【精选】 一元一次方程单元培优测试卷

  • 格式:doc
  • 大小:1.13 MB
  • 文档页数:14

下载文档原格式

  / 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、初一数学一元一次方程解答题压轴题精选(难)

1.下列图表是2017 年某校从参加中考体育测试的九年级学生中随机调查的10 名男生跑1000 米和 10 名女生跑 800米的成绩.

(1)按规定,女生跑 800 米的时间不超过 3'24"就可以得满分.该校九年级学生有 490 人,男生比女生少 70 人.请你根据上面成绩,估计该校女生中有多少人该项测试成绩得满分? (2)假如男生 1 号和男生 10 号被分在同组测试,请分析他俩在 400 米的环形跑道测试的过程中能否相遇。若能,求出发多长时间才能相遇;若不能,说明理由.

【答案】(1)解:设男生有x人,女生有(x+70)人,

由题意得:x+x+70=490,

解得:x=210,

则女生x+70=210+70=280(人).

故女生得满分人数: (人)

(2)解:不能;

假设经过x分钟后,1号与10号在1000米跑中能首次相遇,根据题意得:

解得

又∵

∴考生1号与10号不能相遇。

【解析】【分析】(1)通过男生、女生的人数关系列出方程,得出女生的人数;(2)根据题意表达出1号跟10号的速度,两位若相遇,相减的路程为400米,得出的时间为4.8, 但是4.8分钟大于3分钟,所以两位在测试过程中不会相遇。

2.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.

(1)阅读下列材料:

问题:利用一元一次方程将化成分数.

设.

由,可知,

即.(请你体会将方程两边都乘以10起到的作用)

可解得,即.填空:将写成分数形式为________ .

(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程. 【答案】(1)

(2)解:设 =m,方程两边都乘以100,可得100× =100x

由=0.7373…,可知100× =73.7373…=73+0.73

即73+x=100x

可解得x= ,

即 =

【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,

∴x= .

故答案是:;

(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.

3.用“ ”规定一种新运算:对于任意有理数 a 和b,规定

.如:

.

(1)求的值;

(2)若=32,求的值;

(3)若,(其中为有理数),试比较m、n的

大小.

【答案】(1)解:∵

∴ =

(2)解:∵=32,

∴可列方程为;

解方程得:x=1

(3)解:∵ = ,

∴;

【解析】【分析】(1)利用规定的运算方法直接代入计算即可;(2)利用规定的运算方法得出方程,求得方程的解即可;(3)利用规定的运算方法得出m、n,再进一步作差比较即可.

4.已知数轴上A.B两点对应的数分别为−4和2,点P为数轴上一动点,其对应的数为x.

(1)若点P到点A.点B的距离相等,写出点P对应的数;

(2)数轴上是否存在点P,使点P到点A.点B的距离之和为10?若存在,求出x的值;若不存在,请说明理由;

(3)若点A点B和点P(点P在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P点到点A点B的距离相等?(直接写出结果)

【答案】(1)解:∵A、B两点对应的数分别为−4和2,

∴AB=6,

∵点P到点A. 点B的距离相等,

∴P到点A. 点B的距离为3,

∴点P对应的数是−1

(2)解:存在;

设P表示的数为x,

①当P在AB左侧,PA+PB=10,

−4−x+2−x=10,

解得x=−6,

②当P在AB右侧时,

x−2+x−(−4)=10,

解得:x=4

(3)解:∵点B和点P的速度分别为1、1个长度单位/分,

∴无论运动多少秒,PB始终距离为2,

设运动t分钟后P点到点A. 点B的距离相等,

|−4+2t|+t=2,

解得:t=2

【解析】【分析】(1)根据点P到点A、点B的距离相等,结合数轴可得答案;(2)此题要分两种情况:①当P在AB左侧时,②当P在AB右侧时,然后再列出方程求解即可;(3)根据题意可得无论运动多少秒,PB始终距离为2,且P在B的左侧,因此A也必须在A的左侧,才有P点到点A、点B的距离相等,设运动t分钟后P点到点A、点B 的距离相等,表示出AP的长,然后列出方程即可.

5.对于任意有理数,我们规定 =ad-bc.例如 =1×4-2×3=-2

(1)按照这个规定,当a=3时,请你计算

(2)按照这个规定,若 =1,求x的值。

【答案】(1)解:当a=3时,

=2a×5a-3×4

=10a2-12

=10×32-12

=90-12

=78

(2)解:∵ =1

∴4(x+2)-3(2x-1)=1

去括号,可得:4x+8-6x+3=1

移项,合并同类项,可得:2x=10,

解得x=5

【解析】【分析】(1)根据规定先求出的表达式,再化简,然后把a=3代入求值即可;

(2)根据新定义的规定把=1的右式化成整式,然后去括号、移项、合并同类项,x项系数化为1即可解出x.

6.某织布厂有150名工人,为了提高经济效益,增设制衣项目,已知每人每天能织布30m,或利用所织布制衣4件,制衣一件需要布1.5m,将布直接出售,每米布可获利2元,将布制成衣后出售,每件可获利25元,若每名工人每天只能做一项工作,且不计其他因素,设安排x名工人制衣.

(1)一天中制衣所获利润P是多少(用含x的式子表示);

(2)一天中剩余布所获利润Q是多少 (用含x的式子表示);.

(3)一天当中安排多少名工人制衣时,所获利润为11806元?

【答案】(1)解:由题意得,P=25×4×x=100x.

故答案是:100x;

(2)解:由题意得,Q=[(150−x)×30−6x]×2=9000−72x.

故答案是:(9000−72x);

(3)解:根据题意得

解得

答:应安排100名工人制衣.

【解析】【分析】(1)根据一天的利润=每件利润×件数×人数,列出代数式;

(2)安排x名工人制衣,则织布的人数为(150-x),根据利润=(人数×米数-制衣用去的布)×每米利润,列代数式即可;

(3)根据总利润=11806,列方程求解即可.

7.仔细阅读下列材料.

“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.

例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = = .那么,怎么化成分数呢?

解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,