微波技术基础
- 格式:ppt
- 大小:426.50 KB
- 文档页数:10
Chap. 3 微带传输线
优点:
体积小、重量轻、频带宽、便于与微波集成电路相连接
缺点:
损耗大、Q值低、难以承受较大的功率(目前只适用于中小功率范围)
基本结构形式:
-对称微带线(带状线,stripline)
-不对称微带线(标准微带线或简称微带线,microstrip)
§5
§
§
α
⎦
⎣⎦
§
第2、3章小结
矩形波导
圆波导平行双线同轴线微带线介绍了多种传输线(波导)
带状线
二、一般规则波导中导行波的波型(模、模式)和传输特性
¾依据E z 和H z 存在的情形,可分为三类:
TEM波、TM波、TE波
波型(模式)是指每一种能够单独地在规则波导中存在的电磁场的一种分布状态(场结构)
¾依据色散特性可分为:
非色散波型(TEM波)与色散波型(TE波、TM波) 单导体所构成的空心金属波导管内不可能传输TEM 波型。
双导体或多导体,则可以传输TEM 波型
六、微带传输线
1、带状线
•TEM 模
•主要特性参数:Z
c 、衰减等
•尺寸选择•准TEM 模
•主要特性参数:Z
c 、衰减、等效相对介电常数等
•色散特性与尺寸选择2、微带线。
《微波技术基础》课程学习知识要点第一章 学习知识要点1.微波的定义— 把波长从1米到0.1毫米范围内的电磁波称为微波。
微波波段对应的频率范围为: 3×108Hz ~3×1012Hz 。
在整个电磁波谱中,微波处于普通无线电波与红外线之间,是频率最高的无线电波,它的频带宽度比所有普通无线电波波段总和宽10000倍。
一般情况下,微波又可划分为分米波、厘米波、毫米波和亚毫米波四个波段。
2.微波具有如下四个主要特点:1) 似光性、2) 频率高、3) 能穿透电离层、4) 量子特性。
3.微波技术的主要应用:1) 在雷达上的应用、2) 在通讯方面的应用、3) 在科学研究方面的应用、4) 在生物医学方面的应用、5) 微波能的应用。
4.微波技术是研究微波信号的产生、传输、变换、发射、接收和测量的一门学科,它的基本理论是经典的电磁场理论,研究电磁波沿传输线的传播特性有两种分析方法。
一种是“场”的分析方法,即从麦克斯韦方程出发,在特定边界条件下解电磁波动方程,求得场量的时空变化规律,分析电磁波沿线的各种传输特性;另一种是“路”的分析方法,即将传输线作为分布参数电路处理,用克希霍夫定律建立传输线方程,求得线上电压和电流的时空变化规律,分析电压和电流的各种传输特性。
第二章 学习知识要点1. 传输线可用来传输电磁信号能量和构成各种微波元器件。
微波传输线是一种分布参数电路,线上的电压和电流是时间和空间位置的二元函数,它们沿线的变化规律可由传输线方程来描述。
传输线方程是传输线理论中的基本方程。
2. 均匀无耗传输线方程为()()()()d U z dz U z d I z dzI z 2222220-=-=ββ 其解为 ()()()U z A e A e I z Z A e A e j z j zj z j z=+=---120121ββββ 对于均匀无耗传输线,已知终端电压U 2和电流I 2,则:对于均匀无耗传输线,已知始端电压U 1和电流I 1,则:()()⎪⎭⎪⎬⎫+=+= sin cos sin cos 022022Z z jU z I z I z Z jI z U z U ββββ其参量为 Z L C 000=,βπλ=2p ,v v p r =0ε,λλεp r=03. 终端接的不同性质的负载,均匀无耗传输线有三种工作状态: (1) 当Z Z L =0时,传输线工作于行波状态。
《微波技术基础》复习要求第一章引言1.微波的工作频段2.微波的主要特点第二章微波传输线理论1.微波传输线与低频传输线的对比2.均匀传输线的电报方程(时域形式、频域形式)和波动方程3.已知负载的解型(无损形式)4.传输特性参数:特性阻抗、传播常数、相速、波长5.输入阻抗和反射系数:定义、公式和关系第二章微波传输线理论(续)6.无损传输线的工作状态分析7.传输功率(重点),功率容量和效率(一般)8.掌握阻抗圆图和导纳圆图的基本构成原理、圆图的主要特性(圆图作题不要求)9.阻抗匹配:三种阻抗匹配问题(重点)、阻抗匹配方法及其特点(一般)10.时域分析方法:时空图解法第三章金属规则波导1.规则波导的纵向场法公式(TE和TM)、波动方程和边界条件、波型分类等。
2.矩形波导:场的求解过程、下标含义和范围、场结构简易绘制方法的原理、传输特性(三种波长、截止条件、简并概念、主模、相速和群速、波阻抗等)3.圆波导:纵向场的求解形式、下标含义和范围,三种主要模式的基本特点第三章金属规则波导(续)4.同轴线:主模的特性、设计原则5.激励与耦合的主要方法和举例6.损耗问题:导体损耗(微扰思想)、介质损耗和消失波衰减第四章微波集成传输线1.增量电感法:基本思想和物理解释、解题方法2.对称耦合传输线的奇偶模分析:对称耦合传输线的奇偶模分解(场特性)奇偶模分析的主要特点奇偶模分析的主要结果(偶模阻抗、奇模阻抗、K等参数的关系)第五章介质波导1.介质波导的工作原理:H平面波和E平面波以及独立方程组;两种平面波的反射系数;全反射、全折射的形成条件及其证明;两种基本波型(表面波和辐射模)。
2.圆形介质波导:主要工作模式和主模、截止条件和含义相速度特性第五章介质波导(续)3.平板介质波导:TE和TM的色散方程、基本模式的对称场分布、路的求解方法4.矩形介质波导:EDC方法与马氏方法的主要区别EDC方法的求解(分区、拉伸方向、电场与介质交界面的关系、波阻抗、横向谐振条件、有效介电常数等)第六章微波谐振器1.微波谐振器的基本特性:三个特性;基本参数(谐振波长和品质因数,p值的选取范围)2.金属波导谐振器:矩形谐振腔(波动方程和边界条件、纵向场法公式、下标的含义和范围、主模等)圆形谐振腔(下标的含义和范围、主模、模式图、虚假模式及其定义等)第六章微波谐振器(续)3.传输线谐振腔:横向谐振条件4.非传输线谐振腔(一般)5.谐振腔的微扰理论:基本公式介质微扰(重点是有损情况)腔壁微扰(谐振频率与储能变化的关系)第七章微波网络基础1.微波网络与低频网络的主要不同2.网络阻抗和反射系数与损耗、储能的关系3.[Z]和[Y]的定义、元素含义和主要性质4.[S]的定义、元素含义和主要性质5.[A]和[T]的定义、元素含义和主要性质。
微波技术基础第一篇:微波技术基础微波技术是指在微波频段内进行无线电波传输和工作的技术。
微波频段的频率范围为300MHz至300GHz,是一种高频电磁波。
微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。
本篇文章主要介绍微波技术的基础知识。
1、微波的特点微波的特点是波长短、频率高、传输能力强、穿透力强、反射和绕射能力弱。
由于微波波长短,具有高频率和短时间间隔,相应的能量高,因此可以携带大量信息。
微波具有很强的穿透力,可以穿透一些物质。
但它对金属等导电材料的反射和绕射能力非常弱。
2、微波的应用微波技术应用广泛,包括通信、雷达、医疗成像、无线电视、卫星通信等方面。
其中,通信是微波技术应用最广的领域。
无线电视也用到了微波技术,它具有大带宽和高清晰度等优点。
雷达是一种利用微波波段特殊频率特性进行目标侦察和跟踪的技术。
医疗成像是微波技术的另一个应用领域,例如计算机断层扫描,实现肿瘤发现和诊断。
3、微波的发射方式微波发射方式包括波束走向和波束展宽两类。
波束走向是指将微波束对准目标以达到传送信息的目的。
波束展宽是指通过微波辐射,以实现信息的传输。
微波发射方式的选择应根据不同的应用场景来确定,例如在通信中应选择波束走向,而在雷达中应选择波束展宽。
4、微波的传输损耗微波在传输过程中会发生一定的损耗。
导致这种损耗的原因主要包括传输路径的衰减、反射和绕射效应、电磁波散射等。
传输路径的衰减是微波传输损耗最主要的原因。
它可以通过加强发射功率、缩短传输距离、采用大口径天线等措施来降低影响。
5、微波天线天线是微波技术的重要组成部分,它能将高频率的电磁波转换成物理信号,实现信息的传输。
微波天线种类繁多,包括Horn天线、微带天线、反射天线、缝隙天线等。
微波天线的使用应根据具体应用需求来选择。
例如,在雷达中,反射天线和缝隙天线可以实现高精度的指向和定位,而微带天线则可以被制成很小的尺寸,方便安装和使用。
6、微波放大器微波放大器的作用是放大微波信号,以便在传输中降低信号衰减。
《微波技术基础》题集一、选择题(每题2分,共20分)1.微波是指频率为()的电磁波。
A. 300MHz-300GHzB. 300Hz-300MHzC. 300GHz-300THzD. 300kHz-300MHz2.微波在真空中的传播速度与()相同。
A. 光速B. 声速C. 电场传播速度D. 磁场传播速度3.微波的主要特性不包括()。
A. 直线传播B. 穿透性强C. 反射性D. 绕射能力强4.微波传输线主要包括()。
A. 同轴电缆和光纤B. 双绞线和同轴电缆C. 光纤和波导D. 双绞线和波导5.在微波通信中,常用的天线类型是()。
A. 偶极子天线B. 抛物面天线C. 环形天线D. 螺旋天线6.微波谐振腔的主要作用是()。
A. 储存微波能量B. 放大微波信号C. 转换微波频率D. 衰减微波信号7.微波加热的原理是()。
A. 微波与物体内部的分子振动相互作用B. 微波使物体表面温度升高C. 微波直接转化为热能D. 微波引起物体内部化学反应8.微波在介质中的传播速度与介质的()有关。
A. 密度B. 介电常数C. 磁导率D. 温度9.微波通信中,为了减少信号的衰减,通常采取的措施是()。
A. 增加信号频率B. 减小信号功率C. 使用中继站D. 改用光纤通信10.微波测量中,常用的仪器是()。
A. 示波器B. 微波功率计C. 万用表D. 频谱分析仪(部分功能重叠,但更专用于频率分析)二、填空题(每题2分,共20分)1.微波的频率范围是_________至_________。
2.微波在真空中的传播速度约为_________m/s。
3.微波的_________特性使其在雷达和通信系统中得到广泛应用。
4.微波传输线中,_________具有宽频带、低损耗的特点。
5.微波天线的作用是将微波能量转换为_________或相反。
6.微波加热过程中,物体吸收微波能并将其转化为_________。
7.微波在介质中的衰减主要取决于介质的_________和频率。
一、简答题:1、电磁波频段划分与使用研究?隐形飞机的隐形原理?核潜艇的对外界通信方式及分析?答:无线电频段和波段的划分:序号频段名称频段范围波段名称波长范围主要用途1 甚低频(VLF) 3~30kHz 甚长波10~1万米音频电话、长距离导航、时标2 低频(LF) 30~300kHz 长波10~1千米船舶通信、信标、导航3 中频(MF) 300~3000kHz 中波1000~100米广播、船舶通信、飞行通信、船港电话4 高频(HF) 3~30MHz 短波100~10米短波广播、军事通信5 甚高频(VHF) 30~300MHz 米波10~1米电视、调频广播、雷达、导航6 特高频(UHF) 300~3000MHz 分米波10~1分米电视、雷达、移动通信7 超高频(SHF) 3~30GHz 厘料波10~1厘米雷达、中继、卫星通信8极高频(EHF) 30~300GHz 毫米波10~1毫米射电天文、卫星通信、雷达隐形飞机的隐形原理:通过降低飞机的电、光、声这些可探测特征,使雷达等防空探测器不能够早期发现来实现的。
为了减弱飞机电、光、声这些可探测特征,这种飞机在外形设计上采用了非常规布局,消除小于或等于90°的外形夹角,发动机进气口置于机身背部或机翼上面,采用矩形设计并朝上翻。
2个垂直尾翼均向外斜置,机身与机翼融为一体,使飞机对所有雷达波形成镜面反射,减小雷达回波。
在材料使用上,大量采用宽波段吸波性轻质耐热复合材料,并在表面涂覆放射性同位素涂层,通过同位素放射高能粒子,使周围空气形成等离子屏障。
在离子与电磁波相互作用过程中,吸收雷达波和红外辐射,整机雷达反射面降到1平方米以下。
即使这一点反射,也因通过等离子体的绕射、散射而造成雷达测量上的误差,从而达到“隐身”的效果。
核潜艇的对外界通信方式:利用无线电波传输分析:潜艇要遂行军事任务必须要与外界有安全可靠的通信方式,短波在水中不能使用,因为短波在水中衰减得太快,为了解决此问题,可以采用浮标天线或浮力天线,即把天线通过一根长长的绳索施放到水面,这样潜艇在水下也可发射信号。
微波技术基础微波技术是现代通信和雷达系统中不可或缺的技术之一。
它广泛应用于无线通信、卫星通信、雷达探测等领域。
掌握微波技术的基础知识对于从事相关领域的技术人员来说至关重要。
本文将介绍微波技术的基础知识,帮助读者更好地理解和应用微波技术。
一、微波技术的定义和特点微波技术是指利用微波(300MHz-300GHz)进行信息传输和探测的技术。
微波技术具有以下特点:1. 高频特性:微波技术的工作频率较高,能够提供较大的带宽,实现高速数据传输。
2. 穿透力强:微波具有很强的穿透力,可以穿透大气层,适用于远距离通信和雷达探测。
3. 直线性好:微波的传播路径近似直线,适合于直线传播的应用场景。
4. 天线尺寸小:与低频通信相比,微波通信所需的天线尺寸较小,便于集成和应用。
二、微波技术的关键组件微波技术的关键组件包括:1. 微波振荡器:微波振荡器是微波技术中的核心部件,它能够产生稳定的微波信号。
2. 微波放大器:微波放大器用于放大微波信号,提高信号的传输功率。
3. 微波混频器:微波混频器用于实现微波信号与其他信号(如射频信号)的混合,实现信号的调制和解调。
4. 微波天线:微波天线用于发射和接收微波信号,是微波通信和雷达探测的关键组件。
三、微波技术在通信领域的应用微波技术在通信领域的应用广泛,包括:1. 无线通信:微波技术是无线通信技术的重要组成部分,如4G、5G等通信标准都采用了微波技术。
2. 卫星通信:微波技术是卫星通信的关键技术,可以实现全球范围内的通信覆盖。
3. 深空通信:微波技术是实现深空通信(如火星探测、月球探测等)的重要手段。
四、微波技术在雷达探测领域的应用微波技术在雷达探测领域也有广泛应用,包括:1. 雷达探测:微波技术可以用于雷达系统的发射和接收部分,实现目标的探测和跟踪。
2. 气象雷达:微波技术是气象雷达的关键技术,用于气象观测和天气预报。
3. 航空雷达:微波技术在航空雷达中也有广泛应用,如空中交通管制、飞行器探测等。
微波技术基础及应用教学设计引言微波技术以其高频、高速、高精度的特点,广泛应用于通信、雷达、天文、医学等领域。
因此,在电子信息工程及相关专业的教学中,微波技术作为重要的课程之一,扮演着不可替代的角色。
本文旨在介绍微波技术基础及应用教学设计,以期提高学生对微波技术相关知识的学习理解和实践能力。
教学内容1. 微波技术基础微波技术基础包括了微波器件、微波电路、微波天线等知识点。
在教学中,应注重梳理微波技术的基本概念和原理,引导学生掌握微波领域的重要研究方向,如:微波通信、微波雷达、微波辐射、微波医学等。
同时,通过上课和实验的结合,加深学生对微波频率和波长等概念的理解,帮助学生理解电磁波的性质及微波技术在实际应用中的重要性。
2. 微波功率合成器设计微波功率合成器在微波技术中有着广泛的应用,如在无线通信设备、微波雷达和微波光学等方面。
通过微波功率合成器的设计,可以深入了解微波技术的一些基本概念及原理,掌握微波电路的设计和分析方法。
在设计实践中,需要学生了解微波功率合成器的基本原理、常用设计技巧、设计流程等,同时辅以一定的仿真和实验操作,帮助学生加深对微波电路设计和微波信号处理的理解。
3. 微波天线及辐射微波天线及辐射是微波技术中的重点领域。
通过微波天线的设计和分析,可以帮助学生深入理解天线辐射的基本原理和方程,掌握天线参数选取的基准和方法,并且了解基本的微波辐射特性和波束控制技术。
在此基础上,通过实验操作和数据收集,可深刻了解微波辐射和天线性能的关系,以及微波天线在通信、雷达和卫星导航等领域的应用实践。
教学方法在微波技术基础及应用教学中,采用多种教学方法,如教学讲解,实验演示,系统性学习和独立解决问题等资料以加深学生对于微波技术的理解及其实际应用。
其中,实验环节是深入学习和理解微波技术的重要环节。
通过实验操作,学生可以将理论知识变为实际操作的技能,同时加深对微波电路和分析方法的认识。
教学目标本文的微波技术基础及应用教学目标主要包括:1.提高学生对于微波技术的基本概念、原理及其实际应用的理解;2.培养学生的微波电路设计、仿真分析和实验操作的能力;3.提升学生的微波信号处理和天线辐射技术能力;4.开发学生的学习兴趣和开拓思路,提高其对微波技术的研究能力;5.在微波技术的应用实践中,培养学生的创新意识和实践能力。