当前位置:文档之家› 冰蓄冷监控系统方案

冰蓄冷监控系统方案

冰蓄冷监控系统方案
冰蓄冷监控系统方案

冰蓄冷监控系统

←冰蓄冷系统的控制

基本监控点

冷水机组的运行状态、故障状态、启、停控制、远程/本地、运行时间累计;

冷冻水泵的运行状态、故障状态、启停控制、手自动状态、运行时间累计;

冷却水泵的运行状态、故障状态、启停控制、手自动状态、运行时间累计;

冷却塔风机的运行状态、故障状态、启停控制、手自动状态、运行时间累计;

冷/热水供回水管路冷冻水总回水流量、供回水压差、温度检测,压差旁通阀门控制,冷冻、冷却水及冷却塔电动蝶阀开关控制及开关状态;

顺序启停

制冷系统的开启和停机应有一定的时间顺序和注意事项,避免造成对设备的损害和对电网的冲击。按工艺流程开启/关闭系统,防止某些意外情况的发生,并延长主设备的使用寿命。

通过对系统中设备的控制,使冷机可以按照程序在规定的时间启/停,在启/停过程中所有设备能够按制冷系统工艺要求的合理顺序分步依次启动或停止,以达到保护设备、延长使用寿命的目的。

冷站系统启动顺序暂定为:

冷冻、冷却水管路电动蝶阀—→冷却水泵—→冷冻水泵—→冷水机组

冷却塔风机根据机组状态、冷却水泵状态和冷却水供回水温差决定开启,以便节能。

注:启动和停机时各主要环节之间延时时间可调.

冷站系统停机顺序暂定为:

冷水机组—→冷却水泵冷—→却水泵—→冷却塔风机—→冷却水管路电动蝶阀—→冷冻水泵—→冷冻水管路电动蝶阀

冷冻水泵延迟停止可保证系统尽可能多的利用冷冻水的余冷进行节能。

说明:启动和停机的顺序需要与冷水机组厂家确认,最终按照确认后的顺序和延时时间编程实施.

保护启动

为确保机组及循环泵在允许的工况下启动,程序中将进行如下的工作流程:启动冷机前,将先检测冷冻水水温等参数是否在许可范围内,并对异常值预先报警,提醒操作人员注意,避免了非正常启动系统。如果不能满足开启条件则自动终止开机操作,并通过声音和图形提示操作人员。

制冷、蓄冰、融冰等工况的转换

本项目采用三台双工况螺杆式制冷机组作为制冷主机,空调工况时,单台制冷量为1600KW,蓄冰工况时,单台制冷量为1200KW,该制冷机组蓄冰工况时,载冷剂的进出口温度为-5.5℃/-2.5 ℃;空调工况时,载冷剂的进出口温度为10.5℃/5.5℃。夜间供冷选用一台变频离心式冷水机组作为基载主机,其制冷量为2000KW。。基载主机夜间冷冻水的进出口温度为10.5℃/5.5℃,白天冷冻水进出口温度为13/8℃。

冰蓄冷系统与冷冻水系统采用间接连接、主机上游串联布置方式。供冷时,3.3℃的载冷剂经板式热交换器热交换,为组合式空调机组提供4.5℃的冷冻水;蓄冰时,制冷主机为蓄冷装置提供低温载冷剂,大楼夜间供冷有基载主机提供。蓄冰系统采用闭式系统,其载冷剂采用溶液浓度为25%的乙二醇水溶液。

为满足建筑物冬季供冷的技术要求,采用冷却塔“免费供冷”方式,以减少冷冻机的运行时间。

各种工况主机和对应阀门的控制转换情况如下:

水温控制

水系统为闭式循环,冷冻水由制冷机集中制备,并由冷机所附带的微电脑实施控制。

一般的制冷机对水温有一个较宽的限定范围,但即便如此,对水温的控制仍将大大改善冷机的工作情况,冷冻水的温度主要取决冷负荷的大小。为防止在冷负荷突然减小时造成冷机故障,系统在程序设计时对冷冻水回水温度设置了水温低限报警,并在水温继续降低时,停止冷机。

故障切换及设备运行时间均衡

在BAS实现对制冷站设备的全面控制后,设备的故障切换功能就变得十分方便和可靠,能充分利用制冷系统的备用设备,保障制冷站的连续运行,这对于要求较高的综合楼是非常重要的,其益处也是显而易见。

例如,在原始的纯人工管理下,某台泵的故障将在1分钟内造成水的断流,而工作人员往往在故障发生5分钟后也难以立即启动备用泵,结果造成冷机断流保护。再次启动时,势必造成时间上的延误和冷量的损耗,更对冷机造成一定的冲击,减少其使用寿命。

BAS控制下的故障切换则非常的灵活可靠,故障信号的采集和处理在极短的

时间内即可完成停止故障设备,将备用设备投入运行等工作,并报警提醒操作维护人员予以注意。

北京中心的制冷系统为冷冻水泵都配备了备用设备。但是由于操作人员的责任心等问题,许多设备都是备而不用。一个好的公司会在BA管理系统的程序中依照预先编排的日程表及设备正常情况时间的统计,轮流将几套设备均投入使用。这样,某台冷机、水泵等就不会因过度损耗而造成寿命的急剧减少。因此如何更好的使用备泵,如何在系统发生故障时被用设备能快速的投入运行,则是我们必须要解决的一个问题。

投运设备和备用状态可根据设备的运行时间和目前已运行的设备数量进行选择,以保证每台设备的运行时间都比较均衡,延长设备的使用寿命。

冷却水旁通调节控制

由于冬季采用冷却水提供建筑内冷源,压差旁通控制就是对冷却水的旁通流量进行控制,通过检测冷却水供回水的压差,来实时调节旁通阀门的开度,从而使管网压力达到平衡。

通过压差旁通控制可保证冷却水流量平衡,从而保证工况下负荷侧的变流量和却水侧的定流量。压差—阀门调节,多采用PI调节算法,调节迅速平稳、精度高。

负荷测量及冷水机组台数控制

冷水机组台数控制

由于已经设置了冷冻水回水流量变送器、供、回水温度传感器,已经可以计算实际冷负荷Q

L

=CG(t2- t1)

Q

L

——冷负荷 KW;

C——冷冻水的比热,4.186KJ/Kg.℃;

G——冷冻水流量,kg/s;

t1?t2-——冷冻水供、回水温度,℃;

冷机的额定制冷量为Q

NO

,则冷机工作的台数和冷负荷的关系如下:

一台工作 Q

L ≤1 Q

NO

两台工作 Q

L =1 Q

NO

~2 Q

NO

由于机械制冷的冷机(本工程冷水机组属于这种情况)的装机容量都在几十

到几百千瓦,启动时对电网冲击很大,所以在增减冷机台数时,必须延迟一定的时间,比如10min~30 min。为避免频繁启、停,需要启动第二台冷机为1 Q

NO

Q。由两台减至一台时,其冷量为1 Q

NO

-ΔQ,设计一个呆滞区。

对于本工程,夏季主要对两台大型冷水机组进行台数控制,可根据其制冷量根据台数控制策略机动调配。当然,冷水机组台数控制策略还应结合各台冷水机组最佳制冷能效比(COP)进行合理编排。

由于冷却水、冷冻水进冷机处分别设置电动调节蝶阀,所以可采用自动控制冷机台数,按照末端实际需要的负荷供应热源,冷水机组外围设备如冷冻泵、冷却泵和冷却塔运行的数量可与机组数量对应,这样,不仅节约了机组能耗,同时也节省了水泵等设备的能耗,具有非常好的节能效果。

机组定时启停控制

根据事先排定的工作节假日作息时间表,定时启停机组自动统计机组各水泵、风机的累计工作时间,提示定时维修。

乙二醇冷冻泵、冷冻水二次泵变频控制

乙二醇冷冻泵、冷冻水二次泵一般情况下选型的扬程、功率都比实际需求大,水泵的能耗一般有较大的富余量,如果水泵工频运行,会导致末端处于小温差,小流量模式运行,水泵的一部分能耗都浪费在末端阀门上了,所以为了节能,可对冷乙二醇冷冻泵、冷冻水二次泵进行变频控制,一般通过冷乙二醇和冷冻水的供回水温差进行变频控制,让末端处于大温差、大流量模式运行,使得水力组织消耗掉的能耗达到最小。

当然由于电制冷冷水机组的运行要求,乙二醇冷冻泵最低频率对应的流量不能低于机组允许的最小流量,所以,乙二醇冷冻泵、冷冻水二次泵变频控制还应该有最小频率限制。

运行参数及报警

自动检测系统内各检测点的温度、压力等参数,定时记录、打印、故障报

警。

设备基本配置

SIEMENS APOGEE 高级客户端软件(该软件是楼宇自控系统服务器软件的客户端,用做冰蓄冷控制分站)

离心式基载冷水机组集成接口(采集离心式基载冷水机组的内部数据)

螺杆式双工况冷水机组集成接口(采集螺杆式双工况冷水机组的内部数据)DDC控制器:西门子模块化控制器PXC 扩展型,TX-I/O模块

包括:数字输入/输出模块,通用输入/输出模块;

插入式水管温度传感器;

电磁流量计

液体压力传感器

液位开关

水流开关

蓄冰槽冰位传感器

电动调节阀及驱动器

电动蝶阀及驱动器

蓄冰制冷系统施工工艺

蓄冰制冷系统施工工艺 摘要:加强蓄冰制冷系统施工工艺的研究是十分必要的。本文作者结合多年来的工作经验,对蓄冰制冷系统施工工艺进行了研究,具有重要的参考意义。 关键词:蓄冰制冷系统;蓄冰罐;施工工艺 一、工程概况 笔者参与并主导实施的某制冷站安装工程,该工程采用冰蓄冷制冰工艺,制冰设备选用三台双工况螺杆式制冷机组及一台单工况螺杆式基载冷机,为闭式并联系统。蓄冰类型选用的是冰球蓄冰(容器式冰槽)。最大冷负荷为7203Kw(2048RT),设计日空调冷负荷为94199Kw.H(2678RT.H),设计蓄冰量为20563KW.H(5848RT.H),蓄冰率为28.5%,削峰率为29.4%。蓄冰装置采用容器式(即冰槽),共6台,每台体积为60m3,直径为2400mm,长度为13714mm,容器的钢板厚度为10mm,流量为130 m3/h,压力为21.6kPa。冰球为美国CRYOGEL公司生产的直径为Ф98凹形(圆形多面体)冰球,共40万个。 二、施工技术准备 1.管道综合的重要性 站房工程中,管道布置密度大,能否合理排列,不仅关系到安装完成后观观效果,而且更为重要的是关系到能否正常使用的问题。因此在施工准备阶段要进行施工组织及管线综合深化设计,根据施工图设计的管道标高、管径结合现场实测的高度空间位置进行各介质管道的平面位置、标高的综合排列。 2.管道综合的合理原则在进行排列时,要考虑到小管让大管,有压的让无压管道,电气管道布局于水管道上方的原则。 3.各类管道支架的设置 冷热站工程中,支架的设置各专业要统一考虑设置,否则会显得零乱不堪。支架的设置首先要满足荷载要求;其次要满足规范间距要求;第三要考虑到管道热胀冷缩产生应力的要求;第四要在考虑了以上三点的情况下再仔细考虑支吊架具体用料规格,制作安装方法,支吊架生根(固定点)的设置。 4.阀门位置及方向的设置 阀门的设置,在设计图纸中虽然已有,但施工时还要考虑到更具体的安装位置和方向,要考虑方便的操作高度、统一的旋转方向、手柄的朝向以使操作人员操作方便和检修更换的方便性。 综合以上四点,整理出具体的管道综合深化详图及施工说明并报甲方及设计

水蓄冷方案(DOC)

第一章工程概况简述 1.工程概况及主要工程内容 工程概况:本项目位于广东省清远市清新区太平镇万邦鞋业办公大厦,总建筑面积约:15000m2,空调面积:10000m2,建筑总高15m,其中楼层主要为研发室,办公室、制模室、空调设备房等等。 本项目主要工程内容为:中央空调机房冷源系统,冷冻水管立管、每楼层预留水管到管井口、蓄水槽防水、保温及布水工程等。 2.设计概况 本次设计采用大温差水蓄冷中央空调系统,夏季设计日总尖峰冷负荷为875KW。 冷源配置:整体规划主机选用1台250RT螺杆机及1台114RT螺杆式,该设备为甲方提供.主机夜间水蓄冷,即夜间为蓄冷工况:供回水温度为 4.5℃/12.5℃,白天为空调工况:供回水温度为7℃/12℃,冷却水供回水温度为32℃/37℃。两台主机在夜间可同时蓄冷或单独蓄冷,把一个蓄冷水池蓄满为止. 本项目一个蓄冷水池的总容积 800m3,按容积利用率0.95计算,蓄冷水池的可利用容积大于760m3。 本项目蓄冷工况运行时,水池进/出水温度为 4.5/12.5 ℃;放冷工况运行时,水池进/出水温度为12.5/4.5 ℃,均采用8 ℃温差。 考虑到水池中冷热水间的热传导和斜温层等因素影响,蓄冷水池的完善度一般取0.90~0.95;考虑到保温层传热的影响,冷损失附加率一般取1.01~1.02。因此,本项目实际蓄冷量约为3200kWh(即915RT)。

第二章制冷系统技术方案 1.设计依据 本方案设计依据如下: 业主提供的设计资料 《采暖通风与空气调节设计规范》 (GB 50019-2003) 《蓄冷空调工程技术规程》 (JGJ 158-2008) 《通风与空调工程施工质量验收规范》(GB 50242002) 《采暖通风与空气调节设计规范》(GB 50019-2003) 《全国民用建筑工程设计技术措施——暖通空调?动力》(2003版) 《全国民用建筑工程设计技术措施——给水排水》(2003版) 《蓄冷空调工程实用新技术》方贵银教授编著 2.负荷计算 水蓄冷空调系统的负荷计算采用国家现行《采暖通风与空气调节规范》(GB50019-2003)的有关规定,求得蓄冷—放冷周期内逐时负荷和总负荷,并绘制出负荷曲线图,作为确定系统形式、运行策略和设备容量的依据。采用系数法对逐时冷负荷进行估算。其中设计日各时段冷负荷值如下表:一期设计日尖峰冷负荷为1156RT,采用逐时负荷系数法,设计日逐时冷负荷分布如下: 表设计日各时段负荷值情况

冰蓄冷自动控制系统设备及功能说明教学内容

冰蓄冷自动控制系统设备及功能说明

第三章机房自动控制系统 一、冰蓄冷自动控制系统综述 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a、制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数 的显示; e、电动阀开关、调节显示;

f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分析,而且所有的监测数据可进行打印。 ⑸控制系统配置灵活的手动/自动转换功能。现场控制柜可手动控制所有设备的启停。 ⑹可根据负荷变化情况调整运行策略,进行系统的优化控制,最大限度发挥蓄冷系统转移高峰负荷的能力,以最大限度节省运行费用。 ⑺具备无人值守功能、节假日特别控制功能。 ⑻系统可通过电话线或局域网络,对本工程的蓄冷、蓄热与生活热水系统进行远程监控(可选的功能)。 二、蓄冷系统运转模式 蓄冷系统按空调供回水温度7℃/12℃设计,可以通过不同阀门的开、关或调节来实现以下4种不同的运行模式: A、常规主机供冷+双工况主机制冰模式 B、常规主机供冷+双工况主机+蓄冰装置联合供冷模式 C、常规主机供冷+蓄冰装置联合供冷模式 D、融冰单独供冷模式 其运行原理见冰蓄冷空调系统原理图。(见本报价书第七部分)

空调制冷系统安装工程施工工艺及要求

10.2空调制冷系统安装工程 10.2.1基本规定: 10.2.1.1制冷设备、制冷附属设备、管道、管件及阀门的型号、规格、性能及技术参数等必须符合设计要求。设备机组的外表应无损伤、密封良好,随机文件和配件应齐全。 10.2.1.2与制冷机组配套的蒸汽、燃油、燃气供应系统和蓄冷系统的安装,还应符合设计文件、有关消防规范与产品技术文件的规定。 10.2.1.3空调用制冷设备的运输和吊装,应符合产品说明书有关规定,并做好设备的保护工作,防止因运输或吊装而造成设备损伤。 10.2.2施工准备: 10.2.2.1技术准备 1.专业技术人员应熟悉施工图纸和设备随机附带的配管系统图,现场设备的管口尺寸、方位、高度应符合图纸设计要求; 2.管道专业施工方案已进行会审核批准,并已进行技术质量安全交底,形成交底记录。 3.按施工图所示管道位置、标高测量放线,查找出支、吊架预埋铁件。 4.安装完的管路系统应有完整的检验、检测手段和措施。 10.2.2.2材料要求 1.所采用的管子和焊接材料应符合设计规定,并具有出合格证明获质量鉴定文件。 2.制冷系统的各类阀件必须采用国标产品,并有出厂合格证。 3.无缝管内外表面无明显腐蚀、无裂纹、重皮及凹凸不平等缺陷。 4.铜管内外壁均应光洁、无疵孔、裂缝、结疤、层裂或气泡等缺陷。 10.2.2.3主要机具 1.施工机具:卷扬机、空气压缩机、真空泵、砂轮切割机、磨光机、压力工作台、倒链、台钻、电锤、坡口机、铜管扳边器、手锯、套丝板、管钳、套筒扳手、活扳手、平尺、铁锤、电焊机设备等。 2.测量工具:钢直尺、钢卷尺、角尺、水平仪、塞尺、线坠、水准仪、经纬仪、半导体测温计、U形压力计等。 10.2.2.4作业条件 1.根据设计图纸及相关技术文件,编制施工技术方案,进行安全

冰蓄冷空调原理汇总

冰蓄冷空调原理 冰蓄冷空调技术是指在用电低谷时用电制冰并暂时蓄存在蓄冰装置中, 在需要时( 用电高峰) 把。由此可以实现对电网的“移峰填谷”, 有利于降低发电装机容量, 维持电网的安全高效运行。 一、蓄冰空调系统组成部分 (1)制冷主机。 ①作用:制冷主机(双工况机组)负责对载冷剂(乙二醇)降温,输出冷源。 ②工作原理:制冷剂经过压缩机变成液态,在蒸发器气化吸热把冷量传递到盘管系统。(2)蓄冷设备。 ①作用:蓄冷设备(蓄冰罐、槽)主要功能是储存冷源并阻隔与外界冷热交换。 ②工作原理:蓄冰罐、槽外壁采用保温隔热材料层,隔绝与外界冷热交换,保持罐、 槽内的温度 (3)用户风机盘管系统。 ①作用:把冷源送到需要制冷房间。 ②工作原理:水经过换热板吸收冷量,经过冷冻泵输送到需要制冷的房间。 ③④⑤⑥二、蓄冰空调系统工作原理 (1)制冷机组(双工况机组)运行,将载冷剂(20%浓度的乙二醇液)流经主机降温,再输送至蓄冰罐对蓄冰罐中的水降温,降温一般降至-3℃左右,于此同时蓄冰罐的另一侧管道把乙二醇输送出,经过冷冻泵回流主机中,就这样低温的乙二醇对蓄冰罐的水进行循环降温。 (2)另一方面,经过主机降温的乙二醇液流经融冰式换热板,向风机盘管输送冷量,进入换热板前3.5℃,通过换热板后载冷剂温度上升到10.5℃,载冷剂通过冷冻泵回流制冷机组。

三、夜间蓄冰 夜间,用户风机盘管系统停止运行,前段只运行工况机组,打开V3、V1节流阀,关闭V2、V4、V5节流阀,让-3~-3.5℃低温20%浓度的乙二醇溶液被主机运送到蓄冰罐,在蓄冰罐中吸收热量,然后通过冷冻泵回流工况机组,一直循环,让蓄冰罐中的水冰化90%以上,白天高峰负荷时,储冰罐中0℃的水被输送到融冰板式换热器,换热后的高温水回流到储冰罐,被洒在冰上直接进行融冰,只要罐中有冰就可以一直保持出水温度在3.5℃左右,为融冰板式换热器的另一侧提供5-7℃的冷冰用于供冷

冰蓄冷设计说明

冰蓄冷设计说明 1.1设计概述 冰蓄冷空调是利用夜间低谷负荷电力制冰储存在蓄冰装置中,白天融冰将所储存冷量释放出来,减少电网高峰时段空调用电负荷及空调系统装机容量,它代表着当今世界中央空调的发展方向。 成都市电网分时电价表 2.2冰蓄冷系统方案设计 本工程是医药厂房,冷负荷集中在电力高峰时段和电力平峰时段,电力低谷时段,电力低谷时段空调系统根本没有冷负荷,且全年供冷期内负荷极不平衡,选择常规制冷主机设备容量大,且直接制冷的结果是制冷主机高价来制冷,低价电时段闲置,造成不必要的浪费。因此为了减少中央空调白天的用电峰值,充分利用峰谷电差价,大幅度地降低空调的运行费用,同时为了提高空调品质,本工程中央空调设计采用冰蓄冷中央空调系统。

·以上方式中使用最多的为:冰球(或蕊心冰球)和外融冰的盘管式蓄冰装置 ·本工程采用外融冰钢制盘管冰蓄冷方式的冷源。 2)、部分(分量)蓄冰模式:如图2,部分(分量)蓄冰模式是指在夜间非用电高峰时制冷设备运行,蓄存部分冷量。白天空调高 蓄冰方式 动态制冰 静态制冷 冰浆(或冰晶) 片冰滑落式 盘管式蓄冰 封装冰 外融冰 冰球(或蕊心冰球) 外板 内融冰

峰期间一部分空调负荷(尖峰负荷)由蓄冷设备承担,另一部分则由制冷设备负担。在设计计算日(空调负荷高峰期)制冷机昼夜运行。部分蓄冷制冷机利用率高,蓄冷设备容量小,制冷机比常规空调制冷机容量小30-40%,是一种更经济有效的运行模式。根据以上分析考虑初期投资费用及机房占地,本工程冰蓄冷设计采用分量蓄冰模式。,本设计方案采用部分蓄冰模式 3.4蓄冰流程选择 3.4.1 蓄冰流程的选择 蓄冰空调系统在运行过程中制冷机可有两种运行工况,即蓄冰工况和放冷工况。在蓄冰工况时,经制冷机冷却的低温乙二醇溶液进入蓄冰槽的蓄冰换热器内,将蓄冰槽内静止的水冷却并冻结成冰,当蓄冰过程完成时,整个蓄冰设备的水将基本完全冻结。 融冰时,经板式换热器换热后的系统回流温热乙二醇溶液进入蓄冰换热器,将乙二醇溶液温度降低,再送回负荷端满足空调冷负荷的需要。 乙二醇溶液系统的流程有两种:并联流程和串联流程。a、并联流程:这种流程中制冷机与蓄冰罐在系统中处于并联位置,当最大负荷时,可以联合供冷。同时该流程可以蓄冷、蓄冷并供冷、单溶冰供冷、冷机直接供冷等。并联流程原理如图3。 b、串联流程:即制冷机与蓄冰罐在流程中处于串联位置,以一套 循环泵维持系统内的流量与压力,供应空调所需的基本负荷。串联流程配置适当自控,也可实现各种工况的切换。串联系统原理如图4:

冰蓄冷技术招标文件

2.12与冰蓄冷专业承包单位的协调工作 令狐采学 2.12.1 概述 ●冰蓄冷机房冷源系统在本次招标范围中作为一个独立 分项,必须由一个独立的、有冰蓄冷实施经验的、具 备机电安装一级资质、具备设计乙级及以上资质、具 备建筑智能化设计乙级及以上资质的专业承包商承 接,此专业承包商不能采取联合投标形式。 ●冰蓄冷机房冷源系统专业承包商负责整个冰蓄冷机房 冷源系统的设备供货、材料采购、系统安装、系统调 试以及售后服务等内容。 ●对冰蓄冷机房冷源系统而言,冰蓄冷机房冷源系统专 业承包商提供的是一个的总包交钥匙工程(不包括主 机与冷却塔)。 ●冰蓄冷冷源系统专业承包商必须至少具备5个蓄冰容 量与本工程类似的专业承包经验。 ●投标方与冰蓄冷冷源系统专业承包商必须签署书面的 合作协议,合作协议中明确各自的职责,并附在投标 文件中。 2.12.2 本承包商与冰蓄冷专业承包商工作面说明 ●与空调末端系统:冷冻水管道的分界点为出本机房1 米。

●与楼宇自动控制管理系统(BMS ):冰蓄冷冷源系统的自 控系统负责冰蓄冷冷源的控制,BMS系统对冰蓄冷冷源控制系统只监视而不需控制(监而不控)。 ●与高/低压供电系统:主机动力柜、所有水泵与冷却塔 的动力与控制柜、电动阀、冰蓄冷冷源系统其它用电设备的动力与控制柜均包括在本次招标范围内,有配电至上述动力柜的供电母线、电缆与桥5架不在本本次招标范围内,上述动力柜至冰蓄冷冷源系统各用电设备的母线、电缆与桥架包括在本次招标范围内(包括水泵的紧急停机部分)。 ●与给水及排水系统:给水及排水系统将冷却塔的补水 管接至出地面1米,冷却塔的排水管包括在本此招标范围内。

冰蓄冷自动控制系统设备及功能说明

第三章机房自动控制系统 一、冰蓄冷自动控制系统综述 工程的自控系统由上位机远程控制系统、PLC现场控制系统、电动阀、传感检测器件、系统配电柜、系统软件等部分组成。系统结构图如下所示:

PLC控制软件为主的控制程序,该程序为美国西门子公司与CRYOGEL公司联合开发,已经在美国的多个工程中和台湾杰美利(GEMINI)得到应用,直接输入后调整。上位机控制软件也可带采用CRYOGEL/(GEMINI)公司软件包的WinCC操作系统。 上位机远程控制设置先进的集中控制台,采用工控机配置打印机进行远程监控和打印,现场控制机采用PLC可编程控制器控制,进行系统控制、参数设置、数据显示,确保实现系统的参数化,实现系统的智能化运行。 本系统中的核心控制部分与机电执行装置采用国际著名品牌(西门子、江森、霍尼韦尔)的产品。 蓄能系统控制具体功能如下: ⑴控制系统通过对主机、蓄热锅炉、蓄冰装置、板式换热器、泵、冷却塔、系统管路调节阀进行控制,调整蓄冷系统各应用工况的运行模式,在最经济的情况下给末端提供稳定的供水温度。 ⑵根据季节和机组运行情况,自控系统具备所有工况的转换功能。 ⑶控制、监测范围: a、制冷主机、泵、冷却塔启停、状态、故障报警; b、总供/回水管温度显示与控制; c、蓄冰装置及蓄热水箱进出口温度、显示与控制; d、蓄冰量、余冰量、乙二醇流量、瞬时释冷速度、蓄冷速度等标准规定参数的 显示; e、电动阀开关、调节显示; f、备用水泵选择功能; g、各时段用电量及电费自动记录; h、空调冷负荷以及室外温湿度监测; i、可选的功能(包括楼宇智能化系统接口及接口转换程序)。 ⑷控制系统对一重要的参数进行长时间记录保存,并将空调的实际运行日负荷通过报表或曲线图的方式记录,可以查询到某一段时间内的历史数据值,供使用者进行了解、分

冰蓄冷空调系统的优点和缺点

冰蓄冷空调系统的优点 和缺点 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

冰蓄冷空调系统的优点和缺点: (1)优点: ①平衡电网峰谷荷,减缓电厂和供配电设施的建设,对国家而言,是节能的; 对于大城市的商业用电而言,均会出现用电的峰谷时段,在用电的峰段,常常会出现供电不足的状况,而在用电的谷段,又常常会出现电量过剩的状况,如果将低谷电的电能转化为冷能应用到峰值电时的空调系统中去,则可以缓解电网压力,平衡电网; 对国家电网而言,要满足用户1kwh的用电需求,必须要发电站发出超过1kwh 的电量便于抵消电在运输过程中的损耗,而用户对电的需求和利用程度在实际过程中却是不定的,是随机的,尤其是对建筑内的空调而言,其使用程度往往同当天的室外天气条件密切相关,不定性特点尤为突出,倘若国家电网发出的余电无法被用户使用,一来是对能源的浪费,二来对国家电网的安全也存在着隐患,于是,冰蓄冷技术在空调系统中的应用便大大地减缓和减少了以上问题; ②能使制冷主机的装机容量减少; 冰蓄冷空调系统按运行策略可分为两类,一类是全部蓄冷模式,另一类是部分蓄冷模式。对于第一类,通俗地说就是建筑的所有冷负荷(注:蓄冰装置是无法作为热源使用的)全由蓄冰装置承担,而制冷机组(通常是双工况制冷机组)只扮演为蓄冰装置充冷制冰的角色,在空调系统运行的时候,制冷机组处于停机状态,而蓄冰装置则全时段运行,为用户提供冷量。对于第二类,也是实际工程中常用的

运行方式,即蓄冰装置只承担建筑冷负荷的一部分,而另一部分则由制冷机组(双工况)承担。因此,由上述可知,不论哪种运行方式,蓄冰装置总是要承担一部分冷负荷的,我们所说的减少了制冷主机的装机容量,实质上就是蓄冰装置承担了制冷机组本应该要承担的一部分负荷,这部分负荷值的大小也就是蓄冰装置的蓄冷量大小; ③目前各地供电部门对用电限制较严,征收的额外费用也名目繁多,建筑业主与用户的经济负担较重,还常常受到限电、拉闸停电种种束缚。若发展冰蓄冷空调技术,就能较好的缓解空调用电与城市用电供应能力的矛盾; ④由于采用了冰蓄冷与低温大温差供冷送风相结合的技术,在初投资费用方面,既可减少空调处理设备、输配设备的大小,输送管网的粗细,还可减少机房管井的占用面积,压低建筑层高,从而不但可节省空调的初投资费用,而且还可降低建筑造价;在运行费用方面,由于送风温度低,风机、水泵的输配功率大幅度降低,制冷空调系统的整体能效得到提高,再加上分时电价的优惠,从而使建筑业主与用户支付比常规空调更少的运行费用; ⑤由于采用了低温大温差供冷送风,使空调处理与输送过程均在较低温度下进行,有利于抑止细菌、病菌的繁殖;较低的室内温度,可进一步改善室内空气品质与热舒适水平。 (2)缺点: ①系统异常复杂、庞大。冰蓄冷空调除了通常的制冷系统和空调设备外,还配备复杂的蓄冰设备,蓄冰设备包括蓄冷槽,乙二醇溶液泵、制冰泵、蓄冷介质

冰蓄冷设计说明书

1.1上级批文详见总论部分; 1.2甲方提供的设计任务书; 1.3建筑专业提出的平面图和剖面图; 1.4室外计算参数(江苏地区) 夏季空调计算干球温度34.1℃ 夏季空调计算日平均温度31℃ 夏季空调计算湿球温度28.6℃ 夏季通风计算干球温度32℃ 夏季空调计算相对湿度69 % 夏季大气压力100.391Kpa 夏季平均风速 3.3m/s 冬季空调计算干球温度-12℃ 冬季通风计算干球温度-4℃ 冬季空调计算相对湿度74% 冬季大气压力102.524 Kpa 冬季平均风速 3.3 m/s 1.6国家主要规范和行业标准 (1)《采暖通风与空气调节设计规范》GB50019-2003; (2)《高层民用建筑设计防火规范》GB50045-95(2001版); (3)《民用建筑热工设计规范》GB50176-93; (4) 全国民用建筑工程设计技术措施《暖通空调·动力》; (5) 《民用建筑隔声设计规范》GBJ118 2 设计范围 本工程总建筑面积为120000平方米 设计范围为采暖、通风、空调、防排烟及冷热源设计。冷冻机房冷却水系统由给排水专业设计。 3 设计原则 满足国家及行业有关规范﹑规定的要求,利用国内外先进的空调技术及设备,创建健康舒适的室内空气品质及环境。

4.3空调系统 经技术﹑经济综合比较及专家组建议,空调方案确定为:独立新风空调系统,即新风机组加辐射冷吊顶。辐射吊顶已被美国能源部列为二十一世纪15项最节能,最有前途的空调技术之一,其突出的优点——更加舒适,更加节能,更加安静,使其成为目前欧美各国首选的空调末端装置,辐射吊顶、全热交换器和低温送风新风系统组成的独立新风系统,已经成为国际公认的最先进的空调系统。4.3.1 首层∽八层及地下一层南区各功能房间 采用独立新风空调系统(DOAS)。新风机组除了承担新风负荷外,还承担室内全部潜热和部分显热负荷,室内剩余的显热负荷由辐射冷吊顶承担。 新风机组选用专用DGKR08型低温送风新风机组,设置在专用的新风机房内,每台机组风量约为7000m3/h-8000m3/h。机组进水温度低于3℃,出水温度为辐射冷吊顶的进水温度(露点温度加1~2℃),由室内露点温度控制,新风机组 出风温度低于7℃。该机组除了具有普通空调机组具有的冷却﹑干燥﹑加热及加湿功能外,还具备有:(1)承担其全部新风负荷,室内全部潜热和部分显热; (2)机组内配置有板式全热交换器,回收焓效率大于50%,温度效率70% 以上;(3)机组内配置驻极静电过滤器,计数效率为99.9%可备光催化材料杀灭,空气阻力小于50Pa。 空调房间冬季加湿采用高品质的干蒸汽加湿,汽源由地下一层锅炉房引来。 新风系统按楼层分南﹑北两个系统设置,以利调节。新风管沿走道吊顶敷设,在进入每个房间的支管上设置E型定风量调节器,送风口采用大诱导比风口下送。排风通过每个房间侧墙上设置的排风口,通过走道吊顶,进入新风机组全热交换器释放能量后排入大气。 辐射板采用国产辐射板。因为它较进口辐射板热阻小,辐射冷/热量大,接头先进,价格便宜等优点。辐射板型号选用600×600规格板,颜色的选用与排版形式随装修进行。 4.3.2 餐厅及厨房。 由于餐厅空调负荷变化大,湿负荷大,空调运行时间短,层高较高等特点。故餐厅单独设置空调系统,空调形式采用独立的低温送风新风系统,送风口采用大诱导比风口下送,排风口为单层百叶风口,通过排风管进入新风机组全热交换器释放能量后排入大气。新风机组选用专用DGKR15型低温送风新风机组,设置在专用的新风机房内,机组风量约为15000m3/h。 厨房采用直流空调系统(冬季加热夏季降温),厨房排风量暂按40次/时,送风量为80% 排风量,其施工图设计待厨房设备确定后进行。 4.3.3 电话机房及计算机主机房 为了保证电话机房、消防值班室及计算机主机房值班空调,另分别设置一套VRV空调系统,室外机设置在屋顶,室内机采用四面吹出式,设置在吊顶上。 4.4空调系统冷源 本工程空调面积为23500m2,预留空调面积5500m2,共计空调面积29000m2。空调冷负荷为3351kW,折算为冷指标为115.56w/m2。空调热负荷为2595.5kW,算为冷指标为89.5w/m2。

冰蓄冷系统的设计与施工

冰蓄冷系统的设计与施工 一、工程概述 XXXX位于XX东侧,建设单位是XXX房地产开发有限公司。该建筑物功能类型为办公,酒店,银行办公的综合大厦,总建筑面积11.6万平方米。是全 国最大的冰蓄冷工程项目。该项目由XXXX安装工程有限公司第一项目部进行施工安装。本系统主要是为该建筑提供空调冷冻水,冷冻站在地下3层;机房建筑 面积1200m2蓄冰槽520m2)。冷冻站采用蓄冰空调系统,充分利用夜间廉价的低谷电力储存冷量,补充在电力高峰期的空调冷负荷需要,节约系统运行成本。 二、设备配置 (一)冷源 1. 双工况螺 杆式冷水机组3台(YSFAFAS55CNE约克(合资) 2.基载 离心式冷水机组2台(YKFBEBH55CPE勺克(合资) (二)冷却塔:大连斯频得 冷却塔共计5台,CTA-600UFW两台,CTA-450UFW三台。 (三)板式换热器:丹麦APV 板式换热器共计3台,选用APV板式换热器J185-MGS16/16 (四)蓄冰槽(现场加工) 蓄冰槽共有六台,最大蓄冰量31787.2KW(9040RT。(见表1) (五)乙二醇循环水泵:德国KSB 乙二醇循环水泵共计4台,其中1台备用,并配4台变频器。 (六)冷却水循环泵:德国KSB

冷却水循环泵选用卧式离心泵4台,其中1台备用 三、运行策略: (一)负荷说明 根据建筑使用情况及初步设计估算结果,整幢大楼的尖峰冷负荷为 11428KW(3250RT。由于气温变化,空调系统在整个运行期间日负荷大小会有变化,根据负荷分布情况,出100獗荷情况逐时空调负荷:(见表2) 蓄冰的模式可采用全部(全量)蓄冰模式或部分(分量)蓄冰模式。本工程采用部分蓄冰模式。 根据采暖通风专业提供的建筑物设计日100%负荷如下:最大小时冷负 荷:11428KW( 3250RT 设计日冷负荷:151705KWH( 43144RTH 最大小时基载冷负荷:2286KW( 650RT 扣除基载冷负荷后的最大小时冷负荷:9142.33KW (2600RT 扣除设计日基载冷负荷后冷负荷:96852.4KWH (27544RTH (二)系统流程简述 本设计蓄冰设备选用冰球式蓄冰设备,系统选用串联单循环回路方式,在循环回路中,乙二醇制冷主机置于蓄冰装置上游。系统中设有板式热交换器3台,每台换热量为用3961KW( 1126RT,用以把冰蓄冷系统的乙二醇回路与通往空调负荷的水回路隔离开,保证乙二醇仅在蓄冰循环中流动,而不流经各空调负荷回路,可减少乙二醇用量并避免乙二醇在空调负荷回路中的泄漏。乙二醇回路中设有4个电动调节阀CV1,CV2,CV8CV9根据冷负荷变化,通过电动调节阀 CV1,CV2调节进入蓄冰装置的乙二醇流量,保证进入板式热交换器的乙二醇侧温度恒定并满足冷负荷需求。电动调节阀CV8.CV9调节进入板式热交换器的乙二醇流量,保证进入板式热交换器的水侧温度恒定并满足冷负荷需求。同时,空调冷

骨料冷却制冷系统施工方案

混凝土拌和制冷系统安装方案 一、概述 1.1工程简介 锦凌水库工程位于锦州市境内的小凌河干流上,水库总库容8.08×108m3。水库任务是以承担锦州市的防洪和供水为主,并兼顾改善地下水环境。 锦凌水库工程等别为II等,工程规模为大(2)型,永久性主要建筑物(挡水坝段、溢流坝段、底孔坝段、引水坝段及连接建筑物)为2级,右岸下游导墙等次要建筑物为3级,临时性建筑物为4级。大坝坝顶高程64.80m,最大坝高48.3m,坝长1148.0m。土坝分左右岸布置,主河槽混凝土坝段布置有右连接段、引水坝段、底孔坝段、溢流坝段、挡水坝段、左连接段。其中左岸土坝长499.0m,右岸土坝长351.5m,引水坝段长20.0m;底孔坝段长40.0m,溢流坝段长177.5m,挡水坝段总长54.0m,左、右岸连接段坝顶均为3.0m。 1.2气候条件 据多年统计资料表明,本工程所在地区最冷月平均气温为-8.2℃,为寒冷地区。多年平均气温仅为9.2℃,气温年内变幅大,昼夜温差也较大。极端最高气温41.8℃,极端最低气温-24.7℃;最早初霜10月9日,最晚终霜4月14日;最早结冰日期11月1日,最晚结冰日期12月5日,最早解冰日期2月2日,最晚解冰日期4月3日;最大冻土深度113cm。气象特征详见表1-1、1-2。

表1-1 锦州站气象特征表 表1-2 近5年各月日均气温日数统计表单位:天 根据砼施工技术要求,高温季节时砼入仓温度应控制在16℃以下,因此砼施工时,应采用预冷混凝土。混凝土预冷主要用如下手段:高堆料堆,地垅取料,加冷水拌和,加冰拌和。 在不同的气温条件下,我部对上述手段调配组合,而制定出不同的预冷方案。 ,水温在25℃时,确保砼出料口温度在12~14℃。 为了二、主要设备技术参数指标 2.1LG20BM螺杆压缩机组主要技术参数表

冰蓄冷系统 施工方案

冰蓄冷系统施工方案: 1. 蓄冷槽体的制作 1.1 确认蓄冷槽体放置位置,混凝土基础已施工完毕,满足设备承重要求,表面平整,符合施工要求; 1.2 在混凝土基础上铺设塑料布防潮、隔气层; 1.3 沿设计槽钢位置在隔气层上面铺设木方,将槽钢放置在木方上面,焊接底面槽钢框架,焊接过程中注意防火,防止槽钢温度过高,引燃木方或者将塑料隔气层烫坏; 1.4 在底层槽钢框架的空隙内填充橡塑保温材料压实,然后将底层钢板与保温材料接触面刷环氧树脂漆,然后就位,使底层钢板与保温材料紧密接触,分块焊接底层钢板,焊接完毕后在钢板迎水面刷环氧树脂漆,防止钢板以后遇水腐蚀; 1.5 在底层槽钢钢板焊接制作完毕后,开始焊接竖直方向槽钢与三个方向的中间的两道槽钢腰梁以及蓄冷槽顶面槽钢; 1.6 分别焊接三个方向侧面钢板,在焊接过程中注意钢板以及槽钢因为受热而变形,在局部地区需做反方向的拉伸处理,保证焊接的竖直和水平; 1.7 在三面槽钢以及侧板焊接,经检查符合设计要求后,开始刷环氧树脂漆完毕后,蓄冰设备就位,具体就位方法参见后蓄冰盘管的安装与就位; 1.8 在确认蓄冷设备位置符合设计要求后,将第四面的横向两道腰梁焊接上去,焊接完后在制作侧板,同时制作蓄冷槽体的注水管,溢流管,排污管,观察孔,液位管; 1.9 以上工序完毕后,在确定无焊接瑕疵后,开始往蓄冷槽注水,注水到溢流管位置,静置24小时,确认无渗漏后放水; 1.10 在蓄冷槽的中间两道腰梁以及底面梁、顶面梁外安装木方,以用来固定外板;

1.11 确认蓄冷槽无渗漏后开始保温工作,采用现场聚氨酯发泡的方法保温,保证保温厚度至少为100mm,注意保温过程中会产生有毒物质,开启现场通风设施,以防中毒; 1.12 蓄冷槽顶板采用100mm厚聚氨酯净化彩钢板,注意彩板上方开孔位置与蓄冷槽出水,进水位置保持一致,彩板两头的长度以盖过保温层以及木方为宜; 1.13 在以上工序全部完成后,蓄冷槽体在保温层及木方外面敷设0.5mm厚镀锌钢板装饰面。 2. 蓄冰盘管的安装 2.1 出厂检验 蓄冷设备出厂前已整体装配好,以确保质量并使对现场安装要求减至最小。每台设备都被放置在木托架上运至现场,在卸货和签署提货单之前,需对其做彻底的检查。检查应注意外板、视管、控制部件和储冰量传感器。对所发现的任何损坏,都要记录在提货单上并通知装运机构; 2.2 临时性存放 如果蓄冷设备在运抵现场之前需要做临时性存放,需使之连同装运时用的木托架一并放在光滑、水平的地面上,地面上不得有任何突起或凹凸不平,否则会穿破或损坏能槽的底部; 2.3 进场、垂直吊装:室外自运输设备下放蓄冰盘管采用汽车起重机进行; 2.4 水平运输:蓄冰盘管自坡道沿运输通道,采用慢速卷扬机牵引至各蓄冰盘管下落点。蓄冰盘管在蓄冷位置区域内水平搬运采用两台液压手动拖车进行; 2.5 技术措施:为防止盘管扭曲变形,在现场制作多个吊装钢架,图示如下:

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用 1、冰蓄冷空调系统原理及主要特点 冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽的冷能释放出来,满足空调用冷的需要。因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。 冰蓄冷空调系统具有以下主要特点: (1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧; (2)冰水主机的容量减少,节省增容费用; (3)总用电设施容量减少,可减少基本电费支出; (4)利用低谷段电价的优惠可减少运行电费; (5)冰水温可低至1~4℃,减少空调设备风管的费用; (6)冷却水泵、冷冻水泵、冷却塔容量减少; (7)电力高压侧及低压侧设备容量减少; (8)室相对湿度低,冷却速度快,舒适性好; (9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小; (10)充分利用24h有效时间,减少了能量的间歇耗损;

(11)充分利用夜间气温变化,提高机组产冷量; (12)投资费用与常规空调相当,经济效益佳。 冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。 2系统的组成及制冰方式分类 2.1系统组成 冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。 2.2制冰方式分类 根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。每一种制冰具体形式都有其自身的特点和适用的场合。 3运行策略与自动控制 3.1运行策略

空调制冷系统安装施工工艺

空调制冷系统安装施工工艺

————————————————————————————————作者:————————————————————————————————日期:

空调制冷系统安装施工工艺 1、工艺流程 (1)设备安装工艺流程, 基础检验→设备开箱检查→设备运输→吊装就位→找平找正→灌浆、基础抹面 (2)一般系统安装工艺流程 施工准备→管道等安装→系统吹污→系统气密性试验→系统抽真空→管道防腐→系统冲制冷剂 (3)水蓄冷系统安装工艺流程 2、操作要点 (1)制冷机组的安装 1)活塞式制冷机组: ①基础检查验收:会同土建、监理和建设单位共同对基础质量进行检查,确认合格后进行中间交接,检查内容主要包括:外形尺寸、平面的水平度、中心线、标高、地脚螺栓的深度和间距、埋设件等。 ②就位找正和初平: a.根据施工图纸按照建筑物的定位轴线弹出设备基础的纵横向中心线,利用铲车、人字拔杆将设备吊至设备基础上进行就位。应注意设备管口方向应符合设计要求,将设备的水平度调整到接近要求的程度。 b.利用平垫铁或斜垫铁对设备进行初平,垫铁的放置位置和数量应符合安装要求。

③精平和基础抹面: a.设备初平合格后,应对地脚螺栓孔进行二次灌浆,所用的细石混凝土或水泥砂浆的强度等级,应比基础强度等级高1~2级。灌浆前应清理孔内的污物、泥土等杂物。每个孔洞灌浆必须一次完成,分层捣实,并保持螺栓处于垂直状态。待其强度达到70%以上时,方能拧紧地脚螺栓。 b.设备精平后应及时点焊垫铁,设备底座与基础表面间的空隙应用混凝土填满,并将垫铁埋在混凝土内,灌浆层上表面应略有坡度,以防油、水流入设备底座,抹面砂浆应密实、表面光滑美观。 c.利用水平仪法或铅垂线法在气缸加工面、底座或与底座平行的加工面上测量,对设备进行精平,使机身纵、横向水平度的允许偏差为1/1000,并应符合设备技术文件的规定。 ④拆卸和清洗: a.用油封的制冷压缩机,如在设备文件规定的期限内,且外观良好、无损坏和锈蚀时,仅拆洗缸盖、活塞、气缸内壁、曲轴箱内的润滑油。用充有保护性气体或制冷工职的机组,如在设备技术文件规定的期限内,臭气压力无变化,且外观完好,可不做压缩机的内部清洗。 b.设备拆卸清洗的场地应清洁,并具有防火设备。设备拆卸时,应按照顺序进行,在每个零件上做好记号,防止组装时颠倒。 c.采用汽油进行清洗时,清洗后必须涂上一层机油,防止锈蚀。 2)螺杆式制冷机组: ①螺杆式制冷机组的基础检查、就位找正初平的方法同活塞式制冷机组,机组安装的纵向和横向水平偏差均不应大于1/1000,并应在地坐或底座平行的加工面上测量。 ②脱开电动机与压缩机间的联轴器,点动电动机,检查电动机的转向是否符合压缩机要求。 ③设备地脚螺栓孔的灌浆强度达到要求后,对设备进行精平,利用百分表在联轴器的端面和圆周上进行测量、找正,其允许偏差应符合设备技术文件规定。 3)离心式制冷机组: ①离心式制冷机组的安装方法与活塞式制冷机组基本相同,机组安装的纵向

广州冰蓄冷规划

广州冰蓄冷系统方案 目前,随着国民经济的发展,我国电力供应缺口越来越大。冰蓄冷技术,即是在电力负荷很低的夜间用电低谷期,采用电动制冷机制冷,使蓄冷介质结成冰,利用蓄冷介质的显热及潜热特性,将冷量储存起来。在电力负荷较高的白天,也就是用电高峰期,使蓄冷介质融冰,把储存的冷量释放出来,以满足建筑物空调或生产工艺的需要。采用蓄能技术能够缓解高峰电力紧张的局面,所以我国政府大力推广蓄能的使用。河北省政府对冰蓄冷空调也非常重视和支持.并且出台了一系列的政策鼓励业主采用冰蓄冷技术,比如给予业主造价30%的补贴,进一步拉大峰谷电价,降低冰蓄冷用户在低谷时段的用电价格等。

二.工程概况 本工程是御盛隆堂药业项目,建于藁城,尖峰负荷为3657.93kw。 根据本工程的具体使用情况,本项目选用一台制冷量为1122kw的制冷机作为基载主机直接供冷,另外再选一台空调工况制冷量为1871kw,制冰工况制冷量为1213kw的双工况制冷机利用夜间便宜的低谷电制冰,另外根据经过与甲方的技术交流,夜间负荷选为尖峰负荷的30%。

三.蓄冰制冷系统设计简介 1.冰储冷空调系统特点 冰储冷空调代表着当今世界中央空调的先进水平,预示着中央空调的发展方向,有如下优点: a. 均衡电力负荷,加强电网负荷侧的管理( Demand Side Management ) , 达到“移峰填谷”的目的。由于转移了制冷机组用电时间,起到转移电力高峰期用电负荷的作用。制冷机组在夜间电力低谷时段运行,储存冷量,白天用电高峰时段,用储存的冷量来供应全部或部分空调负荷,少开或不开制冷机。对城市电网具有明显的“移峰填谷”的作用,社会效益显著。 b. 由于电力部门实行峰、谷分时电价政策,所以冰蓄冷系统合理利用谷段低价电力,与常规系统相比,运行费用大大降低,经济效益显著。且分时电价差值愈大,得益愈多。 c.由于冰蓄冷系统具有储存冷量的能力,故制冷机组无需按照峰值负荷进行选型,制冷主机容量和装设功率大大小于常规系统。一般可减少 30 %~ 50 %。电力高压侧和低压侧设施容量减少,降低电力建设费用。 d 使用灵活,部分车间使用的较小负荷可由主机+融冰提供,制冷主机始终处于满负荷运行,节能效果明显。 e.由于蓄冰可以提供1-2度的低温冷水,可以根据用户需求,通过板式换热器提供低于4度的任意温度冷水,除湿效果明显。 f.具有应急功能,提高空调系统的可靠性。 g.制冷速度快,只需15-20分钟即可达到所需温度,常规系统约需1小时。 h.空调系统智能化程度高,可以实现系统的全自动运行,而且具备与车间的BAS 接口,是目前世界上最先进的空调系统。 2.系统设计原则 2.1经济 蓄冰系统设计须综合考虑影响初期投资及运行成本的各种因素,详尽研究系统的电力费用、峰谷电价结构及设备初期投资等因素,以期达到最佳的经济效益,

冰蓄冷空调系统

冰蓄冷空调系统 一.简介 夏季,普遍使用的空调系统已成为建筑物高峰用电的大户,由于电力用户的用电性质不同,各类用户最大负荷出现的时间不同,这样负荷的累加就形成了用电的高峰和低谷负荷,高峰负荷的大小决定了电网必须投入的发电设备容量(包括发电机组和输配电设备等的容量),如果各类用户最大负荷出现的时间过分集中,为了满足高峰期用户电力需求,电力部门一方面必须建设新电站增加电网容量,一方面必须提高电网的调峰能力,适应用户的负荷变化,用户方面也需采取节电和调荷措施,否则,只能通过拉闸限电的方法减轻电站运行压力。 昼夜蓄冷调荷技术就是针对这种局面提出并得以运用的。它是让制冷机组在夜间电力负荷低谷时运行,并将产生的冷量储存起来,在次日需要时再将冷量释放出来满足用冷负荷,以实现用户侧冷复合用电的移峰调谷,达到均衡电网负荷的目的。 简单地说,蓄冷调荷技术有以下三方面的社会效益: 1)通过移峰调谷,达到均衡电网负荷的目的。减少国家对新增电站和电网的投资,同时减少调峰调荷的工作,避免限电拉闸。 2)稳定电厂机组负荷水平,改善机组运行效率。 3)减少CO2和烟尘排放量,从而保护环境,减轻温室效应(火力发电机组负荷率低 时,CO2和烟尘排放量大)。 4)对用户来说,利用夜间电价低廉时段制冰,在电价高峰时段使用,能大大减少

空调 系统运行费用。 对用户的作用: 1)减少制冷机容量,提高制冷系统运行的可靠性。 2)减少水泵,冷却塔的装机容量 3)减少配电容量,从而减少部分投资 4)减少运行费用 5)可采用低温送风系统,提高工作空间的环境质量 6)可作紧急冷源使用 7)将计算机控制结合进蓄冰系统中,实现运行模式的优化 冰蓄冷中央空调已逐渐成为移峰填谷,均衡电网用电,提高电网经济运行水平的有力手段,它代表了集中空调设计的发展方向。 二.蓄冷技术的分类: 1 水蓄冷 水蓄冷是利用水的显热()进行蓄冷,即夜间制出2-5度的低温水供白 天使用,供回水温差一般8度。 2 冰蓄冷 冰蓄冷是利用冰的熔解热(335KJ/KG)进行蓄冷,由于水的熔解热远大于水的显热,故蓄冰槽容积远小于蓄水槽容积。 常用冰蓄冷系统有: 1)冰盘管式(外融冰方式) 冰直接冻结在蒸发盘管上,融冰是使空调回水通过冰与冰之间形成自然通道,与

冰蓄冷与常规方案比较说明

冰蓄冷中央空调系统 设 计 方 案 与 比 较 说 明

2010年1月 目录 一、工程概况 (3) 1.建筑概况 (3) 2.空调负荷分布 (3) 3.冷源机房系统 (4) 二、中央空调系统方案的确定 (5) 1.冰蓄冷中央空调系统特点 (5) 2.常规电制冷中央空调系统特点 (7) 3.冰蓄冷中央空调系统的优惠电力政策 (7) 4.本工程中央空调系统方案的确定 (7) 三、冰蓄冷中央空调系统设计 (9) 1.系统设计原则 (9) 2.蓄冰模式选择 (9) 3.蓄冰装置性能介绍 (10) 4.系统集成 (11) 5.本工程冰蓄冷系统综述 (12) 四、冰蓄冷中央空调系统配置说明及控制策略 (14) 1.冰蓄冷中央空调机房主要设备汇总表 (14) 2.本工程冰蓄冷中央空调系统流程说明 (16) 3.本工程冰蓄冷中央空调系统的主要特点 (18) 4.本工程冰蓄冷中央空调系统运行策略 (19) 五、方案经济性能分析与比较 (22) 1.机房初投资比较 (26) 2.年运行费用分析与比较 (26) 3.综合投资经济分析与比较 (28) 4.结论 (28) 六、附件 (30) 1.冰蓄冷中央空调系统运行费用计算表 (30) 2.常规中央空调系统运行费用计算表 (30)

一、工程概况 1.建筑概况 用友南昌产业园位于南昌市红谷滩新区红角洲教学科研片区,产业园东北临望城大道,东南面是昌樟高速路,其他方向均规划有市政道路。用地南向规划有南昌新高速火车站,与南昌大学新校区隔昌樟高速而望,在望城大道对面与江西工贸学院相邻,西侧紧邻320国道。 园区建设用地40公顷,容积率1.0,总建筑面积40万平方米,建筑密度25%,绿地率不低于35%,停车位不低于65辆/万平方米。整个园区规划分两期建设,其中语音服务中心7万万平方米、员工宿舍1.25万平方米、餐饮中心1.25万平方米、能源中心0.5万平方米,共计10万平方米为一期建设面积。一期空调面积为8.25万平方米,包括语音服务中心和餐饮中心。 2.空调负荷分布 结合本工程的特点及当地地区的气象条件,根据我司所从事的类似工程的相关经验,该工程的逐时负荷分布情况如下。 夏季设计日空调冷负荷逐时分布图:

相关主题
文本预览
相关文档 最新文档