高中物理力学经典例题解析

  • 格式:doc
  • 大小:177.50 KB
  • 文档页数:9

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中物理力学经典例题解析

1.在光滑的水平桌面上有一长L=2米的木板C,它的两端各有一块档板,C的质量m C=5千克,在C的正中央并排放着两个可视为质点的滑块A和B,质量分别为m A=1千克,m B=4千克。开始时,A、B、C都处于静止,并且A、B间夹有少量塑胶炸药,如图15-1所示。炸药爆炸使滑块A以6米/秒的速度水平向左滑动,如果A、B与C间的摩擦可忽略,两滑块中任一块与档板碰撞后都与挡板结合成一体,爆炸和碰撞所需时间都可忽略。问:

(1)当两滑块都与档板相碰撞后,板C的速度多大?

(2)到两个滑块都与档板碰撞为止,板的位移大小和方向如何?

分析与解:(1)设向左的方向为正方向。炸药爆炸前后A和B组成的系统水平方向动量守恒。设B获得的速度为m A,则m A V A+m B V B=0,所以:V B=-m A V A/m B=-1.5米/秒对A、B、C 组成的系统,开始时都静止,所以系统的初动量为零,因此当A和B都与档板相撞并结合成一体时,它们必静止,所以C板的速度为零。

(2)以炸药爆炸到A与C相碰撞经历的时间:t1=(L/2)/V A=1/6秒,

在这段时间里B的位移为:S B=V B t1=1.5×1/6=0.25米,

设A与C相撞后C的速度为V C,A和C组成的系统水平方向动量守恒:m A V A=(m A+m C)V C,所以V C=m A V A/(m A+m C)=1×6/(1+5)=1米/秒

B相对于C的速度为:V BC=V B-V C=(-1.5)-(+1)=-2.5米/秒

因此B还要经历时间t2才与C相撞:

t2==(1-0.25)/2.5=0.3秒,

故C的位移为:S C=V C t2=1×0.3=0.3米,

方向向左,如图15-2所示。

2.如图16-1所示,一个连同装备总质量为M=100千克的宇航员,在距离飞船为S=45

米与飞船处于相地静止状态。宇航员背着装有质量为m0=0.5千克氧气的贮氧筒,可以将氧气以V=50米/秒的速度从喷咀喷出。为了安全返回飞船,必须向返回的相反方向喷出适量的氧,同时保留一部分氧供途中呼吸,且宇航员的耗氧率为R=2.5×10-4千克/秒。试计算:

(1)喷氧量应控制在什么范围?返回所需的最长和最短时间是多少?

(2)为了使总耗氧量最低,应一次喷出多少氧?返回时间又是多少?

分析与解:一般飞船沿椭圆轨道运动,不是惯性参照系。但是在一段很短的圆弧上,可以认为飞船作匀速直线运动,是惯性参照系。

(1)设有质量为m的氧气,以速度v相对喷咀,即宇航员喷出,且宇航员获得相对于飞船为V的速度,据动量守恒定律:mv-MV=0

则宇航员返回飞船所需的时间为:t=S/V=MS/mv

而安全返回的临界条件为:m+Rt=m0,以t=MS/mv代入上式,得:m2v-m0vm+RMS=0,

m=

把m0、v、R、M、S代入上式可得允许的最大和最小喷氧量为:

m max=0.45千克,m min=0.05千克。

返回的最短和最长时间为:t min==200秒,t max==1800秒

(2)返回飞船的总耗氧量可表示为:△M=m+Rt=(MS/vt)+Rt

因为MS/vt与Rt之积为常量,且当两数相等时其和最小,即总耗氧量最低,

据:MS/vt=Rt,所以相应返回时间为:t==600秒

相应的喷氧量应为:m=Rt=0.15千克。

想一想:还有什么方法可求出这时的喷氧量?(m=MS/vt=0.15千克)

3.如图17-1所示,A、B是静止在水平地面上完全相同的两块长木板.A的左端和B的右端相接触.两板的质量皆为M=2.0kg,长度皆为L=1.0m。C是质量为m=1.0 kg的小物块.现给它一初速度v0=2.0m/s,使它从板B的左端向右滑动.已知地面是光滑的,而C与板A、B之间的动摩擦因数皆为μ=0.10。求最后A、B、C各以多大的速度做匀速运动.取重力加速度g=10m/s2。

参考解答先假设小物块C在木板B上移动x距离后,停在B上.这时A、B、C三者的速度相等,设为v,由动量守恒得

mv0=(m+2M)v,①

在此过程中,木板B的位移为s,小物块C的位移为s+x.由功能关系得

-μmg(s+x)=(1/2)mv2-(1/2)mv02,

μmgs=2Mv2/2,

则-μmgx=(1/2)(m+2M)v2-(1/2)mv02,②

由①、②式,得

x=[mv02/(2M+m)μg],③

代入数值得x=1.6m.④

x比B板的长度大.这说明小物块C不会停在B板上,而要滑到A板上.设C刚滑到A板上的速度为v1,此时A、B板的速度为v2,则由动量守恒得

mv0=mv1+2Mv2,⑤

由功能关系,得(1/2)mv02-(1/2)mv12-2×(1/2)mv22=μmgL,

以题给数据代入,得

由v1必是正值,故合理的解是

当滑到A之后,B即以v2=0.155m/s做匀速运动,而C是以v1=1.38m/s的初速在A上向右运动.设在A上移动了y距离后停止在A上,此时C和A的速度为v3,由动量守恒得

Mv2+mv1=(m+M)v3,

解得v3=0.563m/s.

由功能关系得

(1/2)mv12+(1/2)mv22-(1/2)(m+M)v32=μmgy,

解得y=0.50m.

y比A板的长度小,所以小物块C确实是停在A板上.最后A、B、C的速度分别为vA=v3=0.563m/s,vB=v2=0.155m/s,vC=vA=0.563m/s.评分标准本题的题型是常见的碰撞类型,考查的知识点涉及动量守恒定律与动能关系或动力学和运动学等重点知识的综合,能较好地考查学生对这些重点知识的掌握和灵活运动的熟练程度.题给数据的设置不够合理,使运算较复杂,影响了学生的得分.从评分标准中可以看出,论证占的分值超过本题分值的50%,足见对论证的重视.而大部分学生在解题时恰恰不注重这一点,平时解题时不规范,运算能力差等,都是本题失分的主要原因.解法探析本题参考答案中的解法较复杂,特别是论证部分,①、②两式之间的两个方程可以省略.下面给出两种较为简捷的论证和解题方法.

解法一从动量守恒与功能关系直接论证求解.设C刚滑到A板上的速度为v1,此时A、B板的速度为v2,则由动量守恒,得

mv0=mv1+2Mv2,

以系统为对象,由功能关系,得

(1/2)mv02-(1/2)mv12-2×(1/2)mv22=μmgL,

由于v1只能取正值,以题给数据代入得到合理的解为