因式分解-公式法-练习
- 格式:doc
- 大小:202.00 KB
- 文档页数:4
公式法因式分解练习题
思维导航:运用公式法是分解因式的常用方法,运用公式法分解因式的思路主要有以下几种情况:
一、直接用公式:当所给的多项式是平方差或完全平方式时,可以直接利用公式法分解因式。
例1、分解因式:
(1)x2-9 (2)9x2-6x+1
二、提公因式后用公式:当所给的多项式中有公因式时,一般要先提公因式,然后再看是否能利用公式法。
例2、分解因式:
(1)x5y3-x3y5(2)4x3y+4x2y2+xy3
三、系数变换后用公式:当所给的多项式不能直接利用公式法分解因式,往往需要调整系数,转换为符合公式
的形式,然后再利用a公式法分解.
例3、分解因式:
(1)4x2-25y2 (2)4x2-12xy2+9y4
四、指数变换后用公式:通过指数的变换将多项式转换为平方差或完全平方式的形式,然后利公式法分解因式,
应注意分解到每个因式都不能再分解为止.
例4、分解因式:
(1)x4-81y4 (2)16x4-72x2y2+81y4
五、重新排列后用公式:当所给的多项式不能直接看出是否可用公式法分解时,可以将所给多项式交换位置,
重新排列,然后再利用公式。
例5、分解因式:
(1)-x2+(2x-3)2 (2)(x+y)2+4-4(x+y)
六、整理后用公式:当所给的多项式不能直接利用公式法分解时,可以先将其中的项去括号整理,然后再利
用公式法分解。
例6 、分解因式: (x-y)2-4(x-y-1)
七、连续用公式:当一次利用公式分解后,还能利用公式再继续分解时,则需要用公式法再进行分解,到每
个因式都不能再分解为止。
例7、分解因式:(x2+4)2-16x2
专题训练一:利用平方差公式分解因式
题型(一):把下列各式分解因式
1、24x -
2、29y -
3、21a -
4、224x y -
5、2125b -
6、222x y z -
7、
2240.019m b - 8、2219a x -
9、2236m n - 10、2249x y - 11、220.8116a b - 12、222549p q -
13、2422a x b y - 14、41x - 15、4416a b - 16、
44411681
a b m -
题型(二):把下列各式分解因式
1、22()()x p x q +-+
2、 22(32)()m n m n +--
3、2216()9()a b a b --+
4、229()4()x y x y --+
5、22()()a b c a b c ++-+-
6、224()a b c -+
题型(三):把下列各式分解因式
1、53x x -
2、224ax ay -
3、322ab ab -
4、316x x -
5、2433ax ay -
6、2(25)4(52)x x x -+-
7、324x xy - 8、343322x y x - 9、4416ma mb -
10、238(1)2a a a -++ 11、416ax a -+ 12、2216()9()mx a b mx a b --+
题型(四):利用因式分解解答下列各题
1、证明:两个连续奇数的平方差是8的倍数。
2、计算
⑴22758258- ⑵22429171- ⑶223.59 2.54⨯-⨯
⑷22222
11111(1)(1)(1)(1)(1)234910---⋅⋅⋅--
专题训练二:利用完全平方公式分解因式
题型(一):把下列各式分解因式
1、221x x ++
2、2441a a ++
3、 2
169y y -+ 4、2
14m m ++
5、 221x x -+
6、2816a a -+
7、2144t t -+
8、21449m m -+
9、222121b b -+ 10、214
y y ++ 11、2258064m m -+ 12、243681a a ++
13、22
42025p pq q -+ 14、2
24x xy y ++ 15、2244x y xy +-
题型(二):把下列各式分解因式
1、2()6()9x y x y ++++
2、222()()a a b c b c -+++
3、2412()9()x y x y --+-
4、22()4()4m n m m n m ++++
5、)1(42-+-+y x y x )(
6、22
(1)4(1)4a a a a ++++
题型(三):把下列各式分解因式
1、222xy x y --
2、22344xy x y y --
3、232a a a -+-
题型(四):把下列各式分解因式
1、
221222
x xy y ++ 2、42232510x x y x y ++ 3、2232ax a x a ++
4、222224y x y x -+)(
5、2222()(34)a ab ab b +-+
6、42()18()81x y x y +-++
7、2222(1)4(1)4a a a a +-++ 8、42242()()a a b c b c -+++
9、4224816x x y y -+ 10、2222()8()16()a b a b a b +--+-
题型(五):利用因式分解解答下列各题
1、已知: 2211128,22x y x xy y ==++,求代数式
的值。
2、3322322
a b ab +==
已知,,求代数式a b+ab -2a b 的值。