2019年10月全国自考线性代数(经管类)04184真题试题(含02198与04184试卷对比)
- 格式:docx
- 大小:96.60 KB
- 文档页数:3
2015年4月高等教育自学考试全国统一命题考试线性代数(经管类)试题答案及评分参考(课程代码 04184)一、单项选择题(本大题共5小题,每小题2分类,共10分)1.C2.A3.D4.C5.B二、填空题(本大题共10小题,每小题2分,共20分)6. 97.⎪⎪⎭⎫ ⎝⎛--2315 8.⎪⎪⎭⎫⎝⎛--031111 9. 3 10. -2 11. 0 12. 2 13.()()T T 1,1,1311,1,131---或14. -1 15.a >1三、计算题(本大题共7小题,每小题9分,共63分)16.解 D=40200320115011315111141111121131------=- (5分) =74402032115=-- (9分) 17.解 由于21=A ,所以A 可逆,于是1*-=A A A (3分) 故11*12212)2(---+=+A A A A A (6分) =2923232112111=⎪⎭⎫ ⎝⎛==+----A A A A (9分) 18.解 由B AX X +=,化为()B X A E =-, (4分)而⎪⎪⎪⎭⎫ ⎝⎛--=-201101011A E 可逆,且()⎪⎪⎪⎭⎫ ⎝⎛--=--110123120311A E (7分) 故⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=11021335021111012312031X (9分) 19.解 由于()⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛----→00007510171101751075103121,,,4321αααα (5分) 所以向量组的秩为2,21,αα是一个极大线性无关组,并且有214213717,511αααααα-=+-= (9分)注:极大线性无关组不唯一。
20. 解 方程组的系数行列式 D=()()()b c a c a b c c b b a a ---=222111因为a,b,c 两两互不相同,所以0≠D ,故方程有唯一解。
全国2010年度4月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.已知2阶行列式m b b a a =2121,n c c b b =2121,则=++221121c a c a b b ( B )A .n m -B .m n -C .n m +D .)(n m +-2.设A , B , C 均为n 阶方阵,BA AB =,CA AC =,则=ABC ( D ) A .ACBB .CABC .CBAD .BCA3.设A 为3阶方阵,B 为4阶方阵,且1||=A ,2||-=B ,则行列式||||A B 之值为( A ) A .8-B .2-C .2D .84.⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a aa a a a a a A ,⎪⎪⎪⎭⎫⎝⎛=333231232221131211333a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=100030001P ,⎪⎪⎪⎭⎫⎝⎛=100013001Q ,则=B ( B )A .PAB .APC .QAD .AQ5.已知A 是一个43⨯矩阵,下列命题中正确的是( C ) A .若矩阵A 中所有3阶子式都为0,则秩(A )=2 B .若A 中存在2阶子式不为0,则秩(A )=2 C .若秩(A )=2,则A 中所有3阶子式都为0 D .若秩(A )=2,则A 中所有2阶子式都不为0 6.下列命题中错误..的是( C )A .只含有1个零向量的向量组线性相关B .由3个2维向量组成的向量组线性相关C .由1个非零向量组成的向量组线性相关D .2个成比例的向量组成的向量组线性相关 7.已知向量组321,,ααα线性无关,βααα,,,321线性相关,则( D ) A .1α必能由βαα,,32线性表出 B .2α必能由βαα,,31线性表出 C .3α必能由βαα,,21线性表出D .β必能由321,,ααα线性表出8.设A 为n m ⨯矩阵,n m ≠,则方程组Ax =0只有零解的充分必要条件是A 的秩( D ) A .小于mB .等于mC .小于nD .等于n9.设A 为可逆矩阵,则与A 必有相同特征值的矩阵为( A ) A .T AB .2AC .1-AD .*A10.二次型212322213212),,(x x x x x x x x f +++=的正惯性指数为( C ) A .0 B .1 C .2 D .3二、填空题(本大题共10小题,每小题2分,共20分)11.行列式2010200920082007的值为_____________. 12.设矩阵⎪⎪⎭⎫ ⎝⎛-=102311A ,⎪⎪⎭⎫ ⎝⎛=1002B ,则=B A T_____________.13.设T )2,0,1,3(-=α,T )4,1,1,3(-=β,若向量γ满足βγα32=+,则=γ__________.14.设A 为n 阶可逆矩阵,且nA 1||-=,则|=-||1A _____________.15.设A 为n 阶矩阵,B 为n 阶非零矩阵,若B 的每一个列向量都是齐次线性方程组Ax =0的解,则=||A _____________.16.齐次线性方程组⎩⎨⎧=+-=++0320321321x x x x x x 的基础解系所含解向量的个数为_____________.17.设n 阶可逆矩阵A 的一个特征值是3-,则矩阵1231-⎪⎭⎫⎝⎛A 必有一个特征值为_________.18.设矩阵⎪⎪⎪⎭⎫⎝⎛----=00202221x A 的特征值为2,1,4-,则数=x _____________.19.已知⎪⎪⎪⎪⎫⎛=10002/102/1b a A 是正交矩阵,则=+b a _____________. 20.二次型323121321624),,(x x x x x x x x x f ++-=的矩阵是_____________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算行列式333222c c b b a a c b a cb a D +++=的值. 解:222333222333222111c b a c b a abc c b a c b a c b a c c b b a a c b a c b aD ==+++= 2222222200111a c a b ac ab abc a c a b a c ab abc ----=----=))()((11))((b c a c a b abc ac a b a c a b abc ---=++--=.22.已知矩阵)3,1,2(=B ,)3,2,1(=C ,求(1)C B A T =;(2)2A .解:(1)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛==963321642)3,2,1(312C B A T;(2)注意到13312)3,2,1(=⎪⎪⎪⎭⎫⎝⎛=T CB ,所以131313)())((2=====A C B C CB B C B C B A T T T T T ⎪⎪⎪⎭⎫ ⎝⎛963321642.23.设向量组T 4T 3T 2T 1(1,1,1,1),)0,3,1,1(,(1,2,0,1),(2,1,3,1)=--===αααα,求向量组的秩及一个极大线性无关组,并用该极大线性无关组表示向量组中的其余向量.解:⎪⎪⎪⎪⎪⎭⎫⎝⎛--==1011130311211112),,,(4321ααααA →⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1112130311211011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------1110233001101011 →⎪⎪⎪⎪⎪⎭⎫⎝⎛--1000200001101011→⎪⎪⎪⎪⎪⎭⎫⎝⎛0000100001101011→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0000100001101101,向量组的秩为3,421,,ααα是一个极大无关组,213ααα+-=.24.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=100210321A ,⎪⎪⎪⎭⎫⎝⎛--=315241B .(1)求1-A ;(2)解矩阵方程B AX =. 解:(1)⎪⎪⎪⎭⎫ ⎝⎛=100010001100210321),(E A →⎪⎪⎪⎭⎫ ⎝⎛--100210301100010021→⎪⎪⎪⎭⎫ ⎝⎛--100210121100010001,1-A ⎪⎪⎪⎭⎫⎝⎛--=100210121; (2)==-B A X 1⎪⎪⎪⎭⎫ ⎝⎛--100210121⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛--3111094315241.25.问a 为何值时,线性方程组⎪⎩⎪⎨⎧=++=+=++63222243232132321x x x ax x x x x 有惟一解?有无穷多解?并在有解时求出其解(在有无穷多解时,要求用一个特解和导出组的基础解系表示全部解).解:⎪⎪⎪⎭⎫ ⎝⎛=63222204321),(a b A →⎪⎪⎪⎭⎫ ⎝⎛---23202204321a →⎪⎪⎪⎭⎫ ⎝⎛-03002204321a a .3≠a 时,3)(),(==A r b A r ,有惟一解,此时→),(b A ⎪⎪⎪⎭⎫ ⎝⎛010********a →⎪⎪⎪⎭⎫⎝⎛010********* →⎪⎪⎪⎭⎫ ⎝⎛010*********→⎪⎪⎪⎭⎫ ⎝⎛010*********,⎪⎩⎪⎨⎧===012321x x x ; 3=a 时,n A r b A r <==2)(),(,有无穷多解,此时→),(b A ⎪⎪⎪⎭⎫⎝⎛000023204321→⎪⎪⎪⎭⎫ ⎝⎛000023202001→⎪⎪⎪⎭⎫ ⎝⎛000012/3102001,⎪⎪⎩⎪⎪⎨⎧=-==333212312x x x x x ,通解为⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛12/30012k ,其中k 为任意常数.26.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=3030002a a A 的三个特征值分别为5,2,1,求正的常数a 的值及可逆矩阵P ,使⎪⎪⎪⎭⎫ ⎝⎛=-5000200011AP P .解:由521)9(23323030002||2⨯⨯=-===a a aa a A ,得42=a ,2=a .=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----320230002λλλ.对于11=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛-----220220001→⎪⎪⎪⎭⎫ ⎝⎛000110001,⎪⎩⎪⎨⎧=-==333210x x x x x ,取=1p ⎪⎪⎪⎭⎫ ⎝⎛-110;对于22=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛----120210000→⎪⎪⎪⎭⎫ ⎝⎛000100010,⎪⎩⎪⎨⎧===003211x x x x ,取=2p ⎪⎪⎪⎭⎫⎝⎛001;对于53=λ,解0)(=-x A E λ:=-A E λ⎪⎪⎪⎭⎫ ⎝⎛--220220003→⎪⎪⎪⎭⎫ ⎝⎛-000110001,⎪⎩⎪⎨⎧===333210x x x x x ,取=3p ⎪⎪⎪⎭⎫ ⎝⎛110.令⎪⎪⎪⎭⎫ ⎝⎛-==101101010),,(321p p p P ,则P 是可逆矩阵,使⎪⎪⎪⎭⎫⎝⎛=-5000200011AP P .四、证明题(本题6分)27.设A ,B ,B A +均为n 阶正交矩阵,证明111)(---+=+B A B A .证:A ,B ,B A +均为n 阶正交阵,则1-=A A T ,1-=B B T ,1)()(-+=+B A B A T ,所以111)()(---+=+=+=+B A B A B A B A T T T .全国2010年7月高等教育自学考试线性代数(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分)1.设3阶方阵),,(321ααα=A ,其中i α(3,2,1=i )为A 的列向量,若=||B 6|),,2(|3221=+αααα,则=||A ( C )A .12-B .6-C .6D .122.计算行列式=----32320200051020203( A )A .180-B .120-C .120D .1803.若A 为3阶方阵且2||1=-A ,则=|2|A ( C ) A .21B .2C .4D .84.设4321,,,αααα都是3维向量,则必有( B ) A .4321,,,αααα线性无关B .4321,,,αααα线性相关C .1α可由432,,ααα线性表示D .1α不可由432,,ααα线性表示5.若A 为6阶方阵,齐次方程组Ax =0基础解系中解向量的个数为2,则=)(A r ( C ) A .2B .3C .4D .56.设A 、B 为同阶方阵,且)()(B r A r =,则( C ) A .A 与B 相似B .||||B A =C .A 与B 等价D .A 与B 合同7.设A 为3阶方阵,其特征值分别为0,1,2,则=+|2|E A ( D ) A .0B .2C .3D .24..A .A 与B 等价B .A 与B 合同C .||||B A =D .A 与B 有相同特征值9.若向量)1,2,1(-=α与),3,2(t =β正交,则=t ( D )A .2-B .0C .2D .410.设3阶实对称矩阵A 的特征值分别为0,1,2,则( B ) A .A 正定B .A 半正定C .A 负定D .A 半负定二、填空题(本大题共10小题,每小题2分,共20分)11.设⎪⎪⎪⎭⎫ ⎝⎛-=421023A ,⎪⎪⎭⎫⎝⎛--=010112B ,则=AB ______________.12.设A 为3阶方阵,且3||=A ,则=-|3|1A ______________.13.三元方程1321=++x x x 的通解是______________.14.设)2,2,1(-=α,则与α反方向的单位向量是______________.15.设A 为5阶方阵,且3)(=A r ,则线性空间}0|{==Ax x W 的维数是______________.16.17.若A 、B 为5阶方阵,且0=Ax 只有零解,且3)(=B r ,则=)(AB r ______________.18.实对称矩阵⎪⎪⎪⎭⎫ ⎝⎛--110101012所对应的二次型=),,(321x x x f ______________.19.设3元非齐次线性方程组b Ax =有解⎪⎪⎪⎭⎫ ⎝⎛=3211α,⎪⎪⎪⎭⎫⎝⎛-=3 2 12α,且2)(=A r ,则b Ax =的通解是______________.20.设⎪⎪⎪⎭⎫ ⎝⎛=321α,则T A αα=的非零特征值是______________.三、计算题(本大题共6小题,每小题9分,共54分)21.计算5阶行列式2000102000002000002010002=D .解:连续3次按第2行展开,243821128201020102420010200002010022=⨯=⨯=⨯=⨯=D . 22.设矩阵X 满足方程⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-021102341010100001200010002X ,求X .解:记⎪⎪⎪⎭⎫ ⎝⎛-=200010002A ,⎪⎪⎪⎭⎫ ⎝⎛=010100001B ,⎪⎪⎪⎭⎫⎝⎛---=021102341C ,则C AXB =,⎪⎪⎪⎭⎫ ⎝⎛-=-2/100010002/11A ,⎪⎪⎪⎭⎫ ⎝⎛=-010*******B ,11--=CB A X ⎪⎪⎪⎭⎫ ⎝⎛-=10002000121⎪⎪⎪⎭⎫ ⎝⎛---021102341⎪⎪⎪⎭⎫⎝⎛010100001⎪⎪⎪⎭⎫ ⎝⎛---=021********⎪⎪⎪⎭⎫ ⎝⎛010100001⎪⎪⎪⎭⎫⎝⎛---=20102443121. 23.求非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x 的通解.解:=),(b A ⎪⎪⎪⎭⎫ ⎝⎛------089514431311311→⎪⎪⎪⎭⎫⎝⎛------176401764011311→⎪⎪⎪⎭⎫⎝⎛---000001764011311 →⎪⎪⎪⎭⎫ ⎝⎛---0000017640441244→⎪⎪⎪⎭⎫ ⎝⎛--000001764053604→⎪⎪⎪⎭⎫ ⎝⎛----000004/14/72/3104/54/32/301,⎪⎪⎪⎩⎪⎪⎪⎨⎧==++-=-+=4433432431472341432345x x x x x x x x x x ,通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-104/74/3012/32/3004/14/521k k ,21,k k 都是任意常数. 24.求向量组)4,1,2,1(1-=α,)4,10,100,9(2=α,)8,2,4,2(3---=α的秩和一个极大无关组.解:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=844210141002291),,(321TT T ααα→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21121012501291→⎪⎪⎪⎪⎪⎭⎫⎝⎛--08001900410291 →⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010291→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000000010201,向量组的秩为2,21,αα是一个极大无关组.25.已知⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量T )1,1,1(-=ξ,求b a ,及ξ所对应的特征值,并写出对应于这个特征值的全部特征向量.解:设λ是ξ所对应的特征值,则λξξ=A ,即⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛---1111112135212λb a ,从而⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛++-λλλ121b a ,可得3-=a ,0=b ,1-=λ; 对于1-=λ,解齐次方程组0)(=-x A E λ:=-A E λ=⎪⎪⎪⎭⎫ ⎝⎛+-+---201335212λλλ⎪⎪⎪⎭⎫ ⎝⎛----101325213→⎪⎪⎪⎭⎫⎝⎛----213325101→⎪⎪⎪⎭⎫ ⎝⎛110220101→⎪⎪⎪⎭⎫ ⎝⎛000110101,⎪⎩⎪⎨⎧=-=-=333231x x x x x x ,基础解系为⎪⎪⎪⎭⎫⎝⎛--111,属于1-=λ的全部特征向量为k ⎪⎪⎪⎭⎫⎝⎛--111,k 为任意非零实数.26.设⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A ,试确定a 使2)(=A r .解:⎪⎪⎪⎭⎫ ⎝⎛----=22111212112a A →⎪⎪⎪⎭⎫ ⎝⎛----a 12121122211→⎪⎪⎪⎭⎫ ⎝⎛----233023302211a →⎪⎪⎪⎭⎫⎝⎛--a 00023302211,0=a 时2)(=A r . 四、证明题(本大题共1小题,6分)27.若321,,ααα是b Ax =(0≠b )的线性无关解,证明,12αα-13αα-是对应齐次线性方程组0=Ax 的线性无关解.证:因为321,,ααα是b Ax =的解,所以12αα-,13αα-是0=Ax 的解;设0)()(132121=-+-ααααk k ,即0)(3221121=++--αααk k k k ,由321,,ααα线性无关,得⎪⎩⎪⎨⎧===--0002121k k k k ,只有零解021==k k ,所以,12αα-13αα-线性无关.全国2011年1月高等教育自学考试线性代数(经管类)试题课程代码:04184说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,(βα,)表示向量α与β的内积,E 表示单位矩阵,|A |表示方阵A 的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)1.设行列式333231232221131211a a a a a a a a a =4,则行列式333231232221131211333222a a a a a a a a a =( ) A.12 B.24 C.36D.482.设矩阵A ,B ,C ,X 为同阶方阵,且A ,B 可逆,AXB =C ,则矩阵X =( ) A.A -1CB -1B.CA -1B -1C.B -1A -1CD.CB -1A -13.已知A 2+A -E =0,则矩阵A -1=( ) A.A -E B.-A -E C.A +ED.-A +E4.设54321,,,,ααααα是四维向量,则( )A.54321,,,,ααααα一定线性无关B.54321,,,,ααααα一定线性相关C.5α一定可以由4321,,,αααα线性表示D.1α一定可以由5432,,,αααα线性表出 5.设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则( ) A.A =0 B.A =E C.r (A )=nD.0<r (A )<(n )6.设A 为n 阶方阵,r (A )<n ,下列关于齐次线性方程组Ax =0的叙述正确的是( ) A.Ax =0只有零解B.Ax =0的基础解系含r (A )个解向量C.Ax =0的基础解系含n -r (A )个解向量D.Ax =0没有解7.设21,ηη是非齐次线性方程组Ax =b 的两个不同的解,则( ) A.21ηη+是Ax =b 的解B.21ηη-是Ax =b 的解C.2123ηη-是Ax =b 的解D.2132ηη-是Ax =b 的解8.设1λ,2λ,3λ为矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡200540093的三个特征值,则321λλλ=( )A.20B.24C.28D.309.设P 为正交矩阵,向量βα,的内积为(βα,)=2,则(βαP P ,)=( ) A.21B.1C.23 D.210.二次型f (x 1,x 2,x 3)=323121232221222x x x x x x x x x +++++的秩为( ) A.1 B.2C.3D.4二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
《线性代数》试题一(课程代码:02198)一、单选题(本大题共10小题,每小题2分,共20分)1.若矩阵A满足Aˆ2-5A=E,则矩阵(A-5E)ˆ-1=【】A、A-5EB、A+5EC、AD、-A2.设矩阵A是2阶方阵,且det(A)=3,则det(5A)=【】A、3B、15C、25D、753.设矩阵A,B,X为同阶方阵,且A,B可逆,若A(X-E)B=B,则矩阵X=【】A、E+Aˆ-1B、E+AC、E+Bˆ-1D、E+B4.设矩阵A1,A2均为可逆方阵,则以下结论正确的是【】5.设αˇ1,αˇ2,…,αˇk是n维列向量,则αˇ1,αˇ2,…αˇk线性无关的充分必要条件是【】A、向量组αˇ1,αˇ2,…,αˇk中任意两个向量线性无关B、存在一组不全为0的数lˇ1,lˇ2,…,lˇk,使得lˇ1αˇ1+lˇ2αˇ2+…+lˇkαˇk≠0C、向量组αˇ1,αˇ2,…,αˇk中存在一个向量不能由其余向量线性表示D、向量组αˇ1,αˇ2,…,αˇk中任意一个向量都不能由其余向量线性表示6.设α=(aˇ1,aˇ2,aˇ3),β=(bˇ1,bˇ2,bˇ3),其中aˇ1,aˇ2,aˇ3不全为0,且bˇ1,bˇ2,bˇ3不全为0,则αˇTβ的秩为【】A、0B、1C、2D、37.设三阶方阵A的特征值分别为1/2,1/4,3,则Aˆ-1的特征值为【】A、2,4,1/3B、1/2,1/4,1/3C、1/2,1/4,3D、2,4,38.二次型f(X1,X2,X3)=(X1+X2+X3)2的矩阵是【】9.以下关于正定矩阵叙述正确的是【】A、正定矩阵的特征值一定大于零B、正定矩阵的行列式一定小于零C、正定矩阵的乘积一定是正定矩阵D、正定矩阵的差一定是正定矩阵10.设A为3阶矩阵,且|A|=3,则|(-A)ˆ-1|=【】A、-3B、-1/3C、1/3D、3二、填空题(本大题共10小题,每小题3分,共30分)1、在五阶行列式中,项的符号为____________。
线性代数---2019年10月1.A、图中AB、图中BC、图中CD、图中D正确答案:A解析:2.A、图中AB、图中BC、图中CD、图中D正确答案:D解析:3.设向量组αˇ1=(3,-1,a,1),αˇ2=(-6,2,4,b)线性相关,则必有A、 a=-2,b=-2B、 a=-2,b=2C、 a=2,b=-2D、 a=2,b=2正确答案:A解析:4.设3阶矩阵A满足|3A-2E|=0,则A必有一个特征值为A、-3/2B、 -2/3C、2/3D、3/2正确答案:C解析:5.A、图中AB、图中BC、图中CD、图中D正确答案:B解析:6.正确答案:17.正确答案:8.正确答案:9.正确答案:1/210.设向量β=(2,1,4)ˆT可以由向量组αˇ1=(1,1,1)ˆT,αˇ2=(-2,-3,a)ˆT线性表示,则数a=_____。
正确答案:011.正确答案:kˇ1+kˇ2+kˇ3=112.正确答案:K≠113.设2阶矩阵A的特征值为-3和2,则|Aˆ-1|=_____。
正确答案:-1/614.设3阶矩阵A与B相似,A的特征值为1,-2,3,则|AB|=_____。
正确答案:3615.正确答案:16.正确答案:17.正确答案:18.正确答案:19.正确答案:20.正确答案:21.正确答案:22.正确答案:23.正确答案:。
浙江省2019年10月高等教育自学考试线性代数(经管类)试题【正确答案】 A【答案解析】 因为由方阵性质可知,若方阵的行列式等于零,则它的行向量组和列向量组都线性相关。
所以可得100110100,,111(1)2022212212202x xαβγx x x x x x x ==-=-=-=-g解得2x =。
【知 识 点】 第三章 线性相关性的若干基本定理。
4. 1231323220,20,0.ax x x x x a x x +-=⎧⎪-+==⎨⎪-+=⎩若方程组有无穷多解,则( )。
A. 0 B. 3 C. -1 D. -3【正确答案】 A【答案解析】 由题可得2200201201011011a a A -⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦因为若方程组有无穷多解,可知()r A n <。
若0a =时,()23r A n =<=。
故选A 。
【知 识 点】 第四章 齐次线性方程组的解。
5. 若110011101t A t t t 为正交矩阵,则-⎡⎤⎢⎥=-=⎢⎥⎢⎥-⎣⎦( )。
A. -1B. 01【正确答案】 C【答案解析】 因为若A 为正交矩阵,则有1A =±。
3110011(1)11101t A t t t -⎡⎤⎢⎥=-=-+=±⎢⎥⎢⎥-⎣⎦解得1t =或1t =-。
故选C 。
【知 识 点】 第五章 正交矩阵。
6. 222231123(),,25f x x x x x x =--二次型的负惯性指数是( )。
A. -5 B. -7 C. 1 D. 2【正确答案】 D【答案解析】 因为负惯性指数即为二次型中系数为负数的项的个数。
题干中的二次型负数项有两个,所以负惯性指数为2,故选D 。
【知 识 点】 第六章 二次型的规范形。
二、填空题(本大题共9小题,每小题2 分,共 18分)7. 行列式___0______0_0__x y x y yx=。
2019年10月全国自考线性代数(经管类)04184真题试题02198与04184关于2019年10月试题对比内容类型02198 04184 题目数量23道题23道题相同题的题序号1,3,7,10,11,12,14,17,19,21(共10道) 不同题的题序号2,4,5,6,8,9,13,15,16,18,20,22,23(共13道)注:两套试卷考点都是考试常考点。
一、单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1. 123123123123123123123000000a a a b b b b b b b b b c c c c c c c c c ++=A. 123123123a a ab b bc c c B. 123123123333333a a a b b b c c c C. 1231231233a a a b b b c c c D. 1231231236a a a b b b c c c 2.设矩阵123123123200030,004a a a P A b b b c c c ⎛⎫⎛⎫ ⎪⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则AP= A.123123123222333444a a a b b b c c c ⎛⎫ ⎪ ⎪ ⎪⎝⎭ B. 123123123234a a a b b b c c c ⎛⎫⎪ ⎪ ⎪⎝⎭ C.123123123234234234a a a b b b c c c ⎛⎫⎪ ⎪ ⎪⎝⎭ D. 123123123234a a a b b b c c c ⎛⎫⎪ ⎪ ⎪⎝⎭3.若向量组12(3,1,,1),(6,2,4,)a b αα=-=-线性相关,则必有A.a=-2,b=-2B.a=-2,b=2C.a=2,b=-2D.a=2,b=24.若矩阵12A x y ⎛⎫= ⎪⎝⎭,且A 的特征值为1与2,则数x,y 的取值分别为A. 2,0x y =-= B.0,2x y ==- C.2,0x y == D.0,2x y ==5.下列矩阵中,与矩阵100020003A ⎛⎫⎪=-⎪ ⎪⎝⎭合同的是 A. 300020001-⎛⎫ ⎪- ⎪ ⎪-⎝⎭ B.300020001⎛⎫ ⎪- ⎪ ⎪-⎝⎭ C.100020003-⎛⎫ ⎪ ⎪ ⎪⎝⎭D. 100020003⎛⎫⎪ ⎪ ⎪⎝⎭二、填空题:本大题共10小题,每小题2分,共20分。
线性代数(经管类)(04184适用全国)速记宝典一、简答题命题来源:围绕学科的基本概念、原理、特点、内容。
答题攻略:(1)不能像名词解释那样简单,也不能像论述题那样长篇大论,但需要加以简要扩展。
(2)答案内容要简明、概括、准确,即得分的关键内容一定要写清楚。
(3)答案表述要有层次性,列出要点,分点分条作答,不要写成一段;(4)如果对于考题内容完全不知道,利用选择题找灵感,找到相近的内容,联系起来进行作答。
如果没有,随意发挥,不放弃。
考点1:二阶三阶行列式小结1)二阶、三阶行列式是由解二元和三元线性方程组引入的2)二阶与三阶行列式的计算——对角线法则3)归纳(1)二阶行列式展开共有2项,即2!项;三阶行列式展开共有6项,即3!项。
(2)每项都是位于不同行不同列的三个元素的乘积。
(3)每项的正负号都取决于位于不同行不同列的三个元素的下标排列。
考点2:n阶行列式的定义1)行列式是一种特定的算式,它是根据求解方程个数和未知量个数相同的一次方程组的需要而定义的。
2)n阶行列式共有n!项,每项都是取自不同行、不同列的n个元素的乘积,正负号由下标排列的逆序数决定。
考点3:化三角形法计算行列式时,常用行列式的性质,把它化为三角形行列式来计算。
化为上三角形行列式的步骤是:如果第一列第一个元素为0,先将第一行与其它行交换使得第一列第一个元素不为0;然后把第一行分别乘以适当的数加到其它各行,使得第一列除第一个元素外其余元素全为0;再用同样的方法处理除去第一行和第一列后余下的低一阶行列式,如此继续下去,直至使它成为上三角形行列式。
这时主对角线上元素的乘积就是所求行列式的值。
考点4:降阶法计算行列式时,常用行列式的性质,用降阶法来计算行列式。
降阶的基本思路是:降阶就是将行列式的某一行(或列)变成只有一个非0的值m,这一行(或列)其他全部为0,则此行列的值就等于m乘以它的代数余子式(n-1阶的行列式)。
对此n-1阶的行列式再次降阶,以此类推,直至化为2阶行列式,求出最后的值。
1全国2019年10月高等教育自学考试线性代数试题课程代码:02198试卷说明:A T 表示矩阵A 的转置矩阵,A *表示矩阵A 的伴随矩阵,E 是单位矩阵,|A|表示方阵A 的行列式。
一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式等于 ,则 232221333231131211333231232221131211a 3a 3a 3a 3a 3a 3a 3a 3a 33a a a a a a a a a =( ) A.–81B.–9C.9D.81 2.设A 是m ×n 矩阵,B 是s ×n 矩阵,C 是m ×s 矩阵,则下列运算有意义的是( )A.ABB.BCC.AB TD.AC T3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ) A.(A+B)T =A T +B TB.(A+B)-1=A -1+B -1C.(AB)-1=B -1A -1D.(AB)T =B T A T4.已知α1=(1,0,0),α2=(-2,0,0),α3=(0,0,3),则下列向量中可以由α1,α2,α3线性表出的是( )A.(1,2,3)B.(1,-2,0)C.(0,2,3)D.(3,0,5) 5.设A 为n(n>2)阶矩阵,秩(A )<n-1,则秩(A *)=( )A.0B.1C.n-1D.n 6.矩阵A=⎪⎪⎪⎭⎫ ⎝⎛--500043200101的秩为( )A.1B.2C.3D.47.设α1=(1,0,0,c 1),α2=(1,2,0,c 2),α3=(1,2,3,c 3),α4=(3,2,1,c 4),2其中c 1,c 2,c 3,c 4是任意实数,则必有( )A.α1,α2,α3线性相关B.α1,α2,α3线性无关C.α1,α2,α3,α4线性相关D.α1,α2,α3,α4线性无关8.线性方程组⎩⎨⎧=++-+=-+-+0x x 2x 2x 2x 20x 2x x x x 5432154321的基础解系中所含向量的个数为( ) A.1B.2C.3D.4 9.n 阶方阵A 可对角化的充分必要条件是( ) A.A 有n 个不同的特征值B.A 为实对称矩阵C.A 有n 个不同的特征向量D.A 有n 个线性无关的特征向量10.设A 是n 阶正定矩阵,则二次型x T (-A)x ( )A.是不定的B.是负定的C.当n 为偶数时是正定的D.当n 为奇数时是正定的 二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。
2019年4月全国自考线性代数04184+02198真题试题合集一、 单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1.(02198)设行列式1212a a b b =k ,则1212263a a b b =A.kB.2kC.3kD.6k2.设A 为2阶矩阵,将A 的第1行与第2行互换得到矩阵B ,再将B 的第2行加到第1行得到单位矩阵,则1A -=A.1110⎛⎫ ⎪⎝⎭B.1101⎛⎫ ⎪⎝⎭C.0111⎛⎫ ⎪⎝⎭D.1011⎛⎫ ⎪⎝⎭3.设向量(2,1,)T b β=可由向量组1(1,1,1)T α=,2(2,3,)T a α=线性表出,则数,a b 满足关系式A.a-b=4B.a+b=4C.a-b=0D.a+b=04.设齐次线性方程组1231231232000x x x kx x x x x x ++=⎧⎪++=⎨⎪-+=⎩有非零解,则数k=A.-2B.-1C.1D.25.(02198)设3阶实对称矩阵A 的秩为2,则A 的非特征值个数为A.0B.1C.2D.3二、填空题:本大题共10小题,每小题2分,共20分。
6.(02198)行列式003325207= .7.已知行列式2031111a b c =,则203111111a b c -+-= .8. 111213212223313233a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪⎝⎭100010201⎛⎫ ⎪= ⎪ ⎪⎝⎭. 9.(02198)设矩阵A=2202-⎛⎫ ⎪⎝⎭,若22B A A E =-+,则B = . 10.设向量组123(1,1,),(1,,1),(,1,1)T T T a a a ααα===的秩为2,则数a= .11.(02198)设向量(1,1),(1,2),(,)T T αβαβ==-表示α与β的内积,则(,)(,)αββααα-= . 12.设4元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为()1101002131,0020100020A b a a -⎛⎫ ⎪- ⎪→ ⎪-- ⎪-⎝⎭.若该线性方程组有唯一解,则数a 的取值应满足 .13. 设A 为n 阶矩阵,若非齐次线性方程组Ax=b 有无穷多解,则|A|= .14. 设A 为n 阶矩阵,且满足|3A+2E|=0,则A 必有一个特征值为 .15.二次型221231223(,,)()()f x x x x x x x =---的矩阵A= .三、计算题:本大题共7小题,每小题9分,共63分。
(完整版)全国⾃考历年线性代数试题及答案浙02198# 线性代数试卷第1页(共54页)全国2010年1⽉⾼等教育⾃学考试《线性代数(经管类)》试题及答案课程代码:04184试题部分说明:本卷中,A T 表⽰矩阵A 的转置,αT 表⽰向量α的转置,E 表⽰单位矩阵,|A |表⽰⽅阵A 的⾏列式,A -1表⽰⽅阵A 的逆矩阵,r (A )表⽰矩阵A 的秩.⼀、单项选择题(本⼤题共10⼩题,每⼩题2分,共30分)在每⼩题列出的四个备选项中只有⼀个是符合题⽬要求的,请将代码填写在题后的括号内。
错选、多选或未选均⽆分。
1.设⾏列式==1111034222,1111304z y x zy x则⾏列式()A.32B.1C.2D.38 2.设A ,B ,C 为同阶可逆⽅阵,则(ABC )-1=() A. A -1B -1C -1 B. C -1B -1A -1 C. C -1A -1B -1D. A -1C -1B -13.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=() A.-32 B.-4 C.4D.324.设α1,α2,α3,α4 是三维实向量,则() A. α1,α2,α3,α4⼀定线性⽆关 B. α1⼀定可由α2,α3,α4线性表出 C.α1,α2,α3,α4⼀定线性相关D. α1,α2,α3⼀定线性⽆关5.向量组α1=(1,0,0),α2=(1,1,0),α3=(1,1,1)的秩为() A.1 B.2 C.3D.46.设A 是4×6矩阵,r (A )=2,则齐次线性⽅程组Ax =0的基础解系中所含向量的个数是()A.1B.2C.3D.47.设A 是m ×n 矩阵,已知Ax =0只有零解,则以下结论正确的是() A.m ≥nB.Ax =b (其中b 是m 维实向量)必有唯⼀解浙02198# 线性代数试卷第2页(共54页)C.r (A )=mD.Ax =0存在基础解系8.设矩阵A =??---496375254,则以下向量中是A 的特征向量的是() A.(1,1,1)T B.(1,1,3)T C.(1,1,0)TD.(1,0,-3)T9.设矩阵A =--111131111的三个特征值分别为λ1,λ2,λ3,则λ1+λ2+λ3 = ()A.4B.5C.6D.710.三元⼆次型f (x 1,x 2,x 3)=233222312121912464x x x x x x x x x +++++的矩阵为()A.??963642321 B.??963640341 C.??960642621 D.??9123042321⼆、填空题(本⼤题共10⼩题,每⼩题2分,共20分)请在每⼩题的空格中填上正确答案。
2019年10月全国自考线性代数(经管类)04184真题试题
02198与04184关于2019年10月试题对比
一、 单项选择题:本大题共5小题,每小题2分,共10分。
在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。
1. 1
231
2312312
31
231
2
312300000
a a a
b b b b b b b b b
c c c c c c c c c ++= A. 1
23
1
2312
3a a a b b b c c c B. 1
2
3
123123333333a a a b b b c c c C. 1
23
1
2312
33a a a b b b c c c D. 1
231231
2
3
6a a a b b b c c c 2.设矩阵1
231
2312
3200030,004a a a P A b b b c c c ⎛⎫⎛⎫
⎪
⎪
== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭
,则AP= A.1
231
231
2
3222333444a a a b b b c c c ⎛⎫ ⎪ ⎪ ⎪⎝⎭
B. 12
31231
23234a a a b b b c c c ⎛⎫
⎪ ⎪ ⎪⎝⎭ C.12
312
3123234234234a a a b b b c c c ⎛⎫
⎪ ⎪ ⎪⎝⎭ D. 12
3123123234a a a b b b c c
c ⎛⎫
⎪ ⎪ ⎪⎝⎭
3.若向量组12(3,1,,1),(6,2,4,)a b αα=-=-线性相关,则必有
A.a=-2,b=-2
B.a=-2,b=2
C.a=2,b=-2
D.a=2,b=2
4.若矩阵12A x y ⎛⎫
= ⎪⎝⎭
,且A 的特征值为1与2,则数x,y 的取值分别为
A. 2,0x y =-=
B.0,2x y ==-
C.2,0x y ==
D.0,2x y ==
5.下列矩阵中,与矩阵100020003A ⎛⎫ ⎪
=- ⎪ ⎪⎝⎭
合同的是
A. 300020001-⎛⎫ ⎪- ⎪ ⎪-⎝⎭
B.300020001⎛⎫ ⎪- ⎪ ⎪-⎝⎭
C.100020003-⎛⎫
⎪
⎪ ⎪⎝⎭
D. 100020003⎛⎫
⎪ ⎪ ⎪⎝⎭
二、填空题:本大题共10小题,每小题2分,共20分。
6.设某3阶行列式第1列元素1,-2,3,对应的代数余子式为3,2,-2,则该行列式的值为 .
7.设矩阵1324A ⎛⎫= ⎪⎝⎭
,则*
A = .
8设矩阵0011
02300A ⎛⎫
⎪ ⎪= ⎪ ⎪-⎝
⎭
,则1A -= . 9.设A 为3阶矩阵,且2A =,则-12A = .
10.设向量(2,1,4)T β=可以由向量组12(1,1,1),(2,3,)T T a αα==--线性表示,
则数a = .
11.若向量组123,,ααα是非齐次线性方程组Ax=b 的3个解,若线性112233k k k ααα++也是Ax=b 的解,则数123,,k k k 满足关系式 .
12.设齐次线性方程组12312323
0200x kx x x x x kx x ++=⎧⎪
++=⎨⎪+=⎩只有零解,则数k 应满足的条件是 .
13.设3阶矩阵A 的特征值为1,-2,3,则2+A E = .
14.设3阶矩阵A 与B 相似,A 的特征值为1,-2,3,则AB = . 15.二次型123121323(,,)f x x x x x x x x x =++的秩为 . 三、计算题:本大题共7小题,每小题9分,共63分。
16.计算行列式232a
b
c
a a b
a b c a a b a b c
++++++的值.
17.已知矩阵142175,004314A B -⎛⎫⎛⎫
== ⎪ ⎪-⎝⎭⎝⎭
,求
(1)矩阵X ,使得2X+3A=4B ;(2) T AB .
18.设矩阵A 和B 满足关系式AB=A+2B ,其中301110014A ⎛⎫
⎪
= ⎪ ⎪⎝⎭
,求矩阵B.
19.求向量组1234(1,2,1,4),(0,3,1,3),(1,2,8,8),(2,3,8,9)T T T T αααα==--=-=的秩和一个极大无关组,并把其余向量用该极大无关组线性表出.
20.求线性方程组123423413
42344
322
x x x x x x x x x x -+-=⎧⎪
-+=-⎨⎪+-=-⎩的通解(要求用它的一个特解和导出组的基
础解系表示).
21.已知矩阵00001010x A ⎛⎫ ⎪= ⎪ ⎪⎝⎭与20001000B y ⎛⎫
⎪
= ⎪ ⎪⎝⎭
相似.
(1)确定数x 与y 的值;(2)求可逆矩阵P 使得1P AP B -=.
22.用正交变换x=Qy ,将二次型222
12312
313(,,)2+628f x x x x x x x x =++化为标准形. 四、证明题:本题7分。
23.设1α,2α是齐次线性方程组Ax=0的一个基础解系,证明: 12123+αααα+,
也是Ax=0的一个基础解系..。