人教版八年级数学上册教案全集(144页)

  • 格式:doc
  • 大小:4.37 MB
  • 文档页数:140

下载文档原格式

  / 140
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册教案全集

一、指导思想:

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析:

八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。初二(7)班和初二(18)班两班比较,初二(7)班学生单纯,优生稍多一些,后进面较小,只有少数学生不思上进,但初二(7)学生思维虽然非常活跃,但在学习上不思进取,大多数学生不求进步只图贪玩,有少数同学基础特差,问题较严重。要在本期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、教材分析:

第十一章:《全等三角形》主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。

第十二章:《轴对称》立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定概念。

第十三章:《实数》通过学习一种新的运算——开方,进而学习一种新数——无理数,即无限不循环小数,把数的范围从有理数扩大到实数。在开方里面,重点是开平方和开立方,出现的无理数都是带根号的数,只要求会求一个非负数的平方根和算术平方根,会求一个

数的立方根,而不要求进行有关无理数的运算和化简。

第十四章:《一次函数》通过对变量的考察,体会函数的概念,并进一步研究其中最为简单的一种函数——一次函数。了解函数的有关性质和研究方法,并初步形成利用函数的观点认识现实世界的意识和能力。在教材中,通过体现“问题情境————建立数学模型——概念、规律、应用与拓展”的模式,让学生从实际问题情境中抽象出函数以及一次函数的概念,并进行探索一次函数及其图象的性质,最后利用一次函数及其图象解决有关现实问题;同时在教学顺序上,将正比例函数纳入一次函数的研究中去。教材注意新旧知识的比较与联系,如在教材中,加强了一次函数与一次方程(组)、一次不等式的联系等。

第十五章:整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。

四、教学措施:

1、课堂内讲授与练习相结合,及时根据反馈信息,扫除学习中的障碍点。

2、认真备课、精心授课,抓紧课堂四十五分钟,努力提高教学效果。

3、抓住关键、分散难点、突出重点,在培养学生能力上下功夫。

4、不断改进教学方法,提高自身业务素养。

5、教学中注重自主学习、合作学习、探究学习。

五、教学安排:(见下页教学进度登记表)

教学进度及教案批阅登记表

§11.1 全等三角形

教学目标

1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边. 教学重点:全等三角形的性质.

教学难点:找全等三角形的对应边、对应角. 教学过程 Ⅰ.提出问题,创设情境 1、问题:你能发现这两个三角形有什么美妙的关系吗?这两个三角形是完全重合的.

2.学生自己动手(同桌两名同学配合) 取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样.

3.获取概念

让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.

形状与大小都完全相同的两个图形就是全等形.

要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同.

概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求. Ⅱ.导入新课

利用投影片演示 将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .

1

B 1

C

A

B

A 1

D

C

A

B

F

E 乙

D

C

A

B

D

C

A

B

E

议一议:各图中的两个三角形全等吗?

不难得出: △ABC ≌△DEF ,△ABC ≌△DBC ,△ABC ≌△AED . (注意强调书写时对应顶点字母写在对应的位置上)

启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系)

得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等.

[例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.

问题:△OCA ≌△OBD ,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?

将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,•所以C 和B 重合,A 和D 重合.

∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB .

总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法.

[例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.

分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形中分离出来.

D C

A

B

O

D

C A

B

E