的这种随机选择出行方式是否积极响应市政府的号召. 解:(1)根据题意,设一次性抛掷4枚均匀的硬币得到正面向上的枚数为ξ,则ξ~(4,12),则P (ξ≥3)=C 43(12)3(1−12)=C 44(12)4=516,P (ξ<3)=1﹣P (ξ≥3)=1−516=1116, ①第一天选择骑自行车方式上班,易得P 2=1116, 则P 3=P 2P (ξ<3)+(1﹣P 2)P (ξ≥3)=1116×1116+516×516=146256=73128, ②根据题意,易得P n =P n ﹣1P (ξ<3)+(1﹣P n ﹣1)P (ξ≥3)=P n ﹣1×1116+(1﹣P n ﹣1)×516=38P n ﹣1+516, 故P n =38P n ﹣1+516;(2)根据题意,由(1)的结论,P n =38P n ﹣1+516,变形可得P n −12=38(P n ﹣1−12),又由P 1−12=12,故数列{P n −12}是以12为首项,公比为38的等比数列,故P n −12=(P 1−12)×(38)n ﹣1=12×(38)n ﹣1,变形可得P n =12+12×(38)n ﹣1>12; 故王先生每天选择骑自行车出行的概率始终大于选择开车出行的概率,积极响应市政府的号召. 22.(12分)已知常数a >0,函数f(x)=ln(2+ax)−2xx+2. (1)讨论f (x )在区间(0,+∞)上的单调性;(2)若f (x )存在两个极值点x 1,x 2,且f (x 1)+f (x 2)>0,求a 的取值范围. 解:(1)∵f(x)=ln(2+ax)−2x x+2,f ′(x)=a 2+ax −4(x+2)2=ax 2+4(a−2)(2+ax)(x+2)2,∴当a ≥2时,f '(x )≥0恒成立,则函数f (x )在(0,+∞)单调递增, 当0<a <2时,由f '(x )=0得x =±2√a(2−a)a,则函数f(x)在(0,2√a(2−a)a)单调递减,在(2√a(2−a)a,+∞)单调递增.(2)由(1)知,当a≥2时,f'(x)≥0,此时f(x)不存在极值点.因此要使f(x)存在两个极值点x1,x2,则必有0<a<2,又f(x)的极值点值是x1=2√a(2−a)a,x2=−2√a(2−a)a,且由f(x)的定义域可知x>−1a且x≠﹣2,∴−2√a(2−a)a>−2a且−2√a(2−a)a≠−2,解得a≠1,则x1,x2分别为函数f(x)的极小值点和极大值点,x1+x2=0,x1x2=4(a−2)a,∴f(x1)+f(x2)=ln[2+ax1]−2x1x1+2+ln(2+ax2)−2x2x2+2=ln[4+2a(x1+x2)+a2x1x2]−4x1x2+4(x1+x2) x1x2+2(x1+x2)+4=ln(2a−2)2−4(a−2)2a−2=ln(2a−2)2+42a−2−2.令2a﹣2=x,由0<a<2且a≠1得,当0<a<1时,﹣2<x<0;当1<a<2时,0<x<2,令g(x)=lnx2+4x−2.①当﹣2<x<0时,g(x)=2ln(−x)+4x−2,g′(x)=2x−4x2=2x−4x2<0,则g(x)在(﹣2,0)上单调递减,g(x)<g(﹣2)=2(ln2﹣2)<0,∴当0<a<1时,f(x1)+f(x2)<0;②当0<x<2时,g(x)=2lnx+4x−2,g′(x)=2x−4x2=2x−4x2<0,则g(x)在(0,2)上单调递减,g(x)>g(2)=0,∴当1<a<2时,f(x1)+f(x2)>0;综上所述,a的取值范围是(1,2).。
【常考题】高三数学上期末试卷及答案一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.等差数列{}n a 中,已知70a >,390a a +<,则{}n a 的前n 项和n S 的最小值为( ) A .4SB .5SC .6SD .7S3.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .14.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要等级分明,使孝顺子女的美德外传,则第八个孩子分得斤数为( ) A .65B .184C .183D .1765.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A.2+B1C.2D16.在ABC ∆中,2AC =,BC =135ACB ∠=o ,过C 作CD AB ⊥交AB 于D ,则CD =( ) ABCD7.已知实数x 、y 满足约束条件00134x y x ya a ⎧⎪≥⎪≥⎨⎪⎪+≤⎩,若目标函数231x y z x ++=+的最小值为32,则正实数a 的值为( ) A .4B .3C .2D .18.若ABC ∆的三个内角满足sin :sin :sin 5:11:13A B C =,则ABC ∆( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形9.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S ,且223tan 2S B =+,则A 等于( )A .6π B .4π C .3π D .2π 10.设变量,x y 、满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩,则目标函数2z x y =+的最大值为( )A .2B .3C .4D .911.我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…,2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则10N =( )A .1020B .1010C .510D .50512.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .3二、填空题13.数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩,当100a =时,则数列{}n a 的前100项的和100S 为________.14.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .15.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=L __________.16.观察下列的数表: 2 4 68 10 12 1416 18 20 22 24 26 28 30 …… ……设2018是该数表第m 行第n 列的数,则m n ⋅=__________.17.若变量,x y 满足约束条件{241y x y x y ≤+≥-≤,则3z x y =+的最小值为_____.18.已知平面四边形ABCD 中,120BAD ∠=︒,60BCD ∠=︒,2AB AD ==,则AC 的最大值为__________.19.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 20.若log 41,a b =-则+a b 的最小值为_________.三、解答题21.在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2sin 3tan c B a A =.(1)求222b c a+的值; (2)若2a =,求ABC ∆面积的最大值.22.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且满足sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)若D 为AC 的中点,且1BD =,求ABC S ∆的最大值. 23.在等差数列{}n a 中,2723a a +=-,3829a a +=-. (1)求数列{}n a 的通项公式.(2)若数列{}n n a b +的首项为1,公比为q 的等比数列,求{}n b 的前n 项和n S . 24.已知数列{}n a 的前n 项和为n S ,满足()*2N n n S a n n =-∈.(Ⅰ)证明:{}1n a +是等比数列; (Ⅱ)求13521n a a a a -+++⋯+的值.25.记等差数列{}n a 的前n 项和为n S ,已知2446,10a a S +==. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)令2n n n b a =⋅*()n N ∈,求数列{}n b 的前n 项和n T .26.在ABC ∆中,3sincos a C c A =. (Ⅰ)求角A 的大小;(Ⅱ)若3ABC S ∆=,223b c +=+,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.C解析:C 【解析】 【分析】先通过数列性质判断60a <,再通过数列的正负判断n S 的最小值. 【详解】∵等差数列{}n a 中,390a a +<,∴39620a a a +=<,即60a <.又70a >,∴{}n a 的前n 项和n S 的最小值为6S . 故答案选C 【点睛】本题考查了数列和的最小值,将n S 的最小值转化为{}n a 的正负关系是解题的关键.3.B解析:B 【解析】试题分析:作出题设约束条件可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,把直线l 向上平移,z 增加,当l 过点(3,2)B 时,3227z =+⨯=为最大值.故选B .考点:简单的线性规划问题.4.B解析:B 【解析】分析:将原问题转化为等差数列的问题,然后结合等差数列相关公式整理计算即可求得最终结果.详解:由题意可得,8个孩子所得的棉花构成公差为17的等差数列,且前8项和为996, 设首项为1a ,结合等差数列前n 项和公式有:811878828179962S a d a ⨯=+=+⨯=,解得:165a =,则81765717184a a d =+=+⨯=. 即第八个孩子分得斤数为184. 本题选择B 选项.点睛:本题主要考查等差数列前n 项和公式,等差数列的应用,等差数列的通项公式等知识,意在考查学生的转化能力和计算求解能力.5.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.6.A解析:A 【解析】 【分析】先由余弦定理得到AB 边的长度,再由等面积法可得到结果. 【详解】根据余弦定理得到22222AC BC AB AC BC +-=⨯⨯将2AC =,22BC =,代入等式得到AB=5 再由等面积法得到112252522222CD CD ⨯=⨯⇒=故答案为A. 【点睛】这个题目考查了解三角形的应用问题,涉及正余弦定理,面积公式的应用,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.7.D解析:D 【解析】 【分析】作出不等式组所表示的可行域,根据目标函数的几何意义,利用直线斜率的几何意义以及数形结合进行求解即可. 【详解】目标函数()12123112111x y x y y z x x x ++++++===+⨯+++, 设11y k x +=+,则k 的几何意义是区域内的点与定点(1,1)D --连线的斜率, 若目标函数231x y z x ++=+的最小值为32,即12z k =+的最小值是32, 由3122k +=,得14k =,即k 的最小值是14,作出不等式组对应的平面区域如图:由斜率的意义知过D 的直线经过()3,0B a 时,直线的斜率k 最小,此时011314k a +==+, 得314a +=,得1a =. 故选:D. 【点睛】本题考查利用线性规划中非线性目标函数的最值求参数,解题时要结合非线性目标函数的几何意义寻找最优解,考查数形结合思想的应用,属于中等题.8.C解析:C 【解析】 【分析】由sin :sin :sin 5:11:13A B C =,得出::5:11:13a b c =,可得出角C 为最大角,并利用余弦定理计算出cos C ,根据该余弦值的正负判断出该三角形的形状. 【详解】由sin :sin :sin 5:11:13A B C =,可得出::5:11:13a b c =, 设()50a t t =>,则11b t =,13c t =,则角C 为最大角,由余弦定理得2222222512116923cos 022511110a b c t t t C ab t t +-+-===-<⨯⨯,则角C 为钝角,因此,ABC ∆为钝角三角形,故选C.【点睛】本题考查利用余弦定理判断三角形的形状,只需得出最大角的属性即可,但需结合大边对大角定理进行判断,考查推理能力与计算能力,属于中等题.9.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C 【点睛】此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.10.D解析:D 【解析】 【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论. 【详解】画出满足约束条件236y x x y y x ≤⎧⎪+≥⎨⎪≥-⎩的可行域,如图,画出可行域ABC ∆,(2,0)A ,(1,1)B ,(3,3)C , 平移直线2z x y =+,由图可知,直线2z x y =+经过(3,3)C 时 目标函数2z x y =+有最大值,2z x y =+的最大值为9.故选D. 【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.11.D解析:D 【解析】n 阶幻方共有2n 个数,其和为()222112...,2n n n n ++++=Q 阶幻方共有n 行,∴每行的和为()()2221122n n n n n++=,即()()2210110101,50522n n n N N+⨯+=∴==,故选D.12.C解析:C【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a b A B =知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.二、填空题13.【解析】【分析】直接利用分组法和分类讨论思想求出数列的和【详解】数列满足:(且为常数)当时则所以(常数)故所以数列的前项为首项为公差为的等差数列从项开始由于所以奇数项为偶数项为所以故答案为:【点睛】 解析:1849【解析】 【分析】直接利用分组法和分类讨论思想求出数列的和. 【详解】数列{}n a 满足:1a a =(a R ∈且为常数),()()()*13343n n n n n a a a n N a a +⎧->⎪=∈⎨-≤⎪⎩, 当100a =时,则1100a =, 所以13n n a a +-=-(常数), 故()10031n a n =--,所以数列的前34项为首项为100,公差为3-的等差数列. 从35项开始,由于341a =,所以奇数项为3、偶数项为1,所以()()1001001346631184922S +⨯=+⨯+=,故答案为:1849 【点睛】本题考查了由递推关系式求数列的性质、等差数列的前n 项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.14.【解析】【分析】【详解】考查等价转化能力和分析问题的能力等比数列的通项有连续四项在集合四项成等比数列公比为=-9 解析:9-【解析】 【分析】 【详解】考查等价转化能力和分析问题的能力,等比数列的通项,{}n a 有连续四项在集合{}54,24,18,36,81--,四项24,36,54,81--成等比数列,公比为32q =-,6q = -9. 15.【解析】【分析】【详解】所以所以故答案为 解析:41n -【解析】 【分析】 【详解】()()145[415]4n n q a a n n -=-=-+---+=-,124253b a ==-⨯+=-,所以()11134n n n b b q --=⋅=-⋅-,()113434n n n b --=-⋅-=⋅,所以211214334343434114n n n n b b b --++⋯+=+⋅+⋅+⋯+⋅=⋅=--,故答案为41n -.16.4980【解析】【分析】表中第行共有个数字此行数字构成以为首项以2为公差的等差数列根据等差数列求和公式及通项公式确定求解【详解】解:表中第行共有个数字此行数字构成以为首项以2为公差的等差数列排完第行解析:4980 【解析】 【分析】表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.根据等差数列求和公式及通项公式确定求解. 【详解】解:表中第n 行共有12n -个数字,此行数字构成以2n 为首项,以2为公差的等差数列.排完第k 行,共用去1124221k k -+++⋯+=-个数字,2018是该表的第1009个数字, 由19021100921-<<-,所以2018应排在第10行,此时前9行用去了921511-=个数字, 由1009511498-=可知排在第10行的第498个位置, 即104984980m n =⨯=g, 故答案为:4980 【点睛】此题考查了等比数列求和公式,考查学生分析数据,总结、归纳数据规律的能力,关键是找出规律,要求学生要有一定的解题技巧.17.8【解析】【分析】【详解】作出不等式组表示的平面区域得到如图的△ABC 及其内部其中A (22)B ()C (32)设z=F (xy )=3x+y 将直线l :z=3x+y 进行平移当l 经过点A (22)时目标函数z 达解析:8 【解析】 【分析】 【详解】作出不等式组 表示的平面区域,得到如图的△ABC 及其内部,其中A (2,2),B (53,22),C (3,2)设z =F (x ,y )=3x +y ,将直线l :z =3x +y 进行平移, 当l 经过点A (2,2)时,目标函数z 达到最小值 ∴z 最小值=F (2,2)=8 故选:C18.4【解析】【分析】由题知:四边形为圆内接四边形的最大值为四边形外接圆的直径由正弦定理即可求出的最大值【详解】因为所以故的最大值为四边形外接圆的直径当为四边形外接圆的直径时得到:又因为所以在中由正弦定解析:4 【解析】 【分析】由题知:四边形ABCD 为圆内接四边形,AC 的最大值为四边形外接圆的直径,由正弦定理即可求出AC 的最大值.【详解】因为120BAD ∠=︒,60BCD ∠=︒,所以 故AC 的最大值为四边形外接圆的直径. 当AC 为四边形外接圆的直径时,得到:90ADC ABC ∠=∠=︒,又因为2AB AD ==,60BCD ∠=︒, 所以30ACD ACB ∠=∠=︒. 在ABC V 中,由正弦定理得:sin 90sin 30AC AB=︒︒,解得:4AC =.故答案为:4 【点睛】本题主要考查正弦定理得应用,判断四边形ABCD 为圆内接四边形是解题的关键,属于中档题.19.【解析】【分析】利用1的代换将求式子的最小值等价于求的最小值再利用基本不等式即可求得最小值【详解】因为等号成立当且仅当故答案为:【点睛】本题考查1的代换和基本不等式求最值考查转化与化归思想的运用求解 解析:25【解析】 【分析】利用1的代换,将求式子43a b +的最小值等价于求43()(3)a b a b++的最小值,再利用基本不等式,即可求得最小值. 【详解】因为4343123123()(3)4913225b a b a a b a b a b a b a b+=++=+++≥+⋅, 等号成立当且仅当21,55a b ==. 故答案为:25. 【点睛】本题考查1的代换和基本不等式求最值,考查转化与化归思想的运用,求解时注意一正、二定、三等的运用,特别是验证等号成立这一条件.20.1【解析】试题分析:由得所以(当且仅当即时等号成立)所以答案应填1考点:1对数的运算性质;2基本不等式解析:1 【解析】试题分析:由log 41,a b =-得104a b=>,所以114a b b b +=+≥=(当且仅当14b b =即12b =时,等号成立) 所以答案应填1.考点:1、对数的运算性质;2、基本不等式.三、解答题21.(1)2224b c a+=(2 【解析】 【分析】(I )由题意2sin 3tan c B a A =,利用正、余弦定理化简得2224b c a +=,即可得到答案. (II )因为2a =,由(I )知222416b c a +==,由余弦定理得6cos A bc=,进而利用基本不等式,得到6cos bc A =,且(0,)2A π∈,再利用三角形的面积公式和三角函数的性质,即可求解面积的最大值. 【详解】解:(I )∵2sin 3tan c B a A =, ∴2sin cos 3sin c B A a A =, 由正弦定理得22cos 3cb A a =,由余弦定理得22222?32b c a cb a bc+-=,化简得2224b c a +=,∴2224b c a+=. (II )因为2a =,由(I )知222416b c a +==,∴由余弦定理得2226cos 2b c a A bc bc+-==, 根据重要不等式有222b c bc +≥,即8bc ≥,当且仅当b c =时“=”成立, ∴63cos 84A ≥=. 由6cos A bc =,得6cos bc A =,且0,2A π⎛⎫∈ ⎪⎝⎭,∴ABC ∆的面积116sin sin 3tan 22cos S bc A A A A==⨯⨯=. ∵2222222sin cos sin 11tan 1cos cos cos A A A A A A A++=+==,∴tan 3A =≤=∴3tan S A =≤∴ABC ∆的面积S . 【点睛】本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题.22.(1)3π;(2 【解析】 【分析】(1)利用正弦定理边角互化思想得出sin cos 6B B π⎛⎫=-⎪⎝⎭,再利用两角差的余弦公式可得出tan B 的值,结合角B 的范围可得出角B 的大小;(2)由中线向量得出2BD BA BC =+uu u r uu r uu u r,将等式两边平方,利用平面向量数量积的运算律和定义,并结合基本不等式得出ac 的最大值,再利用三角形的面积公式可得出ABC ∆面积的最大值. 【详解】(1)由正弦定理及sin cos 6b A a B π⎛⎫=- ⎪⎝⎭得sin sin sin cos 6B A A B π⎛⎫=-⎪⎝⎭, 由()0,A π∈知sin 0A >,则1sin cos sin 62B B B B π⎛⎫=-=+ ⎪⎝⎭,化简得sin B B =,tan B ∴=. 又()0,B π∈,因此,3B π=;(2)如下图,由1sin 24ABC S ac B ac ∆==,又D 为AC 的中点,则2BD BA BC =+uu u r uu r uu u r,等式两边平方得22242BD BC BC BA BA =+⋅+u u u r u u u r u u u r u u r u u r , 所以2222423a c BA BC a c ac ac =++⋅=++≥u u u r u u u r, 则43ac ≤,当且仅当a c =时取等号,因此,ABC ∆3433=. 【点睛】本题考查正弦定理边角互化思想的应用,同时也考查了三角形的中线问题以及三角形面积的最值问题,对于三角形的中线计算,可以利用中线向量进行计算,考查分析问题和解决问题的能力,属于中等题.23.(1)32n a n =-+;(2)见解析 【解析】试题分析:(1)设等差数列{}n a 的公差为d .利用通项公式即可得出.(Ⅱ)由数列{}n n a b +是首项为1,公比为q 的等比数列,可得n b .再利用等差数列与等比数列的通项公式与求和公式即可得出. 试题解析:(1)设等差数列{}n a 的公差为d ,∵27382329a a a a +=-⎧⎨+=-⎩,∴1127232929a d a d +=-⎧⎨+=-⎩,解得113a d =-⎧⎨=-⎩,∴数列{}n a 的通项公式为32n a n =-+.(2)由数列{}n n a b +是首项为1,公比为q 的等比数列得1n n n a b q -+=,即132n n n b q --++=,∴132n n b n q -=-+,∴()()21147321n n S n q q q-⎡⎤=++++-+++++⎣⎦L L()()213112n n n q q q --=+++++L .∴当1q =时,()231322n n n n nS n -+=+=; 当1q ≠时,()31121nn n n q S q--=+-.24.(I )见解析;(II )()2413n n --【解析】 【分析】(I )计算1n S -,根据,n n S a 关系,可得121n n a a -=+,然后使用配凑法,可得结果. (II )根据(1)的结果,可得n a ,然后计算21n a -,利用等比数列的前n 和公式,可得结果. 【详解】(I )由2n n S a n =-①当1n =时,可得111211S a a =-⇒= 当2n ≥时,则()1121n n S a n --=--② 则①-②:()12212n n n a a a n -=--≥ 则()1121121n n n n a a a a --=+⇒+=+ 又112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列(II )由(I )可知:1221n nn n a a +=⇒=-所以2121121412n n n a --=-=⋅-记13521n n T a a a a -=+++⋯+ 所以()2144 (42)n n T n =+++- 又()()241444144 (414)3n n n --+++==-所以()()4412411233nnnT n n --=⋅-=- 【点睛】本题考查,n n S a 的关系证明等比数列以及等比数列的前n 和公式,熟练公式,以及掌握,n n S a 之间的关系,属基础题.25.(1)n a n =(2)1(1)22n n T n +=-⋅+【解析】试题分析:(Ⅰ)因为数列是等差数列,所以根据等差数列的通项公式建立关于首项和公差的方程组11246{434102a d a d +=⨯+=,即可解得11{1a d ==,从而写出通项公式n a n =; (Ⅱ)由题意22n n n n b a n =⋅=⋅,因为是等差数列与等比数列相乘的形式,所以采取错位相减的方法,注意错位相减后利用等比数列前n 项和公式,化简要准确得1(1)22n n T n +=-⋅+.试题解析:(Ⅰ)设等差数列{}n a 的公差为d,由2446,10a a S +==,可得11246{434102a d a d +=⨯+=, 即1123{235a d a d +=+=, 解得11{1a d ==, ∴()111(1)n a a n d n n =+-=+-=, 故所求等差数列{}n a 的通项公式为n a n =(Ⅱ)依题意,22n nn n b a n =⋅=⋅,∴12n n T b b b =+++L231122232(1)22n n n n -=⨯+⨯+⨯++-⋅+⋅L ,又2n T =2341122232(1)22n n n n +⨯+⨯+⨯++-⋅+⋅L ,两式相减得2311(22222)2n n n n T n -+-=+++++-⋅L()1212212n n n +-=-⋅-1(1)22n n +=-⋅-,∴1(1)22n n T n +=-⋅+考点:1、等差数列通项公式;2、等差数列的前n 项和;3、等比数列的前n 项和;4、错位相减法. 26.(1) 6A π=;(2) 2a =.【解析】试题分析:(1sin sin cos A C C A ⋅=⋅.消去公因式得到所以tan 3A =. 进而得到角A ;(2)结合三角形的面积公式,和余弦定理得到2b c +=+式得到2a =. 解析:(Isin cos C c A =,所以cos 0A ≠, 由正弦定理sin sin sin a b c A B C==,sin sin cos A C C A ⋅=⋅. 又因为 ()0,C π∈,sin 0C ≠,所以 tan 3A =. 又因为 ()0,A π∈, 所以 6A π=.(II )由11sin 24ABC S bc A bc ∆===bc =, 由余弦定理2222cos a b c bc A =+-, 得2222cos6a b c bc π=+-,即()()222212a b c bc b c =+-=+-,因为2b c +=+ 解得 24a =. 因为 0a >, 所以 2a =.。
2021届高三数学上学期期末考试试题〔含解析〕制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日一、选择题{}16,M x x x N =<<∈,{}1,2,3N =-,那么MN =〔 〕A. {}1,2,3,4B. {}1,2,3,4,5C. {}2,3D.{}2,3,4【答案】C 【解析】 【分析】求出集合M ,然后利用交集的定义可求出集合M N ⋂. 【详解】{}{}16,2,3,4,5M x x x N =<<∈=,因此,{}2,3MN =,应选C.【点睛】此题考察交集的计算,考察计算才能,属于根底题.22y x 149-=的渐近线方程是 ( ) A. 3y x 2=±B. 2y x 3=±C. 9y x 4=±D.4y x 9=±【答案】B 【解析】由双曲线HY 方程可知,2,3a b ==,且焦点在x 轴上,所以双曲线的渐近线方程为32y x =±,应选A.{}n a 的公差为d ,前n 项和为n S ,那么“1532S S S +<〞是“0d <〞的〔 〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】C 【解析】 【分析】利用等差数列的定义以及前n 项和公式,结合充要条件的定义即可得到结论. 【详解】由1532S S S +<,得()111510233a a d a d ++<+,即0d <, 所以“1532S S S +<〞是“0d <〞的充分条件, 由0d <,()151********a a S S a a d ++=+=+,()1331322662a a S a d +=⨯=+, 所以,151********S S a d S a d +=+<=+, 所以“1532S S S +<〞是“0d <〞的必要条件, 综上,“1532S S S +<〞是“0d <〞的充要条件. 应选:C.【点睛】此题主要考察充分条件和必要条件的判断,根据充分条件和必要条件的定义结合不等式的性质是解决此题的关键,属于根底题.4.某几何体的三视图如图,那么该几何体的体积为〔 〕A.76B.476C.72D.236【答案】D 【解析】 【分析】由三视图可得几何体是三棱柱挖去一个三棱锥,用三棱柱体积减去三棱锥的体积即为该几何体的体积.【详解】由三视图得到几何体是三棱柱挖去一个三棱锥,所以几何体的体积为111232*********V ⎛⎫⎛⎫=⨯⨯⨯-⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭.应选:D.【点睛】此题考察了几何体的三视图,属于根底题.()()2ln122x x f x xx ++=++-的图象大致是〔 〕A.B.C.D.【答案】D 【解析】 【分析】利用函数为奇函数,且()00f =,即可得到结论.【详解】由于()f x 是奇函数,故排除A ,B ;又()0f x =,那么0x =,即函数有唯一零点,再排除选C .应选:D.【点睛】此题主要考察函数图象的识别和判断,判断函数的奇偶性,利用排除法是解决此题的关键,属于根底题.X 的分布列是假设()116E X =,那么()D X 的值是〔 〕 A.1736B.1718C.239D.2318【答案】A 【解析】 【分析】根据分布列的性质得23a b +=,再由()116E X =,解得12a =,16b =,进而求得()D X 的值.【详解】由1231P P P ++=,得23a b +=①. 由()1112336a E Xb =++=②,得3232a b +=,联立①②,得12a =,16b =.所以()2221111111111712363626636D X ⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.应选:A.【点睛】此题考察了离散型随机变量的分布列的性质,期望与方差,属于根底题.x 的二项式(x +3ax)n 展开式的二项式系数之和为32,常数项为80,那么a 的值是( ) A. 1 B. +1 C. 2 D. ±2【答案】C 【解析】由题意知2n=32,n =5,T r +1=5rC (x )5-r a r·r x13=5rC a r 5526r x -,令55026r -=,得3r =,∴a 335C =80,解得a =2.应选C. 8.1F ,2F 为椭圆E :()222210x y a b a b+=>>的左右焦点,在椭圆E 上存在点P ,满足212PF F F =且2F 到直线1PF 的间隔 等于b ,那么椭圆E 的离心率为〔 〕A.13B.12C.23D.34【答案】B 【解析】 【分析】过2F 做直线1PF 的垂线,交1PF 于点H ,根据题意以及椭圆的定义,利用等腰三角形三线合一,得关于a ,b ,c 的方程,进而可求得离心率的值. 【详解】由得2122PF F F c ==,根据椭圆的定义可得121222PF PF a PF a c +=⇒=-, 又2F 到直线1PF 的间隔 等于b ,即2F H b =, 由等腰三角形三线合一的性质可得:21F H PF ⊥, 可列方程:()()22222220a c b c a ac c -+=⇒--=()()120202a c a c a c e ⇒-+=⇒-=⇒=,应选:B.【点睛】此题考察椭圆的方程及其简单几何性质,考察等腰三角形性质及勾股定理的应用,椭圆的离心率的取值,考察数形结合思想,属于中档题.()()()21,111,1x x a x x x e f x f x +⎧-+≥-⎪=⎨+--<-⎪⎩,假设函数()2y f x =-恰有两个零点,那么实数a 的取值范围为〔 〕A. )1,2B.}[)11,2C.}[)11,+∞D.)1,+∞【答案】B 【解析】 【分析】利用分段函数的单调性讨论a 的范围即可得到答案.【详解】由()()()21,111,1x x a x x x f x e f x +⎧-+≥-⎪=⎨+--<-⎪⎩()2221222(0)2(10)21(1)x x ax a x f x ax a x e a a x +⎧-+≥⎪⇒=-+-≤<⎨⎪++-<-⎩, 当0a <时,函数()f x 在R 上单调递增,不满足条件; 当0a =时,显然不满足条件;当0a >时,()f x 在(],1-∞-上为增函数,在1,2a ⎡⎤-⎢⎥⎣⎦上为减函数,在,2a ⎡⎫+∞⎪⎢⎣⎭上为增函数,∵x →-∞,()221f x a a →+-且()2f x =恰有两个零点,那么()12f -=或者221222a a a f a f ⎧⎛⎫+-< ⎪⎪⎪⎝⎭⎨⎛⎫⎪= ⎪⎪⎝⎭⎩或者222122212a a a f a f a a ⎧⎛⎫+-> ⎪⎪⎪⎝⎭⎨⎛⎫⎪<≤+- ⎪⎪⎝⎭⎩,解得31a 或者12a ≤<.应选:B.【点睛】此题考察了利用函数有零点求参数的范围,分段函数单调性,属于中档题.ABCD 中,90A C ∠=∠=︒,BC CD =,AB AD >,现将ABD ∆沿对角线BD 翻折得到三棱锥'A BCD -,在此过程中,二面角'A BC D --、'A CD B --的大小分别为α,β,直线'A B 与平面BCD 所成角为γ,直线'A D 与平面BCD 所成角为δ,那么〔 〕 A. γδβ<<B. γαβ<<C. αδβ<<D.γαδ<<【答案】B 【解析】 【分析】利用定量分析结合最大角原理即可得到结论. 【详解】如图,因为AB AD >,所以点A 在BD 上的投影点H 靠近点D ,由翻折的性质,知点'A 在底面的投影点在AH 所在的直线上,如图设为点O ,那么'A FO α∠=,'A EO β∠=,'A BO γ∠=,'A DO δ∠=,由最大角原理知:γα<,δβ≤,当且仅当D 与E 重合时,取到等号;而'tan A O OB γ=,'tan A OOD δ=,如图易得,OB OD >,所以tan tan γδ<,即γδ<;又'tan A O OF α=,'tan A OOEβ=,由图易得,OF OE >,所以αβ<; 综上可得:γαβ<<. 应选:B.【点睛】此题考察二面角,线面角,利用平面四边形ABCD 中,90A C ∠=∠=︒,构造圆面解决问题是关键,属于中档题. 二、填空题()1z a i a R =+∈,21z i =+〔i 为虚数单位〕,那么2z =______;假设12z z 为纯虚数,那么a 的值是______.【答案】 (2). 1 【解析】 【分析】利用复数的模,复数的乘除运算化简,在令实部为0,即可得到答案.【详解】2z ==假设12z z 为纯虚数,那么()1211101z z a a i a a =-++⇒-=⇒=.;1.【点睛】此题考察复数代数形式的乘除运算,考察了复数的根本概念,属于根底题. 12.中国古代数学专著?九章算术?有问题:“五只雀,六只燕,一共重一斤〔等于16两〕,雀重燕轻,互换其中一只,恰好一样重〞,那么雀重______两,燕重______两. 【答案】 (1).3219 (2). 2419【解析】 【分析】分别设出雀与燕的重量,互换一只后,列出方程,解得即可. 【详解】设雀重x 两,燕重y 两, 由题意得:互换后有458x y y x +=+=,解得:3219x =,2419y =, 故答案为:3219;2419. 【点睛】此题考察了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出适宜的等量关系,列出方程,再求解,属于根底题.x 、y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,且可行域表示的区域为三角形,那么实数m 的取值范围为______,假设目的函数z x y =-的最小值为-1,那么实数m 等于______. 【答案】 (1). 2m > (2). 5m = 【解析】 【分析】作出不等式组对应的平面区域,利用目的函数的几何意义,结合目的函数z x y =-的最小值,利用数形结合即可得到结论. 【详解】作出可行域如图,那么要为三角形需满足()1,1B 在直线x y m +=下方,即11m +<,2m >; 目的函数可视为y x z =-,那么z 为斜率为1的直线纵截距的相反数, 该直线截距最大在过点A 时,此时min 1z =-,直线PA :1y x =+,与AB :21y x =-的交点为()2,3A , 该点也在直线AC :x y m +=上,故235m =+=, 故答案为:2m >;5m =.【点睛】此题主要考察线性规划的应用,利用目的函数的几何意义,结合数形结合的数学思想是解决此类问题的根本方法,属于根底题.ABC ∆中,三个内角A 、B 、C 所对的边分别为a 、b 、c ,cos cos 2cos a B b AC c+=,那么C =______;又23ABC S ∆=6a b +=,那么c =______. 【答案】 (1). 3π(2). 23【解析】 【分析】利用正弦定理或者余弦定理将边化为角或者角化为边,在结合三角形的面积公式,整理化简即可得到结论.【详解】解析1:〔边化角〕∵cos cos sin cos sin cos sin a B b A A B B A c C ++=()sin 1sin A B C+==,∴2cos 1C =,∴1cos 2C =, ∵0C π<<,∴3C π=;∵1sin 24ABC ab C b S a ∆===8ab =,又∵6a b +=〔可消元求出边a 、b 〕 ∴()()22222cos 21cos c a b ab C a b ab C =+-=+-+216281122⎛⎫=-⨯+= ⎪⎝⎭,∴c =.解析2:〔任意三角形射影定理〕∵cos cos 1a B b A cc c+==下同.故答案为:3π,【点睛】此题考察了正弦定理、余弦定理在解三角形中的应用,属于根底题. 15.a ,b 均为正实数,那么()124a a b b ⎛+⎫+ ⎪⎝⎭的最小值为______.【答案】【解析】 【分析】利用根本不等式即可得到结论.【详解】()1412284a b a b ab a b⎛⎫+=+++≥= ⎪⎝⎭+,当且仅当a =b =.故答案为:【点睛】此题考察了根本不等式的应用,构造根本不等式是解题的关键,属于根底题. 16.从1,2,3,4,5,6这6个数中随机取出5个数排成一排,依次记为a ,b ,c ,d ,e ,那么使a b c d e ⋅⋅+⋅为奇数的不同排列方法有______种.【答案】180 【解析】 【分析】分类讨论,先选后排,最后相加即可.【详解】假设a b c ⋅⋅为奇数d e ⋅为偶数时,有323336A A ⨯=种; 假设a b c ⋅⋅为偶数d e ⋅为奇数时,有2334144A A ⨯=种; 一共180种. 故答案为:180.【点睛】此题考察计数原理,对于复杂一点的计数问题,有时分类以后,每类方法并不都是一步完成的,必须在分类后又分步,综合利用两个原理解决,即类中有步,步中有类,属于根底题.17.(b c k k ==>,0b c ⋅=,假设存在实数λ及单位向量a ,使得不等式()()()1112ab bc c b c λλ-+-++--≤成立,那么实数k 的最大值为______. 【答案】5【解析】 【分析】利用三点一共线,将不等式转化为求最值的间隔 问题,或者利用绝对值不等式a b a b +≥-,解得即可.【详解】解析:原题等价于()()()min1112a b b c c b c λλ⎧⎫-+-++--≤⎨⎬⎩⎭解析1:几何法〔三点一共线+将HY 饮马〕如图,()()()112a b b c c b c λλ-+-++--()()1112a b c c b c λλλλ⎡⎤⎡⎤=--++--+⎣⎦⎣⎦AP EP =+〔A 为单位圆上的,a OA =,b OB =,c OC =,P 为BC 上一点,E 为OC中点〕,由将HY 饮马模型,作E 关于BC 对称点'E ,那么()min '''1AP EP E A OE +==-225'112OC E C k =+-=-,所以,5451125k k -≤⇒≤.解析2:代数法〔建系坐标运算+将HY 饮马〕 设(),0c k =,()0,b k =,()cos ,sin a θθ=,()()()112a b b c c b c λλ-+-++--()()()2222221cos sin (1)12k k k k θλθλλλ⎛⎫=-+---+- ⎪⎝⎭()()()2222222212cos 21sin 1112k k k k k k λλθλθλλλ⎛⎫=---+-+-+- ⎪⎝⎭()()()()222222222222121sin 1112k k k k k k λλλθαλλλ⎛⎫=-+-++-+-+- ⎪⎝⎭()()222211112λλλλ⎛⎫≥+-+-+- ⎪⎝⎭那么k≤,由将HY 饮马可得2⎭2≥=⎝⎭,所以5k≤.解析3:绝对值不等式a b a b+≥-+将HY饮马因为()22122112b c k k aλλλλ--=-+≥≥=,所以()()()112a b b c c b cλλ-+-++--()()1112b c b caλλλλ⎛⎫≥--+-+--⎪⎝⎭12=-⎭,由解析2可得k≤解析4:绝对值不等式a b a b+≥-,{}max,a b a b a b+≥+-+对称转化因为b c k==,0b c⋅=,那么bc b cλμμλ±=±,那么()()()112a b b c c b cλλ-+-++--()()1112b c b c aλλλλ⎛⎫≥--+-+--⎪⎝⎭,因为b c k==,0b c⋅=,那么bc b cλμμλ±=±,那么()()1112b c b cλλλλ⎛⎫--+-+-⎪⎝⎭()()1112b c b cλλλλ⎛⎫=-++-+-⎪⎝⎭()()1112b c b cλλλλ⎛⎫=+-+-+-⎪⎝⎭,那么()()1112b c b cλλλλ⎛⎫--+-+-⎪⎝⎭max,max,22222c c kb⎧⎫⎧⎫⎪⎪⎪⎪≥+==⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭,所以1125k k-≤⇒≤.故答案为:5.【点睛】此题考察不等式成立问题,构造不等式解不等式是关键,“将HY饮马〞模型的使用,对称问题,两点之间,线段最短,点到直线的间隔 ,垂线段最短,属于难题. 三、解答题()()()sin 0f x x ωϕϕπ=+<<图象上相邻两个最高点的间隔 为π.〔1〕假设()y f x =的图象过10,2⎛⎫ ⎪⎝⎭,且局部图象如下图,求函数()f x 的解析式;〔2〕假设函数()y f x =是偶函数,将()y f x =的图象向左平移6π个单位长度,得到yg x 的图象,求函数()222x y fg x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦在0,2π⎡⎤⎢⎥⎣⎦上的最大值与最小值. 【答案】〔1〕()5sin 26f x x π⎛=⎫+ ⎪⎝⎭〔2〕()max 52f x =,()min 13f x =【解析】 【分析】〔1〕由题意得2ω=,再由()102f =,进而可得解析式; 〔2〕由()y f x =是偶函数,得2ϕπ=,从而()cos2f x x =,经过平移得()g x ,再表示出()222x y fg x ⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦,利用余弦型函数即可得最值. 【详解】解析:由题意得,2T ππω==,所以2ω=,()()sin 2f x x ϕ=+.〔1〕由于()102f =,那么1sin 2ϕ=,又0ϕπ<<, 那么56πϕ=或者6π=ϕ〔舍去〕,故()5sin 26f x x π⎛⎫=+⎪⎝⎭.〔2〕由于()()sin 2y f x x ϕ==+是偶函数,那么()0sin 1f ϕ==±, 又0ϕπ<<,所以2ϕπ=,()sin 2cos 22f x x x π⎛⎫=+= ⎪⎝⎭,将()cos2y f x x ==的图象向左平移6π个单位长度, 得到()cos 23x y g x π=⎛⎫=+ ⎪⎝⎭的图象,故()2222cos cos 223x y fg x x x π⎡⎤⎛⎫⎛⎫=+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦13331cos 2cos 2sin 21cos 2sin 22222x x x x x =++-=+-3113cos 2sin 213cos 2226x x x π⎛⎫⎛⎫=+-=++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 因为0,2x π⎡⎤∈⎢⎥⎣⎦,72666x πππ≤+≤, 所以()()max 502f x f ==,()min 51312x f f π⎛⎫= ⎪⎭=-⎝. 【点睛】此题考察三角函数的图象与性质,图象的平移问题,余弦型函数求最值,属于根底题.19.如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,2AD =,1AB =,PA ⊥平面PCD ,且1PC PD ==,设E ,F 分别为PB ,AC 的中点.〔1〕求证://EF 平面PAD ;〔2〕求直线DE 与平面PAC 所成角的正弦值.【答案】〔1〕证明见解析〔2〕33020【解析】 【分析】〔1〕利用线面平行的性质定理即可得到结论;〔2〕方法一:利用几何法求线面角,一作,二证,三求解;方法二:利用空间直角坐标系,线面角的向量关系即可得到结论.【详解】〔1〕解析:因为底面ABCD 为平行四边形,F 是AC 中点,所以F 是BD 中点,所以1//2EF PD ,EF ⊄平面PAD ,PD ⊂平面PAD ,所以//EF 平面PAD . 〔2〕解析1:〔几何法〕 因为DE ⊂平面PBD ,平面PBD平面PAC PF =,所以直线DE 与平面PAC 的交点即为DE 与PF 的交点,设为G ,1PC PD CD ===,所以PCD ∆为等边三角形,取PC 中点O ,那么DO PC ⊥,因为PA ⊥平面PCD ,所以平面PAC ⊥平面PCD , 平面PAC平面PCD PC =,DO PC ⊥,所以DO ⊥平面PAC ,所以DGO ∠是直线DE 与平面PAC 所成角,因为E ,F 分别为PB ,AC 的中点,所以G 是PBD ∆的重心, 在Rt PAD ∆中,3PA =2PB AC ==,在平行四边形ABCD 中,6BD =,在PBD ∆中,4161cos 2214BPD +-∠==-⨯⨯,在PED ∆中,2511211cos 2DE EPD =+-⨯⨯⨯∠=,所以102DE =, 所以21033DG DE ==,又因为32OD =, 所以3sin 3020OD DGO DG ∠==,即直线DE 与平面PAC 所成角的正弦值为33020. 解析2:〔向量法〕取PC 中点O ,那么1//2OF PA ,因为PA ⊥平面PCD , 所以OF ⊥平面PCD ,因为1PC PD CD ===,所以PCD ∆为等边三角形, 所以OD PC ⊥,此时OD ,OF ,OP 两两垂直,如图,建立空间直角坐标系,10,0,2P ⎛⎫ ⎪⎝⎭,3,0,02D ⎛⎫ ⎪ ⎪⎝⎭,在Rt PAD ∆中,3PA =3F ⎛⎫ ⎪ ⎪⎝⎭,由12FE DP =,得3314E ⎛⎫ ⎪ ⎪⎝⎭,所以3333,,424DE ⎛⎫= ⎪ ⎪⎝⎭,平面PAC 的法向量为32OD ⎛⎫= ⎪ ⎪⎝⎭, 所以3cos ,3020DE OD DE OD DE OD⋅==-⋅, 所以3sin cos ,3020DE OD θ==即直线DE 与平面PAC 所成角的【点睛】此题考察线面平行,线面角,应用几何法求线面角,向量法求线面角,属于根底题.{}n a 满足212a a =,459a a +=,n S 为等比数列{}n b 的前n 项和,122n n S S +=+.〔1〕求{}n a ,{}n b 的通项公式;〔2〕设23,41,n n nn a b n n a c ⎧⎪⎪=⎨⎪⎪⎩为奇数为偶数,证明:12313...6n c c c c +++⋅⋅+<.【答案】〔1〕n a n =,112n n b -=〔2〕证明见解析 【解析】 【分析】〔1〕由根本量思想的等差数列{}n a 的通项公式,由n b 与n S 的关系即可得到结论; 〔2〕利用放缩法和数列求和即可得到不等式.【详解】〔1〕由题意得11112349a d a a d a d +=⎧⎨+++=⎩,解得:111a d =⎧⎨=⎩,∴n a n =,即数列{}n a 的通项公式为n a n =, 由122n n S S +=+,得21322222S S S S =+⎧⎨=+⎩,两式相减整理得:322b b =,∴12q =,11b =, ∴112n n b -=,即数列{}n b 的通项公式为112n n b -=〔2〕解析1:〔应用放缩和错位相减求和证明不等式〕解:123n n C c c c c =+++⋅⋅⋅+,1321k k A c c c -=++⋅⋅⋅+,242k k B c c c =++⋅⋅⋅+,012110123135214444431352144444k k k k k A k A -+⎧-⎛⎫=+++⋅⋅⋅+ ⎪⎪⎪⎝⎭⎨+⎛⎫⎪=+++⋅⋅⋅+ ⎪⎪⎝⎭⎩两式相减整理得5511023346k k A k ⎛⎫=-+< ⎪⎝⎭,又因为()()()222121k k k >-+,∴()222111242k B k =++⋅⋅⋅+1111111213352121k k ⎛⎫<-+-+⋅⋅⋅- ⎪-+⎝⎭1326<=. 所以()22211132462k B k =++⋅⋅⋅+<,∴10313666n k k C A B =+<+=. 〔2〕解析2:〔应用放缩和裂项求和证明不等式〕 令()114n n d an b -=+,11214n n n n d d +--=-化简整理得:1841394n n d n -⎛⎫=-+ ⎪⎝⎭,∴115511023346k k k A d d k +⎛⎫=-=-+< ⎪⎝⎭,22221111123n T n =+++⋅⋅⋅+()111112231n n <+++⋅⋅⋅⨯⨯-⨯122n=-<,()222211111112242422n T n n =++⋅⋅⋅+<-<, 所以()22211132462k B k =++⋅⋅⋅+<,∴10313666n k k C A B =+<+=. 【点睛】此题考察等差数列与等比数列的通项公式,考察数列求和,考察放缩法,属于中档题.E :()220y px p =>过点()1,2Q ,F 为其焦点,过F 且不垂直于x 轴的直线l 交抛物线E 于A ,B 两点,动点P 满足PAB ∆的垂心为原点O .〔1〕求抛物线E 的方程;〔2〕求证:动点P 在定直线m 上,并求PABQABS S ∆∆的最小值.【答案】〔1〕24y x =〔2〕证明见解析,PABQABS S ∆∆的最小值为【解析】 【分析】〔1〕直接将()1,2Q 代入抛物线方程即可得到答案; 〔2〕设直线方程为1ty x =-,联立方程,表示出PABQABS S ∆∆,运用根本不等式即可得到结论. 【详解】〔1〕由题意,将点()1,2Q 代入22y px =,即222p =,解得2p =,所以,抛物线E 的方程为24y x =. 〔2〕解析1:〔巧设直线〕证明:设l :1ty x =-,()11,A x y ,()22,B x y ,联立24y x =,可得2104y ty --=,那么有121244y y ty y +=⎧⎨=-⎩,可设AP :()2112x y y x x y -=--,即21344y y x y =-+,同理BP :12344y y x y =-+,解得()3,3P t -,即动点P 在定直线m :3x =-上. 211221342122PAB QABAB d t S d S d t AB d ∆∆+===322t t =+≥,当且仅当3t =±1d ,2d 分别为点P 和点Q 到直线AB 的间隔 . 〔2〕解析2:〔利用向量以及同构式〕证明:设l :()10x my m =+≠,()11,A x y ,()22,B x y ,联立24y x =,可得2440y my --=,那么有121244y y m y y +=⎧⎨=-⎩.21001,4y PA y x y ⎛⎫=-- ⎪⎝⎭,222,4y y OB ⎛⎫= ⎪⎝⎭,又O 为PAB ∆的垂心,从而0PA OB ⋅=,代入化简得:20202304x y y y ++=,同理:20101304x y y y ++=,从而可知,1y ,2y 是方程200304xx y x ++=的两根,所以012012044124y y y m x y y x ⎧+=-=⎪⎪⎨⎪==-⎪⎩00000333y mx y m x x =-=⎧⎧⇒⇒⎨⎨=-=-⎩⎩,所以动点P 在定直线m :3x =-上. 211221342122PAB QABAB d m S d S d m AB d ∆∆+===322m m =+≥,当且仅当m =1d ,2d 分别为点P 和点Q 到直线AB 的间隔 .【点睛】此题考察抛物线的HY 方程,直线与抛物线的位置关系,考察韦达定理,考察根本不等式的应用,考察计算才能,属于中档题.()ln f x a x x b =-+,其中,a b ∈R .〔1〕求函数()f x 的单调区间;〔2〕使不等式()ln f x kx x x a ≥--对任意[]1,2a ∈,[]1,x e ∈恒成立时最大的k 记为c ,求当[]1,2b ∈时,b c +的取值范围.【答案】〔1〕()f x 在()0,a 上单调递增,在(),a +∞单调递减〔2〕14,2e e e ⎡⎤++⎢⎥⎣⎦〔3〕42,2b c e ⎡⎤+∈+⎢⎥⎣⎦【解析】 【分析】〔1〕求出函数的导函数,通过讨论a 的范围,求出函数的单调区间即可;〔2〕别离变量k 得不等式,由恒成立把[]1,2a ∈,[]1,x e ∈放缩程一个新不等式,再构造一个新函数,讨论出c 的范围,即可得到结论. 【详解】〔1〕因()f x 的定义域为()0,∞+,()()'10af x x x=->,当0a ≤时,()'0f x <,∴()f x 在()0,∞+上单调递减; 当0a >时,()'f x 在()0,∞+上单调递减,()'0f a =, ∴()f x 在()0,a 上单调递增,在(),a +∞单调递减; 〔2〕()()l ln n f x kx x x f x x x a k x a ++⇒≤≥--()1ln ln a x x x x bx+-++=. ∵[]1,2a ∈,[]1,x e ∈,∴()1ln ln 1ln ln a x x x x b x x x x bx x+-+++-++≥, 令()()21ln ln ln 'x x x x b x x b g g x x x x +-++-+-=⇒=,由〔1〕()ln p x x x b ⇒=-+-在()1,+∞上递增;〔1〕当()10p ≥,即1b =时[]1,x e ∈,()()0'0p x g x ≥⇒≥,∴()g x 在[]1,e 上递增; ∴()()min 122c g x g b b c b ===⇒+==.〔2〕当()0p e ≤,即[]1,2b e ∈-时[]1,x e ∈,()()0'0p x g x ≤⇒≤,∴()g x 在[]1,e 上递减;∴()()min 22b b c g x g e b c b e e ++===⇒+=+14,2e ee ⎡⎤∈++⎢⎥⎣⎦.〔3〕当()()10p p e <时,()ln p x x x b =-+-在上递增; 存在唯一实数()01,x e ∈,使得()00p x =,那么当()01,x x ∈时()()0'0p x g x ⇒<⇒<.当()0,x x e ∈时()()0'0p x g x ⇒>⇒>.∴()()00000mi 000n 1ln ln 1ln x x x x b x x x c g x g x +-++=+===.∴00000011ln ln b c x x x x x x +=++-=+.此时00ln b x x =-. 令()()()11ln '10x h x x x h x h x x x-=-⇒=-=>⇒在[]1,e 上递增,()()01,11,b e x e ∈-⇒∈,∴12,b c e e ⎛⎫+∈+ ⎪⎝⎭.综上所述,42,2b c e ⎡⎤+∈+⎢⎥⎣⎦. 【点睛】此题考察函数的单调区间,考察不等式的恒成立转化为求函数的最值问题,运用不等式放缩、分类讨论思想是解题的关键,属于难题.制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日。
新高三数学上期末试卷( 含答案 )一、选择题1. 以下结论正确的选项是()A .若 a b ,则 ac 2bc 2B .若 a 2b2,则 a bCa b,c 0 ,则 a cbc D.若 a b ,则 ab.若2. 已知数列a 的前 n 项和为 S ,且 1a n4nn21 p S4n3 建立,则实数p的取值范围是(nn 1,若对随意nN * ,都有)A .2,3B . 2,3C . 2,9D . 2,9223. 已知数列 a n 的前 n 项和 S n n 2 , b nnb n 的前 n 项和 T n 知足1 a n 则数列()A . T n1nB . T n nn为偶数,C . T nnD . T nn, n为奇数 .2n, n4. ABC 的内角 A , B , C 的对边分别为 a , b , c ,已知 b2 , B , C = ,64则ABC 的面积为()A .223B .31C .232D .315. 在 ABC 中, AC2, BC2 2,ACB 135o ,过 C 作 CDAB 交AB 于D ,则CD () A .2 5B . 2C . 3D . 556. “干支纪年法”是中国历法上自古以来就向来使用的纪年方法,干支是天干和地支的总 称,把干支次序相当正好六十为一周,循环往复,循环记录,这就是俗称的“干支表” 甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元 1984 年阴历为甲子年,公元 1985年阴历为乙丑年,公元 1986 年阴历为丙寅年,则公元 2047 年阴历为A .乙丑年B .丙寅年C .丁卯年D .戊辰年7. 数列 a n , b n为等差数列,前 n 项和分别为 S n ,T n S n3n 2 a 7 ( ),若,则b 7T n2n4123 1111A .B .C .D .2614 768. 已知 ABC 的三个内角 A 、B 、C 所对的边为 a 、b 、c ,面积为 S ,且S(bcc 2 ) tan B ,则 A 等于()2 3 tan B 2A .6B .C .D .4329. 数列 { a n } 为等比数列,若 a 11, a 78a 4 ,数列1的前 n 项和为 S n ,则 S 5( a n)B .15A . 31C . 7D . 31168xy 3 0,102x 上存在点 (x, y) 知足x 2y30, 则实数 m 的最大值为. 若直线 yx m,A . 2B . 1C . 1D . 311. 已知 0 x 1 , 0y 1,则x 2 y 2x 21 y 21 x21 x 21y 2y 2的最小值为()A . 5B .2 2C . 10D .2 312.设 S 为等差数列a的前 n 项和, (n 1)S < nSn 1 (n N ).若a 81 ,则( )nnna 7A . S n 的最大值为 S 8B . S n 的最小值为 S 8C . S n 的最大值为 S 7D . S n 的最小值为 S 7二、填空题13. 数列 a n 知足: a 1a ( aR 且为常数), a n 1a n 3 a n 3 n N * ,当4 a n a n3a 100 时,则数列 a n 的前 100项的和 S 100 为________.14. 已知数列a n 知足: a 1 1, a n 1 a n a 1 , a 2 , , a n n N * ,记数列 a n 的前 n项和为 S n ,若对全部知足条件的a n , S 10 的最大值为 M 、最小值为m,则M m ______.rrx, y 2 ,此中 xr ry的最小值为15. 已知向量 a1, x ,b,若 a 与 b 共线,则x__________.ABC A B C 所对的边分别为 a b c ,若 acosB 5bcosA , asinA ﹣ bsinB= 16.△ 中,角 , , , , =2sinC ,则边 c 的值为 _______. a b ac b c17. 已知 a 、b 、c R , c 为实常数,则不等式的性质”能够用一个“函数在 R 上的单一性来分析,这个函数的分析式是f ( x) =_________18. 数列11 2 n N * ,则通项公式an 知足a 1,且1 an 11 a na n _______.19. 设正项数列a n 的前 n 项和是 S n ,若 a n和 S n 都是等差数列,且公差相等,则a 1 = _______.20. 已知等比数列S 4an 的公比为2,前n项和为 S n ,则 a 2=______.三、解答题21. 已知 a , b , c 分别为ABC 三个内角 A , B , C 的对边,且3b sin A acos B 2a0 .(Ⅰ)求 B 的大小;(Ⅱ)若 b 7 ,ABC 的面积为3,求 a c 的值.222. 在ABC 中,角 A 、 B 、 C 所对的边分别为 a 、 b 、 c ,且知足b sin A a cosB.6(1)求角 B 的大小;(2)若 D 为 AC 的中点,且 BD1,求 S ABC 的最大值 .23. 已知函数 f x a x x bc.a >0,b >0,c >0, (1) 当 a b c 1 时 , 求不等式 f x >3 的解集;(2) 当 fx 的最小值为 3 时,求11 1 的最小值 .a b c24. 已知等差数列n 的前 n 项和为 S n , a 2a 5 12, S 4 16 .a(1) 求 a n 的通项公式;1, T n 为数列(2)数列b n 知足 b nb n 的前 n项和,能否存在正整数m4S n 1,k 1 mk ,使得 T k3T m 2 ?若存在,求出 m , k 的值;若不存在,请说明原因.x y 6 025. 已知实数 x 、 y 知足x y 0 ,若 zaxy 的最大值为 3a 9 ,最小值为x 33a3,务实数 a 的取值范围 .26. 在ABC 中, 3a sin C c cos A .(Ⅰ )求角 A 的大小;(Ⅱ )若S ABC3 , b c 2 2 3 ,求 a 的值.【参照答案】 *** 试卷办理标志,请不要删除一、选择题1.D 分析: D【分析】选项 A 中,当 c=0 时不符,所以 A 错.选项 B 中,当 a2, b 1时,切合 a2知足 ab ,B 错.选项 C 中 , ac bc , 所以 C 错.选项 D 中,因为 0a22b .选 D.b ,由不等式的平方法例,ab ,即 a 2.B分析: B【分析】11n 1S n 414124221 n1n22 24n114n32132Q 1 p S n4 3nn即 1p2 2 1 33 32对随意 n N * 都建立,当 n 1 时, 1 p 3当 n 2时, 2 p6当 n3时,4p43 概括得: 2 p 3应选 B点睛:依据已知条件运用分组乞降法不难计算出数列a n 的前 n 项和为 S n ,为求值范围则依据 n 为奇数和 n 为偶数两种状况进行分类议论,求得最后的结果3.A分析: A【分析】【剖析】b 2 ,不p的取先依据 S n n 2 ,求出数列 a n的通项公式 ,而后利用错位相减法求出b n的前 n 项和 T n .【详解】解: ∵ S n n 2 ,∴当 n 1 时 , a 1 S 1 1;当 n2 时 , a nS n Sn 1 n 222n 1 ,n 1又当 n 1 时 , a 1 1切合上式 ,∴ a n 2n1,∴1n1n 2 1 ,b n a nn∴ T n 1123n1 3 1 511 2n 1 ①,∴ T n1 1234 n131 5112n 1 ②,①-② ,得 2T n1 22341nn 11112n 11121n 11 212n 11n 11 n112n,∴ T n 1 n n ,∴数列b 的前 n 项和T n1 n n .n应选 :A. 【点睛】本题考察了依据数列的前 n 项和求通项公式和错位相减法求数列的前 n 项和 ,考察了计算能力,属中档题 .4.B分析: B【分析】试题剖析:依据正弦定理,,解得 , ,而且,所以考点: 1.正弦定理; 2.面积公式.5.A分析: A【分析】【剖析】先由余弦定理获得 AB 边的长度,再由等面积法可获得结果 .【详解】2 22 依据余弦定理获得ACBCAB2.将 AC 2, BC 2 2 ,代入等式获得2 AC BC2AB= 2 5,再由等面积法获得1 25CD 12 2 22 CD 2 52 22 5故答案为 A.【点睛】这个题目考察认识三角形的应用问题,波及正余弦定理,面积公式的应用,在解与三角形 相关的问题时,正弦定理、余弦定理是两个主要依照.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现ab 及b 2 、 a 2 时,常常用余弦定理,而题设中假如边和正弦、余弦函数交错出现时,常常运用正弦定理将边化为正弦函数再联合和、差、倍角的正余弦公式进行解答.6.C分析: C【分析】记公元 1984 年为第一年,公元 2047 年为第 64 年,即天干循环了十次,第四个为“丁”,地支循环了五次,第四个为“卯” , 所以公元 2047 年阴历为丁卯年 . 应选 C.7.A分析: A【分析】a 1 a 13 13S 13412a 72依题意,b13T13.2b 7 b 1132628.C分析: C【分析】【剖析】利用三角形面积公式可得1acsinBbc c 2 tanB2 ,联合正弦定理及三角恒等变换知识23tanB 2可得 3sinA cosA 1,从而获得角A.【详解】bc c 2 tanB∵ S3tanB 22∴1acsinB bc c 2 tanB2 3tanB 22即 asinBb c tanBb c,3tanB 1, acosB3sinB∴3sinAsinB sinAcosB sinB sinC sinB sin A B ∴ 3sinA cosA1∴ sin A1,62∴ A6或5(舍)66∴ A3应选 C【点睛】本题考察了正弦定理、三角形面积公式,以及三角恒等变换,娴熟掌握边角的转变是解本题的重点.9.A分析: A【分析】【剖析】先求等比数列通项公式,再依据等比数列乞降公式求结果.【详解】Q 数列a n为等比数列,a11, a78a4,q68q3,解得 q2,a n a1q n 12n 1,Q 数列1的前n项和为na n S ,11 1111131S52514816116.212应选 A.【点睛】本题考察等比数列通项公式与乞降公式,考察基本剖析求解能力,属基础题. 10.B分析: B【分析】【剖析】第一画出可行域,而后联合交点坐标平移直线即可确立实数m 的最大值 .【详解】不等式组表示的平面地区以以下图所示,y 2xx 1 由2 y3 0,得:,x y2即 C 点坐标为(- 1,- 2),平移直线 x =m ,移到 C 点或 C 点的左侧时,直线 y 2x 上存在点 (x, y) 在平面地区内,所以, m ≤- 1,即实数 m 的最大值为- 1.【点睛】本题主要考察线性规划及其应用,属于中等题.11.B分析: B【分析】【剖析】x2y 2x y ,则x2y2x y , x 21 y2x 1 y ,依据均值不等式,可有22221 2y21 xy , 1 221 x 1y,再利用不等式的基天性质,两xx1 y2 2边分别相加求解。
实验2021-2021学年度上学期期末考试制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日高三理科数学试题第一卷选择题〔一共60分〕一、选择题〔一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一个选项是符合题目要求的〕1.集合A=,B=,那么A B中元素的个数为A. 0B. 1C. 2D. 3【答案】C【解析】【分析】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,根据直线与圆的位置关系,即可求解集合中元素的个数,得到答案。
【详解】由题意,集合A表示以为圆心,1为半径的单位圆上所有点组成的集合,集合B表示直线上所有的点组成的集合,又由圆与直线相交于两点,那么中有两个元素,应选C.【点睛】求集合的根本运算时,要认清集合元素的属性(是点集、数集或者其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.2.,是虚数单位,假设,,那么〔〕A. 1或者B. 或者C.D.【答案】A【解析】由得,所以,应选A.【名师点睛】复数的一共轭复数是,据此结合条件,求得的方程即可.3.某四棱锥的三视图如下图,那么该四棱锥的最长棱的长度为( )A. 3B. 2C. 2D. 2【答案】B【解析】由三视图复原原几何体如图,四棱锥A﹣BCDE,其中AE⊥平面BCDE,底面BCDE为正方形,那么AD=AB=2,AC=.∴该四棱锥的最长棱的长度为.应选:.4.函数的最小正周期为〔〕A. B. C. D.【答案】C【解析】分析:根据正弦函数的周期公式直接求解即可.详解:由题函数的最小正周期应选C.点睛:此题考察正弦函数的周期,属根底题.5.展开式中x2的系数为A. 15B. 20C. 30D. 35【答案】C【解析】因为,那么展开式中含的项为,展开式中含的项为,故的系数为,选C.【名师点睛】对于两个二项式乘积的问题,用第一个二项式中的每项乘以第二个二项式的每项,分析含的项一共有几项,进展相加即可.这类问题的易错点主要是未能分析清楚构成这一项的详细情况,尤其是两个二项展开式中的不同.6.椭圆的离心率是A. B. C. D.【答案】D【解析】【分析】根据椭圆的方程求得,得到,再利用离心率的定义,即可求解。
2023-2024学年江苏省连云港市高三(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 满足(1+i )•z =i ,则此复数z 的虚部为( ) A .12B .−12C .12iD .−12i2.已知集合S ={x |x =k −12,k ∈Z },T ={x |x =2k +12,k ∈Z },则S ∩T =( )A .SB .TC .ZD .R3.随机变量X ~N (2,σ2),若P (X ≤1.5)=m ,P (2≤X ≤2.5)=1﹣3m ,则P (X ≤2.5)=( ) A .0.25B .0.5C .0.75D .0.854.图1是蜂房正对着蜜蜂巢穴开口的截面图,它是由许多个正六边形互相紧挨在一起构成.可以看出蜂房的底部是由三个大小相同的菱形组成,且这三个菱形不在一个平面上.研究表明蜂房底部的菱形相似于菱形十二面体的表面菱形,图2是一个菱形十二面体,它是由十二个相同的菱形围成的几何体,也可以看作正方体的各个正方形面上扣上一个正四棱锥(如图3),且平面ABCD 与平面ATBS 的夹角为45°,则cos ∠ASB =( )A .√22B .√32 C .13D .2√235.某学校广播站有6个节目准备分2天播出,每天播出3个,其中学习经验介绍和新闻报道两个节目必须在第一天播出,谈话节目必须在第二天播出,则不同的播出方案共有( ) A .108种B .90种C .72种D .36种6.已知双曲线C :x 2a 2−y 2b2=1(a >0,b >0)的左顶点为M ,左、右焦点分别为F 1,F 2,过F 2作x 轴的垂线交C 于A ,B 两点,若∠AMB 为锐角,则C 的离心率的取值范围是( ) A .(1,√3)B .(1,2)C .(√3,+∞)D .(2,+∞)7.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =4,A =π3,且BE 为边AC 上的高,AD 为边BC 上的中线,则AD →•BE →的值为( )A .2B .﹣2C .6D .﹣68.已知a =ln 3,b =log 2e ,c =6(2−ln2)e,则a ,b ,c 的大小关系是( ) A .a <b <cB .b <c <aC .c <a <bD .a <c <b二、选择题:本题共4小题,每小题5分,共20分。
【常考题】高三数学上期末试卷(及答案)一、选择题1.数列{}n a 满足()11nn n a a n ++=-⋅,则数列{}n a 的前20项的和为( )A .100B .-100C .-110D .1102.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2C .2D .223.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( ) A .223+B .31+C .232-D .31-4.设x y ,满足约束条件10102x y x y y -+≤⎧⎪+-⎨⎪≤⎩>,则yx 的取值范围是( )A .()[),22,-∞-+∞UB .(]2,2-C .(][),22,-∞-+∞UD .[]22-,5.在ABC V 中,A ,B ,C 的对边分别为a ,b ,c ,2cos 22C a ba+=,则ABC V 的形状一定是( ) A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形6.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 7.已知ABC ∆的三个内角、、A B C 所对的边为a b c 、、,面积为S ,且223tan 2S B =+,则A 等于( )A .6π B .4π C .3π D .2π 8.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定9.已知数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若135a =,则数列的第2018项为 ( )A .15B .25C .35D .4510.已知数列{a n }满足331log 1log ()n n a a n N +++=∈且2469a a a ++=,则15793log ()a a a ++的值是( )A .-5B .-15C .5D .1511.已知数列{}n a 中,()111,21,n n na a a n N S *+==+∈为其前n 项和,5S的值为( ) A .63B .61C .62D .5712.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( ) A .20B .24C .28D .32二、填空题13.已知lg lg 2x y +=,则11x y+的最小值是______.14.关于x 的不等式a 34≤x 2﹣3x +4≤b 的解集为[a ,b ],则b -a =________. 15.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升; 16.已知等差数列{}n a 的公差为()d d 0≠,前n 项和为n S,且数列也为公差为d 的等差数列,则d =______.17.在ABC ∆中,内角A ,B ,C 所对应的边长分别为a ,b ,c,且cos 3C =,cos cos 2b A a B +=,则ABC ∆的外接圆面积为__________.18.在等差数列{}n a 中,12a =,3510a a +=,则7a = .19.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是__________. 20.等比数列{}n a 的首项为1a ,公比为q ,1lim 2n n S →∞=,则首项1a 的取值范围是____________.三、解答题21.已知等比数列{a n }的前n 项和为S n ,a 114=,公比q >0,S 1+a 1,S 3+a 3,S 2+a 2成等差数列.(1)求{a n }; (2)设b n ()()22212n n n n c n b b log a +==+,,求数列{c n }的前n 项和T n .22.已知锐角ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,且满足22sin sin 1cos A C B =-.(1)若2a =,22c =,求b ; (2)若14sin 4B =,3a =,求b . 23.如图,在ABC ∆中,45B ︒∠=,10AC =,25cos C ∠=点D 是AB 的中点, 求(1)边AB 的长;(2)cos A 的值和中线CD 的长24.已知函数f(x)=x 2-2ax -1+a ,a∈R. (1)若a =2,试求函数y =()f x x(x>0)的最小值; (2)对于任意的x∈[0,2],不等式f(x)≤a 成立,试求a 的取值范围.25.在ABC △中,内角,,A B C 所对的边分别为,,a b c ,且()sin 2sin 0b A a A C -+=. (1)求角A ;(2)若3a =,ABC △的面积为332,求11b c +的值.26.已知在公比为q 的等比数列{}n a 中,416a =,()34222a a a +=+. (1)若1q >,求数列{}n a 的通项公式;(2)当1q <时,若等差数列{}n b 满足31b a =,512b a a =+,123n n S b b b b =+++⋅⋅⋅+,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项的和.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】数列{a n }满足1(1)nn n a a n ++=-⋅,可得a 2k ﹣1+a 2k =﹣(2k ﹣1).即可得出.【详解】∵数列{a n }满足1(1)nn n a a n ++=-⋅,∴a 2k ﹣1+a 2k =﹣(2k ﹣1).则数列{a n }的前20项的和=﹣(1+3+……+19)()101192⨯+=-=-100.故选:B . 【点睛】本题考查了数列递推关系、数列分组求和方法,考查了推理能力与计算能力,属于中档题.2.D解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以2q =,故21222a a q ===,故选D. 3.B解析:B 【解析】试题分析:根据正弦定理,,解得,,并且,所以考点:1.正弦定理;2.面积公式.4.A解析:A 【解析】 【分析】根据题意,作出可行域,分析yx的几何意义是可行域内的点(),x y 与原点O 连线的斜率,根据图象即可求解. 【详解】作出约束条件表示的可行域,如图所示,yx 的几何意义是可行域内的点(),x y 与原点O 连线的斜率,由102x y y -+=⎧⎨=⎩,得点A 的坐标为()1,2,所以2OA k =,同理,2OB k =-,所以yx 的取值范围是()[),22,-∞-+∞U . 故选:A 【点睛】本题考查简单的线性规划,考查斜率型目标函数问题,考查数形结合思想,属于中等题型.5.A解析:A 【解析】 【分析】利用平方化倍角公式和边化角公式化简2cos22C a b a+=得到sin cos sin A C B =,结合三角形内角和定理化简得到cos sin 0A C =,即可确定ABC V 的形状. 【详解】22cos 2a b aC +=Q 1cos sin sin 22sin C A BA ++\=化简得sin cos sin A C B = ()B A C p =-+Qsin cos sin()A C A C \=+即cos sin 0A C =sin 0C ≠Qcos 0A ∴=即0A = 90ABC ∴V 是直角三角形 故选A 【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简2cos22C a b a+=时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.6.B解析:B【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=- 得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.7.C解析:C 【解析】 【分析】利用三角形面积公式可得2tan 1acsinB 2bc c B +=,结合正弦定理及三角恒等变换知识cosA 1-=,从而得到角A. 【详解】∵2tan bc c B S +=∴2tan 1acsinB 2bc c B +=即c tan asinB a b B +==()B sinAcosB sinB sinC sinB sin A B +=+=++ cosA 1-= ∴1sin 62A π⎛⎫-= ⎪⎝⎭, ∴5666A 或πππ-=(舍) ∴3A π=故选C此题考查了正弦定理、三角形面积公式,以及三角恒等变换,熟练掌握边角的转化是解本题的关键.8.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.9.A解析:A 【解析】 【分析】利用数列递推式求出前几项,可得数列{}n a 是以4为周期的周期数列,即可得出答案. 【详解】1112,0321521,12n n n n n a a a a a a +⎧≤<⎪⎪==⎨⎪-≤<⎪⎩Q , 211215a a =-=,32225a a ==,43425a a ==,5413215a a a =-== ∴数列{}n a 是以4为周期的周期数列,则201845042215a a a ⨯+===. 故选A . 【点睛】本题考查数列的递推公式和周期数列的应用,考查学生分析解决问题的能力,属于中档题.10.A【解析】试题分析:331313log 1log log log 1n n n n a a a a +++=∴-=Q 即13log 1n n a a +=13n naa +∴= ∴数列{}n a 是公比为3的等比数列335579246()393a a a q a a a ∴++=++=⨯=15793log ()5a a a ∴++=-.考点:1.等比数列的定义及基本量的计算;2.对数的运算性质.11.D解析:D 【解析】解:由数列的递推关系可得:()11121,12n n a a a ++=++= , 据此可得:数列{}1n a + 是首项为2 ,公比为2 的等比数列,则:1122,21n n n n a a -+=⨯⇒=- ,分组求和有:()5521255712S ⨯-=-=- .本题选择D 选项.12.A解析:A 【解析】分析:由已知条件构造基本不等式模型()()224x y x y +=+++-即可得出. 详解:,x y Q 均为正实数,且111226x y +=++,则116122x y ⎛⎫+= ⎪++⎝⎭(2)(2)4x y x y ∴+=+++-116()[(2)(2)]422x y x y =++++-++226(2)46(242022y x x y ++=++-≥+-=++ 当且仅当10x y ==时取等号.x y ∴+的最小值为20. 故选A.点睛:本题考查了基本不等式的性质,“一正、二定、三相等”.二、填空题13.【解析】由得:所以当且仅当时取等号故填解析:15【解析】由lg lg 2x y +=得:100xy =,所以11111111()100100505xy x y xy x y x y ⎛⎫+=+=+≥= ⎪⎝⎭,当且仅当10x y ==时,取等号,故填15. 14.4【解析】【分析】设f (x )x2﹣3x+4其函数图象是抛物线画两条与x 轴平行的直线y =a 和y =b 如果两直线与抛物线有两个交点得到解集应该是两个区间;此不等式的解集为一个区间所以两直线与抛物线不可能有 解析:4 【解析】 【分析】设f (x )34=x 2﹣3x +4,其函数图象是抛物线,画两条与x 轴平行的直线y =a 和y =b ,如果两直线与抛物线有两个交点,得到解集应该是两个区间;此不等式的解集为一个区间,所以两直线与抛物线不可能有两个交点,所以直线y =a 应该与抛物线只有一个或没有交点,所以a 小于或等于抛物线的最小值且a 与b 所对应的函数值相等且都等于b ,利用f (b )=b 求出b 的值,由抛物线的对称轴求出a 的值,从而求出结果. 【详解】解:画出函数f (x )=34x 2﹣3x +4=34(x -2)2+1的图象,如图,可得f (x )min =f (2)=1,由图象可知,若a >1,则不等式a ≤34x 2-3x +4≤b 的解集分两段区域,不符合已知条件, 因此a ≤1,此时a ≤x 2-3x +4恒成立.又不等式a ≤34x 2-3x +4≤b 的解集为[a ,b ], 所以a ≤1<b ,f (a )=f (b )=b ,可得2233443344a ab b b b ⎧-+=⎪⎪⎨⎪-+=⎪⎩由34b 2-3b +4=b ,化为3b 2-16b +16=0, 解得b =43或b =4. 当b =43时,由34a 2-3a +4-43=0,解得a =43或a =83, 不符合题意,舍去, 所以b =4,此时a =0, 所以b -a =4. 故答案为:4 【点睛】本题考查了二次函数的图象与性质的应用问题,解题时应灵活应用函数的思想解决实际问题,是中档题.15.【解析】试题分析:由题意可知解得所以考点:等差数列通项公式 解析:6766【解析】试题分析:由题意可知123417891463,3214a a a a a d a a a a d +++=+=++=+=,解得137,2266a d ==,所以5167466a a d =+=. 考点:等差数列通项公式. 16.【解析】【分析】表示出再表示出整理并观察等式列方程组即可求解【详解】等差数列的公差为前项和为设其首项为则=又数列也为公差为的等差数列首项为所以=即:整理得:上式对任意正整数n 成立则解得:【点睛】本题 解析:12【解析】 【分析】表示出n S 【详解】等差数列{}n a 的公差为()0d d ≠,前n 项和为n S ,设其首项为1a , 则n S =()112n n na d -+,又数列也为公差为d =()1n d -()1n d =-=上式对任意正整数n成立, 则)2120122d d d d a d d ⎧=⎪=⎪-+=⎪⎩,解得:12d =,134a =- 【点睛】本题主要考查了等差数列的前n 项和及通项公式,考查了方程思想及转化思想、观察能力,属于中档题.17.【解析】【分析】根据正弦定理得到再根据计算得到答案【详解】由正弦定理知:即即故故答案为【点睛】本题考查了正弦定理外接圆面积意在考查学生的计算能力解析:9π【解析】【分析】根据正弦定理得到()1sinsin A B C R +==,再根据cos 3C =计算1sin 3C =得到答案. 【详解】由正弦定理知:cos cos 2sin cos 2sin cos 2b A a B R B A R A B +=⋅⋅+⋅=, 即()1sinsin A B C R +==,cos C =,1sin 3C =, 即3R =.故29S R ππ==.故答案为9π【点睛】本题考查了正弦定理,外接圆面积,意在考查学生的计算能力.18.8【解析】【分析】【详解】设等差数列的公差为则所以故答案为8 解析:8【解析】【分析】【详解】设等差数列{}n a 的公差为d ,则351712610a a a a a d +=+=+=,所以71101028a a =-=-=,故答案为8.19.【解析】由三角形中三边关系及余弦定理可得应满足解得∴实数的取值范围是答案:点睛:根据三角形的形状判断边满足的条件时需要综合考虑边的限制条件在本题中要注意锐角三角形这一条件的运用必须要考虑到三个内角的解析:a <<【解析】由三角形中三边关系及余弦定理可得a 应满足22222222224130130310a a a a <<⎧⎪+->⎪⎨+->⎪⎪+->⎩,解得a << ∴实数a的取值范围是.答案:点睛:根据三角形的形状判断边满足的条件时,需要综合考虑边的限制条件,在本题中要注意锐角三角形这一条件的运用,必须要考虑到三个内角的余弦值都要大于零,并由此得到不等式,进一步得到边所要满足的范围.20.【解析】【分析】由题得利用即可得解【详解】由题意知可得又因为所以可求得故答案为:【点睛】本题考查了等比数列的通项公式其前n 项和公式数列极限的运算法则考查了推理能力与计算能力属于中档题 解析:110,,122⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U 【解析】【分析】 由题得11(1)2a q =-,利用(1,0)(0,1)q ∈-⋃即可得解 【详解】 由题意知,1112a q =-,可得11(1)2a q =-,又因为(1,0)(0,1)q ∈-⋃,所以可求得1110,,122a ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭U . 故答案为:110,,122⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭U 【点睛】本题考查了等比数列的通项公式其前n 项和公式、数列极限的运算法则,考查了推理能力与计算能力,属于中档题.三、解答题21.(1)a n 11()2n +=;(2)T n 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦.【解析】【分析】(1)根据等差中项的性质列方程,并转化为1,a q 的形式,由此求得q 的值,进而求得数列{}n a 的通项公式.(2)利用裂项求和法求得数列{}n c 的前n 项和n T .【详解】(1)由S 1+a 1,S 3+a 3,S 2+a 2成等差数列,可得2(S 3+a 3)=S 2+a 2+S 1+a 1,即有2a 1(1+q +2q 2)=3a 1+2a 1q ,化为4q 2=1,公比q >0,解得q 12=. 则a n 14= ⋅(12)n ﹣111()2n +=; (2)b n 212222111()(2)(1)n n log a log n --===+, c n =(n +2)b n b n +2=(n +2)⋅22221111(1)(3)4(1)(3)n n n n ⎡⎤=-⎢⎥++++⎣⎦, 则前n 项和T n =c 1+c 2+c 3+…+c n ﹣1+c n14=[22222222221111111111243546(2)(1)(3)n n n n -+-+-++-+-+++L ] 2211111449(2)(3)n n ⎡⎤=+--⎢⎥++⎣⎦ 2211311436(2)(3)n n ⎡⎤=--⎢⎥++⎣⎦. 【点睛】本小题主要考查等差中项的性质,考查等比数列通项公式的基本量计算,考查裂项求和法,属于中档题.22.(1)b =2)b =【解析】【分析】(12b =,根据已知可求b 的值.(2)利用同角三角函数基本关系式可求cos B,由余弦定理可得2224a c ac =+-g,根据已知可求c ,进而可求b 的值. 【详解】(1)Q 22sin 1cos sin A C B B =-=.∴2b =,2a =Q,c =b ∴=(2)sin 4B =Q,cos 4B ∴=, ∴由余弦定理2222cos b a c ac B =+-222a c ac =+-,又a =c =2b ∴=经检验,b【点睛】本题考查正弦定理,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,考查计算能力和转化思想,属于基础题.23.(1)2 (2【解析】【分析】【详解】((1)由cos 05ACB ∠=>可知,ACB ∠是锐角,所以,sin ACB ∠===由正弦定理sin sin AC AB B ACB =∠,sin 2sin 2AC AB ACB B =∠== (2)cos cos(18045)cos(135)A C C ︒︒︒=--=-(cos sin )2C C =-+= 由余弦定理:CD === 考点:1正弦定理;2余弦定理.24.(1)2-;(2)3,4⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)根据基本不等式求最值,注意等号取法,(2)先化简不等式,再根据二次函数图像确定满足条件的不等式,解不等式得结果.【详解】(1)依题意得y=()f x x =2-41x x x+=x+1x -4. 因为x>0,所以x+1x ≥2.当且仅当x=1x时, 即x=1时,等号成立.所以y≥-2. 所以当x=1时,y=()f x x的最小值为-2. (2)因为f(x)-a=x 2-2ax-1, 所以要使得“对任意的x∈[0,2],不等式f(x)≤a 成立”只要“x 2-2ax-1≤0在[0,2]恒成立”.不妨设g(x)=x 2-2ax-1,则只要g(x)≤0在[0,2]上恒成立即可.所以(0)0,(2)0,g g ≤⎧⎨≤⎩ 即0-0-10,4-4-10,a ≤⎧⎨≤⎩解得a≥34,则a 的取值范围为3,4∞⎡⎫+⎪⎢⎣⎭. 【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.25.(1)3π;(2【解析】【分析】(1)可通过化简()sin2sin 0b A a A C -+=计算出cos A 的值,然后解出A 的值。