数值分析实验报告 (2)
- 格式:doc
- 大小:1.03 MB
- 文档页数:34
一、实验目的通过本次综合实验,掌握数值分析中常用的插值方法、方程求根方法以及数值积分方法,了解这些方法在实际问题中的应用,提高数值计算能力。
二、实验内容1. 插值方法(1)拉格朗日插值法:利用已知数据点构造多项式,以逼近未知函数。
(2)牛顿插值法:在拉格朗日插值法的基础上,通过增加基函数,提高逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,通过不断缩小区间来逼近根。
(2)Newton法:利用函数的导数信息,通过迭代逼近根。
(3)不动点迭代法:将方程转化为不动点问题,通过迭代逼近根。
3. 数值积分方法(1)矩形法:将积分区间等分,近似计算函数值的和。
(2)梯形法:将积分区间分成若干等分,用梯形面积近似计算积分。
(3)辛普森法:在梯形法的基础上,将每个小区间再等分,提高逼近精度。
三、实验步骤1. 拉格朗日插值法(1)输入已知数据点,构造拉格朗日插值多项式。
(2)计算插值多项式在未知点的函数值。
2. 牛顿插值法(1)输入已知数据点,构造牛顿插值多项式。
(2)计算插值多项式在未知点的函数值。
3. 方程求根方法(1)输入方程和初始值。
(2)选择求解方法(二分法、Newton法、不动点迭代法)。
(3)迭代计算,直到满足精度要求。
4. 数值积分方法(1)输入被积函数和积分区间。
(2)选择积分方法(矩形法、梯形法、辛普森法)。
(3)计算积分值。
四、实验结果与分析1. 插值方法(1)拉格朗日插值法:通过构造多项式,可以较好地逼近已知数据点。
(2)牛顿插值法:在拉格朗日插值法的基础上,增加了基函数,提高了逼近精度。
2. 方程求根方法(1)二分法:适用于函数在区间内有正负值的情况,计算简单,但收敛速度较慢。
(2)Newton法:利用函数的导数信息,收敛速度较快,但可能存在数值不稳定问题。
(3)不动点迭代法:将方程转化为不动点问题,收敛速度较快,但可能存在初始值选择不当的问题。
3. 数值积分方法(1)矩形法:计算简单,但精度较低。
实验报告实验项目名称函数逼近与快速傅里叶变换实验室数学实验室所属课程名称数值逼近实验类型算法设计实验日期班级学号姓名成绩512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1并得到Figure,图像如下:实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。
要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。
在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下:function Pn=Legendre(n,x)syms x;if n==0Pn=1;else if n==1Pn=x;else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n);endx=[-1:0.1:1];A=sym2poly(Pn);yn=polyval(A,x);plot (x,yn,'-o');hold onend在command Windows中输入命令:Legendre(10),得出的结果为:Legendre(10)ans =(46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256并得到Figure,图像如下:实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。
在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下:function [C,D]=lagr1(X,Y)n=length(X);D=zeros(n,n);D(:,1)=Y';for j=2:nfor k=j:nD(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1));endendC=D(n,n);for k=(n-1):-1:1C=conv(C,poly(X(k)));m=length(C);C(m)= C(m)+D(k,k);end在command Windows 中输入如下命令:clear,clf,hold on;k=0:10;X=cos(((21-2*k)*pi)./22); %这是切比雪夫的零点Y=1./(1+25*X.^2);[C,D]=lagr1(X,Y);x=-1:0.01:1;y=polyval(C,x);plot(x,y,X,Y,'.');grid on;xp=-1:0.01:1;z=1./(1+25*xp.^2);plot(xp,z,'r')得到Figure ,图像如下所示:比较后发现,使用切比雪夫零点做拉格朗日插值不会发生龙格现象。
实验报告实验报告课程名称:数值分析课题名称:对比传统多项式求值和秦九韶算法专业:勘察技术与工程(地球物理方向)姓名:陈亮班级:061132 完成日期:2015年10月21日姓名陈亮评分实验报告一、实验名称对比传统多项式求值和秦九韶算法的区别二、实验目的(1)培养编程与上机使用MATLAB能力(2)使用不同算法的差异(3)评估各算法稳定性三、实验要求(1)利用matlab编写算法;(2)计算算法的复杂度。
四、实验原理秦九韶算法是一种将一元n次多项式的求值问题转化为n个一次式的算法。
五、实验题目秦九韶算法和传统算法复杂度对比六、实验步骤(1)写出秦九韶算法表达式:(2)利用Matlab编程计算(3)最后结果分析七、实验整体流程图或算法八、程序及其运行结果clear all;clc %清除变量a=input('please input a()=');%输入系数x=input('please input x=');%输入变量值n=length(a);%计算最高次ticm(1)=a(n)for j=2:n%传统循环m(j)=m(j-1)+a(n+1-j)*(x.^(j-1));endm(n)toctic;%开始计时s(1)=a(1)%赋值for i=2:n%秦九韶循环s(i)=s(i-1)*x+a(i);ends(n)toc结果:please input a()=[12,11,1,115,12,10]please input x=1.2ans =244.3974时间已过 0.001990 秒。
ans =244.3974时间已过 0.000361 秒。
九、实验结果分析传统算计算n次多项需要(n+1)/n次乘法和n次加法,秦九韶算法只用计算n次乘法和n 次加法,乘法复杂度从O(n^2)降为O(n)。
我发现了问题,就是在调整秦九韶算法和传统算法的顺序,运算时间会有很大的变化。
还是不是很清楚原理。
数值实验报告二一、实验名称解线性方程组的列主元素高斯消去法和LU 分解法二、实验目的通过数值实验,从中体会解线性方程组选主元的必要性和LU 分解法的优点,以及方程组系数矩阵和右端向量的微小变化对解向量的影响。
三、实验内容解下列两个线性方程组(1) ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--11134.981.4987.023.116.427.199.103.601.3321x x x (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----15900001.582012151526099999.23107104321x x x x 四、算法描述1、 列主元素高斯消去法记: ij ij a a =1)( (i, j = 1,2,3n )i i b b =1)( (i = 1,2,3n )消元过程:对于k = 1,2,3n(1) 选行号k i ,使)()(max k i ni k k k i k k a a ≤≤=。
(2) 交换)(k kj a 与)(k j i k a (j = k, k+1,k+2n )以及)()(k i k k k b b 与所含的数值。
(3)对于i = k, k+1,k+2n ,计算)()(k kkk ik ik a a m =)()()1(k kj ik k ij k ij a m a a -=+ (j = k, k+1,k+2n ))()()1(k k ik k i k i b m b b -=+回代过程:)(n nnn n a b x = )()1)()(/(k kk j n k j k kj k k k a x a a x ∑+=-= (k = n-1, n-2, n-3 1 )在此算法中的)(k k i k a 称为第k 个列主元素,它的数值总要被交换到第k 个主对角线元素的位置上。
2、 LU 分解法通过MATLAB 自有的函数,把系数矩阵A 分解成A=LU ,其中:L 是下三角矩阵,U 是上三角矩阵,这时方程组Ax=b 就可以分解成两个容易求解的三角形方程组Ly=b ,Ux=y 。
实验二 插值法 P50专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的1、熟悉MATLAB 编程;2、学习插值方法及程序设计算法。
二、实验题目1、已知函数在下列各点的值为i x 0.2 0.4 0.6 0.8 1.0()i f x0.980.920.810.640.38试用4次牛顿插值多项式()4P x 及三次样条函数()S x (自然边界条件)对数据进行插值用图给出(){},,0.20.08,0,1,11,10iiix y x i i =+=,()4P x 及()S x 。
2、在区间[]1,1-上分别取10,20n =用两组等距节点对龙格函数()21125f x x=+作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。
3、下列数据点的插值 x 0 1 4 9 16 25 36 49 64 y 0 12345678可以得到平方根函数的近似,在区间[]0,64上作图 (1)用这9个点作8次多项式插值()8L x (2)用三次样条(第一边界条件)程序求()S x从得到结果看在[]0,64上,哪个插值更精确;在区间[]0,1上,两种插值哪个更精确? 三、实验原理与理论基础 1、拉格朗日差值公式)()(111k kk kk k x x x x y y y x L ---+=++ 点斜式kk kk k k k kx x x x y x x x x y x L --+--=++++11111)( 两点式2、n 次插值基函数 ....,2,1,0,)()(0n j y x l y x L ijnk kk j n ===∑=n k x x x x x x x x x x x x x l n k n k k k k k ,...,1,0,)()(...)()(...)()()(1100=------=--3、牛顿插值多项式...))(](,,[)](,[)()(102100100+--+++=x x x x x x x f x x x x f x f x P n ))...(](,...,[100---+n n x x x x x x f)(],...,,[)()()(10x x x x f x P x f x R n n n n +=-=ω4、三次样条函数若函数],,[)(2b a C x S ∈且在每个小区间],[1+j j x x 上是三次多项式,其中,b x x x a n =<<<=...10是给定节点,则称)(x S 是节点n x x x ,...,,10上的三次样条函数。
一、实验目的通过本次实验,掌握数值分析方法的基本原理和应用,熟悉MATLAB编程环境,学会使用MATLAB进行数值计算,并分析不同数值方法的优缺点。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种迭代方法,通过不断缩小根所在的区间,直到满足精度要求为止。
(2)步骤:①给定初始区间[a, b],使得f(a) f(b) < 0;②计算区间中点c = (a + b) / 2;③判断f(c)的符号:a. 若f(c) = 0,则c为方程的根;b. 若f(c) f(a) < 0,则新的区间为[a, c];c. 若f(c) f(b) < 0,则新的区间为[c, b];④重复步骤②和③,直到满足精度要求。
(3)代码实现:```MATLABfunction root = bisection_method(f, a, b, tol)while (b - a) / 2 > tolc = (a + b) / 2;if f(c) == 0break;elseif f(a) f(c) < 0b = c;elsea = c;endendroot = (a + b) / 2;end```2. Newton法求方程根(1)原理:Newton法是一种基于切线逼近的迭代方法,通过不断逼近函数的零点。
(2)步骤:①给定初始值x0;②计算导数f'(x)和f(x)在x0处的值;③计算新的近似值x1 = x0 - f(x0) / f'(x0);④重复步骤②和③,直到满足精度要求。
(3)代码实现:```MATLABfunction root = newton_method(f, df, x0, tol)while abs(f(x0)) > tolx1 = x0 - f(x0) / df(x0);x0 = x1;endroot = x0;end```3.不动点迭代法求方程根(1)原理:不动点迭代法是一种迭代方法,通过不断逼近不动点,即方程的根。
第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
一、实验目的1. 理解数值分析的基本概念和常用算法;2. 掌握数值方法在求解实际问题中的应用;3. 培养编程能力,提高对数值分析软件的使用熟练度。
二、实验内容本次实验主要涉及以下内容:1. 拉格朗日插值法;2. 牛顿插值法;3. 线性方程组的求解方法;4. 方程求根的数值方法;5. 最小二乘法曲线拟合。
三、实验步骤1. 拉格朗日插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算拉格朗日插值多项式L(x)。
(3)利用L(x)计算待求点x0的函数值y0。
2. 牛顿插值法(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)计算牛顿插值多项式N(x)。
(3)利用N(x)计算待求点x0的函数值y0。
3. 线性方程组的求解方法(1)输入数据:给定线性方程组的系数矩阵A和常数向量b。
(2)采用高斯消元法求解线性方程组Ax=b。
4. 方程求根的数值方法(1)输入数据:给定函数f(x)和初始值x0。
(2)采用二分法求解方程f(x)=0的根。
5. 最小二乘法曲线拟合(1)输入数据:给定一组数据点(x1, y1)、(x2, y2)、...、(xn, yn)。
(2)建立线性最小二乘模型y=F(x)。
(3)利用最小二乘法求解模型参数。
四、实验结果与分析1. 拉格朗日插值法与牛顿插值法的比较通过实验,我们发现牛顿插值法的精度高于拉格朗日插值法。
这是因为牛顿插值法在计算过程中考虑了前一项的导数信息,从而提高了插值多项式的平滑性。
2. 线性方程组的求解方法高斯消元法在求解线性方程组时,计算过程较为繁琐,但稳定性较好。
在实际应用中,可根据具体问题选择合适的方法。
3. 方程求根的数值方法二分法在求解方程时,收敛速度较慢,但具有较好的稳定性。
对于初始值的选择,应尽量接近真实根。
4. 最小二乘法曲线拟合最小二乘法在拟合曲线时,误差较小,适用于数据点较多的情况。
一、实验目的通过本次实验,掌握数值分析的基本原理和方法,了解数值分析在科学和工程领域的应用,培养动手能力和分析问题的能力。
二、实验内容1. 二分法求方程根(1)原理:二分法是一种在实数域上寻找函数零点的算法。
对于连续函数f(x),如果在区间[a, b]上f(a)f(b)<0,则存在一个根在区间(a, b)内。
二分法的基本思想是将区间[a, b]不断二分,缩小根所在的区间,直到满足精度要求。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化区间[a, b]和中间点c=a+(b-a)/2;③ 判断f(c)与f(a)的符号,若符号相同,则将区间缩小为[a, c],否则缩小为[c,b];④ 重复步骤②和③,直到满足精度要求;⑤ 输出根的近似值。
2. 牛顿法求方程根(1)原理:牛顿法是一种在实数域上寻找函数零点的算法。
对于可导函数f(x),如果在点x0附近,f(x0)f'(x0)≠0,则存在一个根在点x0附近。
牛顿法的基本思想是通过泰勒展开近似函数,然后求解近似方程的根。
(2)实验步骤:① 输入函数f(x)和精度要求;② 初始化迭代次数n=0,近似根x0;③ 计算导数f'(x0);④ 求解近似方程x1=x0-f(x0)/f'(x0);⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1,n=n+1,返回步骤③。
3. 雅可比迭代法解线性方程组(1)原理:雅可比迭代法是一种解线性方程组的迭代算法。
对于线性方程组Ax=b,雅可比迭代法的基本思想是利用矩阵A的对角线元素将方程组分解为多个一元线性方程,然后逐个求解。
(2)实验步骤:① 输入系数矩阵A和常数向量b;② 初始化迭代次数n=0,近似解向量x0;③ 计算对角线元素d1, d2, ..., dn;④ 更新近似解向量x1=x0-A/d1, x2=x0-A/d2, ..., xn=x0-A/dn;⑤ 判断|x1-x0|是否满足精度要求,若满足,则停止迭代;否则,将x0更新为x1, x2, ..., xn,n=n+1,返回步骤③。
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
数值分析课程实验报告——插值逼近题目一.Runge 函数的插值1. Runge 函数Runge 函数的表达式为:21()125R x x =+ 其在[-1,1]区间上的函数图像如图1.1。
在课程学习中我们知道,对Runge 函数进行高次插值时有可能在两端出现不收敛的情况,即Runge 现象。
下面将分别用四种不同的插值方法在[-1,1]区间上对Runge 函数进行插值,并分析是否产生Runge 现象,比较插值效果。
图1.1.Runge 函数在[-1,1]区间的函数图像2.Newton 插值首先根据课本上的Newton 插值算法进行编程(代码略)。
核心思想就是用符号变量进行中间运算,以便将最终的插值函数用符号表达式表示出来,并进一步生成图像。
此处插值节点选择为等距插值节点,即:0.1(0,1,2,,)i x ih i =-+= (20)其中h=0.1。
插值曲线与原曲线的对比如图1.2(蓝色为原曲线,红色为插值曲线)。
从图中看出,在区间中部,二者吻合较好;但在区间两端二者则产生了明显偏差,甚至可以达到一个非常大的数值(e20量级)。
因此,在等距节点的20次Newton 插值下,产生了明显的Runge 现象。
图1.2.Newton 插值曲线与原曲线对比3. Lagrange 插值此处同样是根据Lagrange 插值的具体算法进行编程。
但插值节点不再是等距分布,而是如下形式:21cos()(0,1,2,,)42i i x i π+==…20 插值曲线与原曲线的对比如图1.3(蓝色为原曲线,红色为插值曲线)。
从图中看出,插值曲线与原曲线吻合的很好,没有产生明显的Runge 现象。
对比产生了明显Runge 现象的20次Newton 插值,Lagrange 插值的最高次数虽然也是20,但由于此处的插值节点不是等距分布的(事实上,此处采用的插值节点正是Chebyshev 多项式的零点),而是中间疏两边密,因此两侧较密的节点很好地抑制了Runge 现象。
实验报告一、实验名称复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。
二、实验目的及要求1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤.2. 培养Matlab 编程与上机调试能力. 三、实验环境计算机,MATLAB 软件 四、实验内容1.用不同数值方法计算积分94ln 10-=⎰xdx x 。
(1)取不同的步长h 。
分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。
(2)用龙贝格求积计算完成问题(1)。
(3)用自适应辛普森积分,使其精度达到10-4。
五、算法描述及实验步骤1.复合梯形公式将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(1.1),得)]()([2)(b f a f ab dx x f b a+-≈⎰ (1.1) )]()(2)([2)]()([211110b f x f b f hx f x f h T n k k k n k k n ++=+=∑∑-=+-= (1.2)),(),(12)(''2b a f h a b f R n ∈--=ηη(1.3) 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。
2.复合辛普森求积公式将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(1.4),得)]()2(4)([6b f ba f a f ab S +++-=(1.4) )]()(2)(4)([6)]()()([611102/112/11b f x f x f b f hx f x f x f h S n k k n k k k k n k k n +++=++=∑∑∑-=-=+++-= (1.5) ),(),()2(180)()4(4b a f h a b f R n ∈-=ηη (1.6)其中Sn 称为复合辛普森求积公式,Rn 为复合辛普森求积公式的余项。
工程数学—数值分析实验报告(二)2010年11月13日郑州轻工业学院 机电工程系制冷与低温专业 10级研究生 王哲一.实验目的通过本实验了解学习特征值的内涵和幂法是求方阵的最大特征值及对应特征向量的一种迭代法。
利用幂法求方阵的最大特征值及对应特征向量的一种迭代法,等等。
主要了解掌握幂法的几种加速法,来求解特征值与特征向量。
培养编程与上机调试能力及应用数学软件(excel ,Matlab ,Linggo )等实现这几种方法。
二.幂法具体理论设An 有n 个线性无关的特征向量v 1,v 2,…,v n ,对应的特征值1,2,…,n ,满足基本思想:因为{v1,v2,…,vn}为Cn 的一组基,所以有:∑∑====ni ikini i i kk v A av a A xA 11)0()(∑∑==+==ni ii kik ni i k iiv a v a v a 21111λλλ])([21111∑=+=ni i i ki k v a v a λλλ若a 1=0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0迭代下去可求得及对应特征向量的近似值。
111111111111111)0(1)0()max()max()max()max()max()max(λλλλλ==≈---v a v a v a v a xAx A k kk kk k注:若A 的特征值不满足条件,幂法收敛性的分析较复杂但若。
则定理结论仍成立。
此时不同初始向量的迭代向量序列一般趋向于的不同特征向量。
三.用幂法求⎪⎪⎪⎭⎫ ⎝⎛=361641593642A的最大模特征值及对应特征向量1.利用excel 来求解特征值和特征向量矩阵A2 4 63 9 15 416 36计算区k x k|x k | max(x k ) y k0 1 11 1 1 1 1 1 1 1 112 27 56 12 27 56 56 0.21428571429 0.48214285714 12 8.3571428571 19.982142857 44.571428571 8.3571428571 19.982142857 44.571428571 44.571428571 0.1875 0.44831730769 13 8.1682692308 19.597355769 43.923076923 8.1682692308 19.597355769 43.923076923 43.923076923 0.1859676007 0.44617447461 14 8.1566330998 19.573473074 43.882661996 8.1566330998 19.573473074 43.882661996 43.882661996 0.18587370795 0.44604115118 15 8.1559120206 19.571991484 43.880153251 8.1559120206 19.571991484 43.880153251 43.880153251 0.185******** 0.4460328881 16 8.1558673562 19.571899699 43.879997817 8.1558673562 19.571899699 43.879997817 43.879997817 0.185******** 0.4460323763 17 8.1558645901 19.571894014 43.879988191 8.1558645901 19.571894014 43.879988191 43.879988191 0.185******** 0.44603234461 18 8.155864418819.57189366243.8799875948.155864418819.57189366243.87998759443.8799875940.185********0.4460323426512.利用Matlab 来求解特征值和特征向量 function y = maxa(x) k=1;n=length(x); for i=2:nif (abs(x(i))>abs(x(k))), k=i; end; end; y=x(k);A=[2,4,6;3,9,15;4,16,36]; x0=[1;1;1]; y=x0/maxa(x0) x1=A*ywhile(abs(maxa(x1)-maxa(x0)))>0.001 x0=x1;y=x0/maxa(x0) x1=A*yend; ymaxa(x1)四.幂法的迭代公式:加速方法⎪⎩⎪⎨⎧==+)()1()()()()max(k k k k k Ay x x xy)2(1)()1()2(2)1()2()2()max()max(2)max()]max()[max()max(+∆+++++=+---k k k k k k k x x xxx xλ1.Aitken 加速法步骤:)2()2()2()1()1()1()0()0()0()max()max()max(+++→→→→→→→→→k k k yxxyx xyxx计算)max()max(2)max()]max()[max()max()()1()2(2)1()2()2()2(1k k k k k k k x x xxx x+---=++++++λ五.用幂法求方阵A 的最大模特征值,并用Aitkem 加速法⎪⎪⎪⎭⎫ ⎝⎛---=20101350144A1.利用excel 来解决幂法求方阵A 的最大模特征值,并用Aitkem 加速法矩阵A-414 0 -5 13 0 -10 2计算区 k x k |x k |max(x k ) λy k 0 1 1 1 1 1 1 1 1 1 1 1108110811010.80.1 2 7.2 5.4 -0.8 7.2 5.4 0.8 7.2 7.8644067797 1 0.75-0.11111111111 3 6.5 4.75-1.2222222222 6.5 4.751.2222222222 6.5 6.2666666667 10.73076923077 -0.188******** 4 6.23076924.5 -1.3760686.23076924.5 1.37606836.23076926.062510.7222222-0.220850308 3761 308 761 308 2222 480115 6.11111111114.3888888889-1.44170096026.11111111114.38888888891.44170096026.11111111116.015384615410.71818181818-0.235914702586 6.05454545454.3363636364-1.47182940526.05454545454.33636363641.47182940526.05454545456.003831417610.71621621622-0.24309494687 6.0270270274.3108108108-1.48618989366.0270270274.31081081081.48618989366.0270270276.000956937810.71524663677-0.246587560828 6.01345291484.298206278-1.49317512166.01345291484.2982062781.49317512166.01345291486.000239177210.71476510067-0.248305780859 6.00671140944.2919463087-1.49661156176.00671140944.29194630871.49661156176.00671140946.000059790710.71452513966-0.2491565616710 6.00335195534.2888268156-1.49831312336.00335195534.28882681561.49831312336.00335195536.000014947510.71440536013-0.2495794240411 6.00167504194.2872696817-1.49915884816.00167504194.28726968171.49915884816.00167504196.000003736910.71434552051-0.2497900732112 6.00083728724.2864917667-1.49958014646.00083728724.28649176671.49958014646.00083728726.000000934210.71431561323-0.2498951520713 6.00041858524.286102972-1.49979030416.00041858524.2861029721.49979030416.00041858526.000000233610.71430066271-0.2499476132914 6.0002092784.2859086153-1.49989522666.0002092784.28590861531.49989522666.0002092786.000000058410.71429318824-0.2499738187615 6.00010463534.2858114471-1.49994763756.00010463534.28581144711.49994763756.00010463536.000000014610.7142894512-0.249986913342.利用Matlab来解决幂法求方阵A的最大模特征值,并用Aitkem加速法幂法A=[-4,14,0;-5,13,0;-1,0,2];x0=[1;1;1];k=1y=x0/maxa(x0)x1=A*ywhile(abs(maxa(x1)-maxa(x0)))>0.01x0=x1;k=k+1maxa(x0)y=x0/maxa(x0)x1=A*yend;Aitkem加速A=[-4,14,0;-5,13,0;-1,0,2];l1=0;k=1x0=[1;1;1];y0=x0/maxa(x0)x1=A*y0;y1=x1/maxa(x1)x2=A*y1;y2=x2/maxa(x2)l0=maxa(x2)-(maxa(x2)-maxa(x1))^2/(maxa(x2)-2*maxa(x1) + maxa(x0))while (abs(l1-l0))>0.01x0=x1;x1=x2;l1=l0;k=k+1x2=A*y2maxk=maxa(x2)y2=x2/maxkl0=maxa(x2)-(maxa(x2)-maxa(x1))^2/(maxa(x2)-2*maxa(x1)+maxa(x0))end;六.实验体会1.通过实验,我更加掌握利用幂法求方阵的最大特征值及对应特征向量的一种迭代法;2.利用各种加速法求方阵的最大特征值及对应特征向量的一种迭代法;3.在试验过程中更进一步了解excel,Matlab解线性方程的方便性以及它的强大功能,相信这对以后的学习和工作都有很大的帮助。
《数值分析》实验报告一、问题的提出求解线性方程组的迭代法,即是用某种极限过程去逐步逼近线性方程组的精确解的过程,迭代法是解大型稀疏矩阵方程组的重要方法。
二、实验名称运用MATLAB编程实现雅可比(Jacobi)迭代和高斯-赛德尔(Gauss-Seidel)迭代。
三、实验目的1、熟悉了解雅可比(Jacobi)迭代和高斯-赛德尔(Gauss-Seidel)迭代的算法。
2、学习MATLAB软件的功能。
四、基本原理五、实验环境操作环境:Windows10实验平台:Matlab7.1软件六、试验设计1、jacobi迭代法(1)算例:课本p54页例1(2)程序清单Jacobi迭代法的MATLAB函数文件Jacobi.m如下:function [y,n]=jacobi(A,b,x0,eps)if nargin==3eps=1.0e-6;elseif nargin<3errorreturnendD=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵U=-triu(A,1); %求A的上三角阵B=D\(L+U);f=D\b;y=B*x0+f;n=1; %迭代次数while norm(y-x0)>=epsx0=y;y=B*x0+f;n=n+1;end(3)实验结果及分析:>> A=[8,-3,2;4,11,-1;6,3,12];>> b=[20,33,36]';>> [x,n]=jacobi(A,b,[0,0,0]',1.0e-6)x =3.00002.00001.0000n =162、Gauss-seidel迭代法(1)算例:课本p54页例1(2)程序清单:Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m如下:function [y,n]=gauseidel(A,b,x0,eps)if nargin==3eps=1.0e-6;elseif nargin<3errorreturnendD=diag(diag(A)); %求A的对角矩阵L=-tril(A,-1); %求A的下三角阵U=-triu(A,1); %求A的上三角阵G=(D-L)\U;f=(D-L)\b;y=G*x0+f;n=1; %迭代次数while norm(y-x0)>=epsx0=y;y=G*x0+f;n=n+1;end(3)实验结果及分析:>> A=[8,-3,2;4,11,-1;6,3,12];>> b=[20,33,36]';>> [x,n]=gauseidel(A,b,[0,0,0]',1.0e-6)x =3.00002.00001.0000n =9七、结果说明:高斯-赛德尔迭代法比雅可比迭代法收敛得快一些(达到相同精度所需迭代次数较少)。
一、实验目的1. 理解数值分析的基本概念和方法;2. 掌握线性方程组的求解方法,如雅可比迭代法、高斯赛德尔迭代法和SOR迭代法;3. 利用MATLAB软件进行数值计算,并分析结果。
二、实验原理1. 数值分析是研究如何用数值方法求解数学问题的学科,其核心是误差分析和算法设计。
2. 线性方程组是数值分析中的基本问题之一,常见的求解方法有直接法和迭代法。
3. 雅可比迭代法、高斯赛德尔迭代法和SOR迭代法是三种常用的迭代法,它们通过迭代过程逐步逼近方程组的解。
4. MATLAB是一种高性能的科学计算软件,具有强大的数值计算和可视化功能。
三、实验内容1. 实验一:雅可比迭代法(1)原理:雅可比迭代法是求解线性方程组的迭代法之一,其基本思想是将线性方程组分解为多个子方程,然后依次求解子方程,逐步逼近方程组的解。
(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 计算对角矩阵D、上三角矩阵L和下三角矩阵U;d. 进行迭代计算,直到满足精度要求或达到最大迭代次数;e. 输出解向量X。
(3)MATLAB代码实现:```MATLABfunction [X, K] = JACOBI(A, B, X0, E, N)[n, n] = size(A);D = diag(A);L = tril(A - D, -1);U = triu(A - D);K = 0;for i = 1:NX_new = (B - L \ U \ X0) / D;if norm(X_new - X0) < Ebreak;endX0 = X_new;K = K + 1;endX = X_new;end```2. 实验二:高斯赛德尔迭代法(1)原理:高斯赛德尔迭代法是另一种求解线性方程组的迭代法,其基本思想是在每次迭代中,利用已求得的近似解来更新下一个近似解。
(2)步骤:a. 输入系数矩阵A和常数向量B;b. 初始化迭代变量X0;c. 进行迭代计算,直到满足精度要求或达到最大迭代次数;d. 输出解向量X。