当前位置:文档之家› 煤矿工业储量怎么计算

煤矿工业储量怎么计算

煤矿工业储量怎么计算

煤矿工业储量怎么计算

矿井总储量(矿井地质储量)=能利用储量+尚难利用储量能利用储量=工业储量+远景储量

工业储量=可采储量+设计损失量。

煤矿常用计算公式汇总审批稿

煤矿常用计算公式汇总

煤矿巷道及通风计算公式 一、常见断面面积计算: 1、半圆拱形面积=巷宽×(巷高+×巷宽) 2、三心拱形面积=巷宽×(巷高+×巷宽) 3、梯形面积=(上底+下底)×巷高÷2 4、矩形面积=巷宽×巷高 二、风速测定计算: V表=n/t (m/s) (一般为侧身法测风速) 式中:V表:计算出的表速; n:见表读数; t:测风时间(s) V真=a+ b×V表 式中:V真:真风速(扣除风表误差后的风速); a、b:为校正见表常数。 V平=K V真=()×V真÷S 式中:K为校正系数(侧身法测风时K=()/S,迎面测风时取); S为测风地点的井巷断面积 三、风量的测定: Q=SV 式中Q:井巷中的风量(m3/s);S:测风地点的井巷断面积(m2); V:井巷中的平均风速(m/s) 例1:某半圆拱巷道宽2m,巷道壁高1m,风速1m/s,问此巷道风量是多少。 例2:某煤巷掘进断面积3m2,风量36 m3/min,风速超限吗? 四、矿井瓦斯涌出量的计算: 1、矿井绝对瓦斯涌出量计算(Q瓦)

Q 瓦=QC (m 3/min ) 式中Q :为工作面的风量;C :为工作面的瓦斯浓度(回风流瓦斯浓度-进风流中瓦斯浓度) 例:某矿井瓦斯涌出量3 m 3/min ,按总回风巷瓦斯浓度不超限计算矿井供风量不得小于多少。 2、相对瓦斯涌出量(q 瓦) q 瓦=1440Q 瓦*N T (m 3/t ) 式中Q 瓦:矿井绝对瓦斯涌出量;1440:为每天1440分钟; N :工作的天数(当月); T :当月的产量 五、全矿井风量计算: 1、按井下同时工作最多人为数计算 Q 矿=4NK (m 3/min ) 式中4:为《规程》第103条规定每人在井下每分钟供给风量不得少于4立方米;N :井下最多人数;K :系数(~) 2、按独立通风的采煤、掘进、硐室及其他地点实际需要风量的总和计算 Q 矿=(∑Q 采+∑Q 掘+∑Q 硐…+∑Q 其他)×K 式中K :校正系数(取~) 六、采煤工作面需风量 1、按瓦斯涌出量计算 Q 采=100×q 采×K CH4 (m 3/min ) 式中100:为系数; q 采:采煤工作面瓦斯涌出量(相对); K CH4:瓦斯涌出不均衡系数(取~) 2、按采面气温计算:

固体矿产资源储量分类及编码

固体矿产资源/储量分类及编码 固体矿产资源/储量分分类 分类依据:矿产资源经过矿产勘查所获得的不同地质可靠程度和经相应的可行性评价所获不同的经济意义,是固体矿产资源/储量分类的主要依据。据此,固体矿产资源/储量可分为储量、基础储量、资源量三大类十六种类型,分别用二维形式 ( 图 l) 和矩阵形式 ( 表 1) 表示。 储量:是指基础储量中的经济可采部分。在预可行性研究、可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量和预可采储量。 基础储量:是查明矿产资源的一部分。它能满足现行采矿和生产所需的指标要求 ( 包括品位、质量、厚度、开采技术条件等 ) ,是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用末扣除设计、采矿损失的数量表述。 资源量:是指查明矿产资源的一部分和潜在矿产资源。包括经可行性研究或预可行性研究证实为次边际经济的矿产资源以及经过勘查而末进行可行性研究或预可行性研究的内蕴经济的矿产资源;以及经过预查后预测的矿产资源。 固体矿产资源/储量分类编码 编码:采用 ( EFG) 三维编码, E、F 、G 分别代表经济轴、可行性轴、地质轴 ( 见图 l) 。 编码的第 1 位数表示经济意义: 1 代表经济的, 2M 代表边际经济的, 2S 代表次边际经济的, 3 代表内蕴经济的;第 2 位数表示可行性评价阶段: 1 代表可行性研究, 2 代表预可行性研究, 3 代表概略研究;第3 位数表示地质可靠程度: 1 代表探明的, 2 代表控制的 3 代表推断的, 4 代表预测的。变成可采储量的那部分基础储量,在其编码后加英文字母“ b ”以示区别于可采储量。 类型及编码:依据地质可靠程度和经济意义可进一步将储量、基础储量、资源量分为 16 种类型 ( 见表 l) 。

煤矿常用计算公式汇总

煤矿巷道及通风计算公式 一、常见断面面积计算: 1、半圆拱形面积=巷宽×(巷高+0.39×巷宽) 2、三心拱形面积=巷宽×(巷高+0.26×巷宽) 3、梯形面积=(上底+下底)×巷高÷2 4、矩形面积=巷宽×巷高 二、风速测定计算: V 表=n/t (m/s) (一般为侧身法测风速) 式中:V 表:计算出的表速; n :见表读数; t :测风时间(s ) V 真=a+ b ×V 表 式中:V 真:真风速(扣除风表误差后的风速); a 、 b :为校正见表常数。 V 平=K V 真=(S-0.4)×V 真÷S 式中:K 为校正系数(侧身法测风时K=(S-0.4)/S ,迎面测风时取1.14); S 为测风地点的井巷断面积 三、风量的测定: Q=SV 式中Q :井巷中的风量(m 3/s );S :测风地点的井巷断面积(m 2); V :井巷中的平均风速(m/s ) 例1:某半圆拱巷道宽2m,巷道壁高1m,风速1m/s ,问此巷道风量是多少。 例2:某煤巷掘进断面积3m 2,风量36 m 3/min ,风速超限吗? 四、矿井瓦斯涌出量的计算: 1、矿井绝对瓦斯涌出量计算(Q 瓦) Q 瓦=QC (m 3/min ) 式中Q :为工作面的风量;C :为工作面的瓦斯浓度(回风流瓦斯浓度-进风流中瓦斯浓度) 例:某矿井瓦斯涌出量3 m 3/min ,按总回风巷瓦斯浓度不超限计算矿井供风量不得小于多少。 2、相对瓦斯涌出量(q 瓦) q 瓦=1440Q 瓦*N T (m 3/t )

式中Q 瓦 :矿井绝对瓦斯涌出量;1440:为每天1440分钟; N:工作的天数(当月);T:当月的产量 五、全矿井风量计算: 1、按井下同时工作最多人为数计算 Q矿=4NK (m3/min) 式中4:为《规程》第103条规定每人在井下每分钟供给风量不得少于4立方米;N:井下最多人数;K:系数(1.2~1.5) 2、按独立通风的采煤、掘进、硐室及其他地点实际需要风量的总和计算 Q矿=(∑Q采+∑Q掘+∑Q硐…+∑Q其他)×K 式中K:校正系数(取1.2~1.8) 六、采煤工作面需风量 1、按瓦斯涌出量计算 Q 采=100×q 采 ×K CH4 (m3/min) 式中100:为系数;q 采 :采煤工作面瓦斯涌出量(相对); K CH4:瓦斯涌出不均衡系数(取1.4 ~ 2.0) 2、按采面气温计算: Q 采 =60×V×S (m3/min) 式中60:为系数; V:采面的风速(温度为18~20℃时取0.8~1.0m/s,温度为20~23℃时取1.0~1.5 m/s); S:采面平均断面积。 3、按采面人数计算: Q采=4N (m3/min) 4、按炸药量计算: Q采=25A (m3/min) 式中25:为系数;A:为一次性爆破的最多炸药量 5、按风速进行校验: 15≤Q采≤240 (m/min)或0.25≤Q采≤4 (m/s) 式中15与0.25:为工作面最低风速(m/min)(m/s) 240与4:为工作面最高风速(m/min)(m/s) 例:某采面工作人数15人,一次性爆破炸药5kg,温度20度,瓦斯涌出量为1 m3/min,请问采面需风量是多少。 七:掘进工作面需风量的计算

第二章--矿井资源储量、设计生产能力

第二章矿井资源/ 储量、设计生产能力 及服务年限 第一节井田境界及资源/ 储量 一、井田境界 五轮山煤矿位于加戛背斜NE 翼南段,水公河向斜西翼。井田南北长9km,东西宽2?6km ,。根据中华人民共和国2006年12月31号颁发的 采矿许可证(副本,证号:1000000610155 )五轮山矿井矿权面积为44.0238km 2,占全井田的38% ,其拐点坐标为见表2—1 —1 。 根据《贵州省水城矿区纳雍片区总体》、《毕节地区毕节市等八县(市)煤矿整合、调整布局方案》,本矿井西北有两家小型生产煤矿,能力分别为15 万t/a 和30 万t/a ,与五轮山煤矿之间有大断层NF20 断层相隔,西南与德科煤矿毗邻,井田浅部及深部均无其他生产矿井。根据采矿许可证,五轮山煤矿与邻近矿山无矿界重叠现象。 五轮山煤矿与邻近矿井关系位置详见图2-1-1。 二、矿井资源/ 储量 (一)矿井总资源/ 储量 根据《贵州省纳雍县五轮山井田煤矿勘探地质报告评审意见书》(中矿联储评字[2003]30 号)及中华人民共和国国土资源部文件《关于“贵州省纳雍县五轮山井田煤矿勘探地质报告”矿产资源储量评审备案证明》,截止2003 年8 月31 日(矿井自2003 年底动工至今一直未开采),矿井资源总量为81885 万 t ,其中硫分小于3%的探明的内蕴经济资源量(331 )为3535 万t ,控制的内蕴经济资源量(332 )为12709 万t ,推断的内蕴经济资源量(333 )为26796万t;另有预测的(334 )?资源量(硫分小于3% )12009万t,

硫分 表2 — 1 — 1 五轮山矿井(坐拱区)拐点坐标表 大于3% 的(331 ) + (332 ) + (333 ) + (334 )?资源量为26836 万t 经过统计分析,矿井资源/储量具有以下特点: 1、井田资源量以中、高硫分储量为主,其中硫分V 1.05%的储量仅占总资源量的20% , 2%?3%的占总量的47.3% , >3%的占总量的32.7%。可采储量中,硫分 <1.05%的储量仅占总量的36.5% , 2%?3%的占总量的63.5%。 2、煤层厚度为中厚偏薄和薄煤层,其中2m以上煤层的资源量占总资 源量的17.2%。1.5?1.8m 煤层的资源量占总资源量的33.0%。1.5m 以下 煤层的资源量占总资源量的17.1% 。 井田分硫分、厚度及分级别储量统计详见表2 — 1 —2o 3、井田煤层倾角以平缓区域为主,其中煤层倾角<10。左右的资源量占总量的88% o (二)矿井资源/储量评价和分类 根据表2 — 1 —2,矿井地质总资源量为66561万t,其中(331 )资源

矿山资源量与储量计算方法

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD 法等等。 (一)地质块段法 计算步骤: 1.首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如 根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等; 2.然后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段 的体积和储量; 3.所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置

②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。 缺点:误差较大。当工程控制不足,数量少,即对矿体产状、形态、内部构造、矿石质量等控制严重不足时,其地质块段划分的根据较少,计算结果也类同其他方法误差较大。 (二)开采块段法 开采块段主要是按探、采坑道工程的分布来划分的。可以为坑道四面、三面或两面包围形成矩形、三角形块段;也可为坑道和钻孔联合构成规则或不甚规则块段。同时,划分开采块段时,应与采矿方法规定的矿块构成参数相一致,与储量类别相适应。 该法的储量计算过程和要求与地质块段法基本相同。 适用条件:适用于以坑道工程系统控制的地下开采矿体,尤其是开采脉状、薄层状矿体的生产矿山使用最广。由于其制图容易、计算简单,能按矿体的控制程度和采矿生产准备程度分别圈定矿体,符合矿山生产设计及储量管理的要求,所以生产矿山常采用。但因为开采块段法对工程(主要为坑道)控制要求严格,故常与地质块段法结合使用。一般在开拓水平以上采用开采块段法或断面法,以下(深部)用地质块段法计算储量。 (三)断面法 定义:矿体被一系列勘探断面分为若干个矿段或称块段,先计算各断面上矿体面积,再计算各个矿段的体积和储量,然后将各个块段储量相加即得矿体的总储量,这种储量计算方法称为断面法或剖面法。 根据断面间的空间位置关系分为水平断面法和垂直断面法,凡是用勘探(线)网法进行勘探的矿床,都可采用垂直断面法;对于按一定间距,以穿脉、沿脉坑道及坑内水平钻孔为主勘探的矿床,一般采用水平断面法计算矿床资源量和储量。根据断面间的关系分为平行断面法和不平行断面法。 1平行断面法 无论是垂直平行断面法还是水平平行断面法,均是把相邻两平行断面间的矿段,作为基本储量计算单元。首先在两断面图上分别测定矿体面积,然后计算块段的体积和储量。体积(V)的计算有下述几种情况:

储量计算方法的基本原理

储量计算方法的基本原理 在矿产勘查工作中,利用各种方法、各种技术手段获得大量有关矿床的数据,这些数据是计算储量的原始材料。计算储量通常的步骤如下: (1)工业指标及其确定方法: 1)工业指标:工业指标是圈定矿体时的标准。主要有下列个项: 可采厚度(最低可采厚度):可采厚度是指当矿石质量符合工业要求时,在一定的技术水平和经济条件下可以被开采利用的单层矿体的最小厚度。矿体厚度小于此项指标者,目前就不易开采,因经济上不合算。 工业品位(最低工业品位、最低平均品位):工业品位是工业上可利用的矿段或矿体的最低平均品位。只有矿段或矿体的平均品位达到工业品位时,才能计算工业储量。 最低工业品位的实质是在充分满足国家需要充分利用资源并使矿石在开采和加工方面的技术经济指标尽可能合理的前提下寻找矿石重金属含量的最低标准。所以确定工业品位应考虑的因素是:国家需要和该矿种的稀缺程度;资源利用程度;经济因素,如产品成本及其与市场价格的关系;技术条件,如矿石开采和加工得难易程度等。 工业品位和可采厚度对于不同矿种和地区各不相同,就是同一矿床,在技术发展的不同时期也有变化。 边界品位:边界品位是划分矿与非矿界限的最低品位,即圈定矿体的最低品位。矿体的单个样品的品位不能低于边界品位。 最低米百分比(米百分率、米百分值):对于品位高、厚度小的矿体,其厚度虽然小于最小可采厚度,但因其品位高,开采仍然合算,故在其厚度与品位之乘积达到最低米百分比时,仍可计算工业储量。计算公式为:K=M×C。(K-最低米百分比(m%);M-矿体可采厚度(m);C-矿石工业品位(%))。 夹石剔除厚度(最大夹石厚度):夹石剔除厚度实质矿体中必须剔除的非工业部分,即驾驶的最大允许厚度。它主要决定于矿体的产状、贫化率及开采条件等。小于此指标的夹石可混入矿体一并计算储量。夹石剔除厚度定得过小,可以提高矿石品位,但导致矿体形状复杂化,定得过大,会使矿体形状简化,但品位降低。

矿井储量管理计算方法

第九章矿井储量管理 第一节矿井储量的分类和特点 一、矿井储量的分类 可采储量:指工业储量中预计可采出的储量 设计损失量:为了保证采掘生产的安全进行,在矿井(采区、工作面)设计中,根据国家技术规定,允许丢失在地下的能利用储量。 可采储量、设计损失量与工业储量三者间的关系为: T= (I-P) K 式中T——可采储量,万t I——工业储量,万t P——设计损失量,包括保安煤柱、隔离煤柱以及因地质构造、水文地质条件等不能开采的煤。 K——设计采区采出率 第二节矿井三量管理 一、三量管理的意义 搞好三量管理是保证矿井生产正常接续、稳产高产的重要环节。 二、三量的划分和计算 (一)开拓煤量 在矿井可采储量范围内已完成设计规定的主井、副井、风井、井底车场、主要石门、集中运输大巷、集中下山、主要溜煤眼和必要的总回风巷等开拓掘进工程所构成的煤储量,并减去开拓区内地质及水文地质损失、设计损失量和开拓煤量可采期内不能回采的临时煤柱及其它开采量,即为开拓煤量。 计算公式: Q开=(LhMD-Q地损-Q呆滞)K 式中:Q开——开拓煤量,t; L——煤层两翼已开拓的走向长度,m; h——采区平均倾斜长,m; M——开拓区煤层平均厚度,m; D——煤的视密度,t/m3 Q地损——地质及水文地质损失,t; Q呆滞——呆滞煤量,包括永久煤柱的可回采部分和开拓煤量可采期内不能开采的临时煤柱及其它煤量,t; K——采区采出率。 (二)准备煤量 在开拓煤量范围内已完成了设计规定所必须的采区运输巷、采区回风巷及采区上(下)山等掘进工程所构成的煤储量,并减去采区内地质及水文地质损失、开采损失及准备煤量可采期内不能开采的煤量后,即为准备煤量。 计算公式: Q准=(LhMD-Q地损-Q呆滞)K 式中Q准——准备煤量,t; L——采区走向长度,m; h——采区倾斜长度,m; M——采区煤层平均厚度,m。 在一个采区内,必须掘进的准备巷道尚未掘成之前,该采区的储量不应算作准备煤量。 (三)回采煤量 在准备煤量范围内,按设计完成了采区中间巷道(工作面运输巷、回风巷)和回采工作面开切眼等巷道掘进工程后所构成的煤储量,即只要安装设备后,便可进行正式回采的煤量。 计算公式为: Q回=LhMDK 式中:Q回——回采煤量,t;

煤矿储量管理细则

郑州登电阳城煤业有限公司 资源储量管理细则 第一章总则 第1条为贯彻执行《矿产资源法》和《生产矿井储量管理规程(试行)》(以下简称“规程”),进一步加强储量管理工作,不断提高煤炭资源回采率,现根据“规程”规定要求,结合矿井资源赋存条件、开拓布置方式和技术管理状况等,编制本细则。 第2条本细则的内容是根据原煤炭工业部颁发的《生产矿井储量管理规程》,结合《固体矿产资源/储量分类》(BG-1999)对生产矿井储量管理的有关规定、标准和要求进行补充规定。凡本次未作规定的仍按“规程”执行。 第3条矿井必须建立独立的地测机构,并配备1名以上专业技术人员从事储量管理工作。 第4条矿井必须建立由主要负责人为组长的资源管理领导小组,不断完善回采率考核管理制度,严格考核,兑现奖惩。

第二章资源储量估算 第5条资源储量估算的一般规定 1.矿井资源储量估算范围应与采矿许可证规定的范围相一致。在现阶段,矿井资源储量估算的最大深度,基础储量一般不超过1300m,资源量一般不超过1600m。 2.凡分水平开采的矿井,应分生产水平、延深水平、深部水平分别估算资源储量。 3.生产采区或己有批准的采区设计,均应按采区估算资源储量;无采区设计的延深水平和深部水平,一般延用勘探地质报告的块段,分块段估算后按划分的水平进行汇总。 4.当煤层倾角不大于60°时,可在平面投影图上估算资源储量,煤层倾角大于60°时,则应在立面投影图或立面展开图上估算,煤层的厚度及面积必须进行换算;当煤层倾角不大于15°时,煤层的厚度及面积不必进行换算。 第6条煤层最低可采厚度,不分煤种和煤层倾角,厚度0.55m以上均可估算资源储量。 第7条资源储量估算公式 资源储量估算块段是储量估算的最小单位。估算公式是: Q=S×M×d 式中:Q—估算块段的资源储量(t); S—估算块段的真面积(m2); M—估算块段的煤层平均真厚度(m);

地热资源储量计算方法

地热资源储量计算方法 一、地热资源/储量计算的基本要求 地热资源/储量计算应建立在地热田概念模型的基础上, 根据地热地质条件和研究程度的不同, 选择相应的方法 进行。概念模型应能反映地热田的热源、储层和盖层、储层 的渗透性、内外部边界条件、地热流体的补给、运移等特征。 依据地热田的地热地质条件、勘查开发利用程度、地热 动态,确定地热储量及不同勘查程度地热流体可开采量。 表3—1地热资源/储量查明程度 类别验证的探明的控制的推断的 单泉多年动态资 料年动态资料调查实测资 料 文献资料 单井多年动态预 测值产能测试内 插值 实际产能测 试 试验资料 外推 地热田钻井控制 程度 满足开采阶 段要求 满足可行性 阶段要求 满足预可行 性阶段要求 其他目的 勘查孔开采程度全面开采多井开采个别井开采自然排泄动态监测 5年以上不少于1年短期监测或 偶测值 偶测值

计算参数依据勘查测试、多 年开采与多 年动态 多井勘查测 试及经验值 个别井勘查、 物探推测和 经验值 理论推断 和经验值 计算方法数值法、统计 分析法等解析法、比拟 法等、 热储法、比拟 法、热排量统 计法等 热储法及 理论推断 二、地热资源/储量计算方法 地热资源/储量计算重点是地热流体可开采量(包括可利用的热能量)。计算方法依据地热地质条件及地热田勘查研究程度的不同进行选择。预可行性勘查阶段可采用地表热流量法、热储法、比拟法;可行性勘查阶段除采用热储法及比拟法外, 还可依据部分地热井试验资料采用解析法;开采阶段应依据勘查、开发及监测资料, 采用统计分析法、热储法或数值法等计算。 (一)地表热流量法 地表热流量法是根据地热田地表散发的热量估算地热资源量。该方法宜在勘查程度低、无法用热储法计算地热资源的情况下,且有温热泉等散发热量时使用。通过岩石传导散发到空气中的热量可以依据大地热流值的测定来估算,温泉和热泉散发的热量可根据泉的流量和温度进行估算。

储量计算方法

金属、非金属矿产储量计算方法 邓善德 (国土资源部储量司) 一、储量计算方法的选择 矿体的自然形态是复杂的,且深埋地下,各种地质因素对矿体形态的影响也是多种多样的,因此,我们在储量计算中只能近似的用规则的几何体来描述或代替真实的矿体,求出矿体的体积。由于计算体积的方法不同,以及划分计算单元方法的差异,因而形成了各种不同的储量计算方法在。比较常用的方法有:算术平均法,地质块段法,开采块段法,多角形法(或最近地区法),断面法(包括垂直剖面法和水平断面法)及等值线法等,其中以算术平均法、地质块段法、开采块段法和断面法最为常见。现将几种常用的方法简要说明如下。 1.算术平均法 是一种最简单的储量计算方法,其实质是将整个形状不规则的矿体变为一个厚度和质量一致的板状体,即把勘探地段内全部勘探工程查明的矿体厚度、品位、矿石体重等数值,用算术平均的方法加以平均,分别求出其平均厚度、平均品位和平均体重,然后按圈定的矿体面积,算出整个矿体的体积和矿石的储量。 算术平均法应用简便,适用于矿体厚度变化小,工程分布比较均匀,矿产质量及开采条件比较简单的矿床。 2.地质块段法

它是在算术平均法的基础上加以改进的储量计算方法,此方法原理是将一个矿休投影到一个平面上,根据矿石的不同工业类型、不同品级、不同储量级别等地质特征将一个矿体划分为若干个不同厚度的理想板状体,即块段,然后在每个块段中用算术平均法(品位用加权平均法)的原则求出每个块段的储量。各部分储量的总和,即为整个矿体的储量。地质块段法应用简便,可按实际需要计算矿体的不同部分的储量,通常用于勘探工程分布比较均匀,由单一钻探工程控制,钻孔偏离勘探线较远的矿床。 地质块段法按其投影方向的不同垂直纵投影地质块段法,水平投影地质块段法和倾斜投影地质块段法。垂直纵投影地质块段法适用于矿体倾角较陡的矿床,水平投影地质块段法适用于矿体倾角较平缓的矿床,倾斜投影地质块段法因为计算较为繁琐,所以一般不常应用。 3.开采块段法 是以坑道为主要勘探手段的矿床中常用的储量计算方法,由于矿体被坑道切割成大小不同的块段,即将矿体化作一组密集的、厚度和品位一致的平行六面体(即长方形的板状体)。因此实质上开采块段法仍是算术平均法在特定情况下的具体运用。 计算储量时,是根据块段周边的坑道资料,(有时还包括部分钻孔资料)分别计算各块段的矿体面积,平均厚度,平均品位和矿石体重等,然后求得每个块段的体积和矿产储量,各块段储量的总和,即为整个矿体的储量。 开采块段法能比较如实地反映不同质量和研究程度的储量及其

煤矿三量计算

三量的划分和计算 (一)开拓煤量 在矿井可采储量范围内已完成设计规定的主井、副井、风井、井底车场、主要石门、集中运输大巷、集中下山、主要溜煤眼和必要的总回风巷等开拓掘进工程所构成的煤储量,并减去开拓区内地质及水文地质损失、设计损失量和开拓煤量可采期内不能回采的临时煤柱及其它开采量,即为开拓煤量。 计算公式:Q开=(LhMD-Q地损-Q呆滞)K 式中:Q开——开拓煤量,t; L——煤层两翼已开拓的走向长度,m; h——采区平均倾斜长,m; M——开拓区煤层平均厚度,m; D——煤的视密度,t/m3 Q地损——地质及水文地质损失,t; Q呆滞——呆滞煤量,包括永久煤柱的可回采部分和开拓煤量可采期内不能开采的临时煤柱及其它煤量,t; K——采区采出率。 (二)准备煤量 在开拓煤量范围内已完成了设计规定所必须的采区运输巷、采区回风巷及采区上(下)山等掘进工程所构成的煤储量,并减去采区内地质及水文地质损失、开采损失及准备煤量可采期内不能开采的煤量后,即为准备煤量。 计算公式:Q准=(LhMD-Q地损-Q呆滞)K 式中Q准——准备煤量,t; L——采区走向长度,m; h——采区倾斜长度,m; M——采区煤层平均厚度,m。 在一个采区内,必须掘进的准备巷道尚未掘成之前,该采区的储量不应算作准备煤量。(三)回采煤量 在准备煤量范围内,按设计完成了采区中间巷道(工作面运输巷、回风巷)和回采工作面开切眼等巷道掘进工程后所构成的煤储量,即只要安装设备后,便可进行正式回采的煤量。计算公式为:Q回=LhMDK 式中:Q回——回采煤量,t; L——工作面走向可采长度,m; h——工作面倾斜开采长度,m; M——设计采高或采厚,m; K——工作面回采率。 上述各煤量的计算公式,仅适用于较稳定煤层。若煤层不稳定,厚度变化较大时,应依具体情况划分块段分别计算煤储量后求和。 三、三量开采期 (一)三量可采期的规定 为了使资源准备在时间上可靠,经济上合理,煤炭工业技术政策对大、中型矿井原则规定的三量合理开采期为: 开拓煤量可采期3-5a以上; 准备煤量可采期1a以上; 回采煤量可采期4-6个月以上。

矿产资源储量估算方法

国体矿产资源储量各估算方法的适用条件及优缺点 1储量估算方法的定义: 估算方法:是指矿产资源埋藏量估算过程中,各种参数及其资源的计算方法和相关软件的统称。由于矿产资源赋存方式也不尽相同,因此,必须要研究适合的矿产资源储量计算方法。矿产资源划分为三大大类:第一类是固体矿产资源,包括金属矿产、非金属矿产和煤:第二类是石油天然气、天然气、煤层气资源;第三类是地下水资源。 2矿产资源储量估算放法的主要种类: (1)传统方法,据计算单元划分方式的不同,又可分为断面法和块段法两种。 断面法进一步分为:平行断面法、不平行断面法。垂直断面法,有分为勘探线剖面法和先储量计算法。 块段法:依据块段划分依据的不同,分为:地质块段法。开采块段法法、最近地区法、三角形法。等值线法、等高线法等。 地质断块法,是勘探阶段计算资源储量较为常用的一种方法。是将矿体投影到某个方向的平面上,按照矿石类型,品级,地质可靠程度的不同,并根据勘查工程分布特点,将其划分为若干各块段,分别计算资源储量并累加。这类方法,通常用于勘查工程分布比较均匀、勘查技术手段比较单一(以钻探为主)、勘查工程没有严格按照勘探线布置的矿区

的资源储量计算。 地质块段发按其投影方向的不同,还可分为垂直纵投影法、水平投影法和倾斜投影法。垂直纵投影法适用于陡倾斜的矿体:水平投影法适用于产状平缓的矿体;倾斜投影法通常选择矿体倾斜面为其投影方向,理论上讲,适用中等倾斜矿体,但因其计算过程较为繁琐,一般不常应用。 (2)克立格法 克立格法,是由南非地质学家克里格创立的,它以地质统计学理论为基础。目前西方国家在矿业筹资、股票上市、矿业权交易过程中,基本都是采用这种方法,评价矿产资源,估计矿产资源储量。地质统计学方法,是一套方法传统。目前在我国应用的主要有:二维及三维普通克里格法,二维对数正态泛克立格法、二维指示克立格法、二维及三维协同克立格法以及三维泛克立格法。 (3)SD法(最佳结构曲线断面积分储量计算法) SD法是在原国家科委和地矿部支持下,我国自行研制的一种矿产资源储量计算方法。该方法以断面结构为核心,以最佳结构地质变量为基础,利用Spline函数和动态分维几何为工具,进行矿产资源储量的计算。其最具特色的内容是根据SD精度法所确定的SD审定法基础,从定量角度定义矿产资源勘查工程控制程度和资源储量精度。

矿量计算方法

矿量计算方法 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】

资源量与储量计算方法 储量(包括资源量,下同)计算方法的种类很多,有几何法(包括算术平均法、地质块段法、开采块段法、断面法、等高线法、线储量法、三角形法、最近地区法/多角形法),统计分析法(包括距离加权法、克里格法),以及SD法等等。 (一)地质块段法计算步骤: 首先,在矿体投影图上,把矿体划分为需要计算储量的各种地质块段,如根据勘探控制程度划分的储量类别块段,根据地质特点和开采条件划分的矿石自然(工业)类型或工业品级块段或被构造线、河流、交通线等分割成的块段等;然 后,主要用算术平均法求得各块段储量计算基本参数,进而计算各块段的体积和储量;所有的块段储量累加求和即整个矿体(或矿床)的总储量。 地质块段法储量计算参数表格式如表下所列。 表地质块段法储量计算表 块段编号 资源储量级别 块段 面积 (m2) 平均厚度(m) 块段 体积 (m3) 矿石体重(t/m3) 矿石储量(资源量) 平均品位(%) 金属储量(t) 备注 需要指出,块段面积是在投影图上测定。一般来讲,当用块段矿体平均真厚度计算体积时,块段矿体的真实面积S需用其投影面积S′及矿体平均倾斜面与投影面间的夹角α进行校正。

在下述情况下,可采用投影面积参加块段矿体的体积计算: ①急倾斜矿体,储量计算在矿体垂直纵投影图上进行,可用投影面积与块段矿体平均水平(假)厚度的乘积求得块段矿体体积。 图在矿体垂直投影图上划分开采块段 (a)、(b)—垂直平面纵投影图; (c)、(d)—立体图 1—矿体块段投影; 2—矿体断面及取样位置 ②水平或缓倾斜矿体,在水平投影图上测定块段矿体的投影面积后,可用其与块段矿体的平均铅垂(假)厚度的乘积求得块段矿体体积。 优点:适用性强。地质块段法适用于任何产状、形态的矿体,它具有不需另作复杂图件、计算方法简单的优点,并能根据需要划分块段,所以广泛使用。当勘探工程分布不规则,或用断面法不能正确反映剖面间矿体的体积变化时,或厚度、品位变化不大的层状或脉状矿体,一般均可用地质块段法计算资源量和储量。

煤炭储量计算方法之储量计算的基本参数定稿版

煤炭储量计算方法之储 量计算的基本参数 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

煤炭储量计算方法之储量计算的基本参数煤炭储量计算方法 二、储量计算的基本参数 (一)计算面积的确定 根据储量计算一般要求及通用公式,计算储量时所使用的面积有如下几种: (1)当煤层倾角小于15。时,可以直接采用在煤层底板等高线图上测定的水平面积; (2)当煤层倾角在15。~60。时,就需要将煤层底板等高线图上所测定的水平面积换算成真面积,换算公式为 S = S’/cosa 式中,S为真面积;S’为在煤层底板等高线图上测定的水平面积;a为煤层倾角。 (3)当煤层倾角大于60。时就需要将煤层立面图(即立面投影图)上量得的立面面积换算成真面积,换算公式为: S = S” / sina 式中,S为真面积;S”为在煤层立面投影图上测定的立面面积;a为煤层倾角。 (4)急倾斜煤层,其产状沿走向、倾向变化很大,直立倒转频繁,这就需要编制煤层立面展开图,在其上测定的面积,可直接用于储量计算。 以上种种方法均需要从图纸上测定面积,如何测定,以下介绍几种常用的方法。 (1)求积仪法。

利用求积仪测定面积是煤炭储量计算中最常用的一种方法。过去经常使用的求积仪一种是带有可变臂杆的定极求积仪,一种是固定臂杆的定极求积仪。而现在又有了精度更高,使用更为方便的求积仪。每一种求积仪都带有详细的说明书,对其原理和使用说明不再赘述。 (2)透明纸格法。 先将绘有间隔1cm平行线的透明纸蒙在待测的平面图形上,如图2-8-5,整个欲测图形的面积即等于若干小梯形面积之和,每一条被欲测图形所截的横线长度,为梯形的横中线,其高为1。整个欲测图形面积实际等于被截的每一横线长度之和。被截的每一横线的长度,可用尺子直接量得,也可用曲线仪测得。这样求得的面积,再根据平面图的比例尺换算成实际面积。 图2-8-5用曲线仪和透明方格纸测量面积 使用本方法要注意两个问题: 其一,在用透明格纸蒙欲测图形时,必须注意使图形两端的条带宽度接近或等于 0.5cm; 其二,为了检查测定结果,可变换透明格纸的位置,再测定一次,两次测定值的误差不超过2%时,取两次测定结果的平均值。 图2-8-6用透明方格网测定面积 (3)透明方格法。

固体矿产资源、储量分类与编码

固体矿产资源、储量分类及编码-----------------------作者:

-----------------------日期:

固体矿产资源/储量分类及编码 固体矿产资源/储量分分类 分类依据:矿产资源经过矿产勘查所获得的不同地质可靠程度和经相应的可行性评价所获不同的经济意义,是固体矿产资源/储量分类的主要依据。据此,固体矿产资源/储量可分为储量、基础储量、资源量三大类十六种类型,分别用二维形式 ( 图 l) 和矩阵形式 ( 表 1) 表示。 储量:是指基础储量中的经济可采部分。在预可行性研究、可行性研究或编制年度采掘计划当时,经过了对经济、开采、选冶、环境、法律、市场、社会和政府等诸因素的研究及相应修改,结果表明在当时是经济可采或已经开采的部分。用扣除了设计、采矿损失的可实际开采数量表述,依据地质可靠程度和可行性评价阶段不同,又可分为可采储量和预可采储量。 基础储量:是查明矿产资源的一部分。它能满足现行采矿和生产所需的指标要求 ( 包括品位、质量、厚度、开采技术条件等 ) ,是经详查、勘探所获控制的、探明的并通过可行性研究、预可行性研究认为属于经济的、边际经济的部分,用末扣除设计、采矿损失的数量表述。 资源量:是指查明矿产资源的一部分和潜在矿产资源。包括经可行性研究或预可行性研究证实为次边际经济的矿产资源以及经过勘查而末进行可行性研究或预可行性研究的内蕴经济的矿产资源;以及经过预查后预测的矿产资源。 固体矿产资源/储量分类编码 编码:采用 ( EFG) 三维编码, E、F 、G 分别代表经济轴、可行性轴、地质轴 ( 见图 l) 。 编码的第 1 位数表示经济意义: 1 代表经济的, 2M 代表边际经济的, 2S 代表次边际经济的, 3 代表内蕴经济的;第 2 位数表示可行性评价阶段: 1 代表可行性研究, 2 代表预可行性研究, 3 代表概略研究;第3 位数表示地质可靠程度: 1 代表探明的, 2 代表控制的 3 代表推断的, 4 代表预测的。变成可采储量的那部分基础储量,在其编码后加英文字母“ b ”以示区别于可采储量。 类型及编码:依据地质可靠程度和经济意义可进一步将储量、基础储量、资源量分为 16 种类型 ( 见表 l) 。

煤炭行业各项指标计划含义及其计算办法

煤炭生产统计有关指标计算办法摘编 现将《煤炭工业计划统计常用指标计算办法》(1989年版)有关生产统计指标的相关规定和计算办法摘编,供生产统计人员学习参考。内容重点是原煤产量、掘进进尺、回采工作面利用、掘进工作面利用、采掘机械化程度、回采率等指标。 一、原煤产量 原煤指毛煤经过简单加工,拣除大块矸(大于50毫米)之后的煤炭。一切统计指标,都以原煤为对象。选前煤炭一般称毛煤。 原煤产量必须加工拣选,实行选后计量,即拣出50毫米以上的矸石后,经验收合格后方可计算原煤产量。 (一)原煤产量的计量 1、原煤计量形式 原煤产量必须由矿井验收计量,不得按选后产品的数量倒算原煤产量。原煤计量方法由于提升运输方式不同而有不同手段。 (1)矿井采用矿车运煤、提煤时,矿车计量以实际装载量计算。计算时扣除车底积煤; (2)箕斗和罐提煤的,以容积计算,定期(季)测定罐率和容积比重。全水分超过规定在容积比重中予以扣除 (3)皮带提升的矿井安装电子(核子)称计量,定期测定比重和含矸率。 (4)回采和掘进工作面煤炭计量采用盘方计量,即按照体积和原煤容重计算。 回采产量=工作面采长×推进度×采高×原煤容重×工作面采出率 掘进产量=煤巷(半煤岩)掘进毛断面×进尺×容重×掘进出煤系数 原煤容重是本煤层实际测定的原煤比重(毛煤扣除含矸率后),与计算储量用的纯煤比重(视密度)不同。 2、月末核定产量的方法 由于煤炭生产具有生产数量大且是连续性生产的特点,目前原煤计量手段都不同程度存在计算误差,必须在月末进行产量核定工作,保证原煤产量的准确性。一般采用“选前验收计量,月末核定产量”的方法。 核定的方法:月末对原煤的实际库存量进行一次盘点,与通过本月逐日累计

关于生产矿井储量及损失量计算办法的规定

关于生产矿井储量及损失量计算办法的规定 (原煤炭部1982年2月以(82)煤生字第031号文颁发) 目录 第一章前言 第二章储量 第三章储量损失 第四章损失率 第五章储量及损失量的填报 第六章附则 第一章前言 生产矿井储量的数量、形态、分布、损失及其变化情况等资料,是进行矿井设计、制订生产计划和远景规划、安排生产接替的主要技术依据。正确地测量、统计、计算和真实地反映矿井储量及损失量的情况,有很重要的意义,各生产单位必须配备足够的专职储量管理人员,按本规定的统一要求进行。 第二章储量 第1条储量分类 1、根据煤炭资源能利用的程度和开采技术条件,储量的分类可用下表形式表述: 可采储量 工业储量— 能利用储量度—(设计损失)地质储量—远景储量 暂不能利用储量 2、地质储量:指生产矿井井田技术边界范围内,通过地质手段(物探、钻探、巷探、地质调查等)查明,符合煤炭储量计算标准要求的全部储量。 根据我国的能源政策和煤炭资源情况,按目前煤矿开采技术水平,地质储量分为能利用储量和暂不能利用储量。 ⑴能利用(表内)储量:指煤层的厚度、质量符合当前煤矿开采经济技术条件的储量。根据对煤层的勘探和研究程度,又分为工业储量和远景储量。 ①工业储量,是在能利用储量中,可以作为设计和投资根据的那部分储量。工业储量包括可采储量和设计损失。 可采储量,是指在工业储量中,预计可以采出来的那部分储量。工业储量减去设计损失,即为可采储量。 ②远景储量,指在能利用储量中,研究程度不足,只能作为地质勘探设计和矿区发展远景规划依据的那部分储量。 ⑵暂不能利用(表外)储量:指煤层的厚度、质量不能满足当前煤矿开采经济技术条件的要求,或因水文地质条件及开采技术条件特别复杂等原因,目前开采很困难,暂时不能利用的储量。

储量计算方法

油、气储量是油、气油气勘探开发的成果的综合反应,是发展石油工业和国家经济建设决策的基础。油田地质工作这能否准确、及时的提供油、气储量数据,这关系到国民经济计划安排、油田建设投资的重大问题。 油、气储量计算的方法主要有容积法、类比法、概率法、物质平衡法、压降法、产量递减曲线法、水驱特征曲线法、矿场不稳定试井法等,这些方法应用与不同的油、气田勘探和开发阶段以及吧同的地质条件。储量计算分为静态法和动态法两类。静态法用气藏静态地质参数,按气体所占孔隙空间容积算储量的方法,简称容积法;动态法则是利用气压力、产量、累积产量等随时间变化的生产动态料计算储量的方法,如物质平衡法(常称压降法)、弹性二相法(也常称气藏探边测试法)、产量递法、数学模型法等等。 容积法: 在评价勘探中应用最多的容积法,适用于不同勘探开发阶段、不同圈闭类型、储集类型和驱动方式的油、气藏。容积法计算储量的实质是确定油(气)在储层孔隙中所占的体积。按照容积的基本计算公式,一定含气范围内的、地下温压条件下的气体积可表达为含气面积、有效厚度。有效孔隙度和含气饱和度的乘积。对于天然气藏储量计算与油藏不同,天然气体积严重地受压力和温度变化的影响,地下气层温度和眼里比地面高得多,因而,当天然气被采出至地面时,由于温压降低,天然气体积大大的膨胀(一般为数百倍)。如果要将地下天然气体积换算成地面标准温度和压力条件下的体积,也必须考虑天然气体积系数。 容积法是计算油气储量的基本方法,但主要适用与孔隙性气藏(及油藏气顶)。对与裂缝型与裂缝-溶洞型气藏,难于应用容积法计算储量 纯气藏天然气地质储量计算 G = 0.01A ·h ·φ(1-S wi )/ B gi = 0.01A ·h ·φ(1-S wi )T sc ·p i / (T ·P sc ·Z i ) 式中,G----气藏的原始地质储量,108m3; A----含气面积, km2; h----平均有效厚度, m; φ ----平均有效孔隙度,小数; Swi ----平均原始含水饱和度,小数; Bgi ----平均天然气体积系数 Tsc ----地面标准温度,K;(Tsc = 20oC) Psc ----地面标准压力, MPa; (Psc = 0.101 MPa) T ----气层温度,K; pi ----气藏的原始地层压力, MPa; Zi ----原始气体偏差系数,无因次量。 凝析气藏天然气地质储量计算 G c = Gf g f g = n g /(n g + n o ) = GOR / ( GOR + 24056γ o /M o ) 式中,Gc ----天然气的原始地质储量, 108m3; G----凝析气藏的总原始地质储量, 108m3; fg----天然气的摩尔分数;

矿井储量与生产能力计算

第2章 矿井储量与生产能力(模板1) 2.1 井田境界及储量 2.1.1 井田境界 井田境界的走向长度为8km ,井田境界的倾斜宽度为3.5km ,井田境界的井田面积为28km2。(还应该以大断层等地质条件给出井田边界的描述) 2.1.2 储量 根据储量计算公式:Q=S·H·D/cosα可得出井田内的地质储量以及井田内的工业储量。本设计井田面积为28km 2,井田内包含五层煤,第一层煤厚3.5m ,第二层煤厚2.7m ,第三层煤厚3.2m ,第四层煤厚4m ,第五层煤厚1.6m 煤层总厚15m ,煤层倾角12°。 6 5891704911233 1152793125612.)cos(.)cos(=??=??= ??容重煤厚井田面积井田工业储量 t 4.578985960=-=井田边界损失煤柱工业储量矿井设计储量 t 井田边界损失煤柱=10184531.2 t 巷道保护煤柱=9655966.4 t 采区保护煤柱=77794497 t 工业广场保护煤柱=16008484.5 t 区段保护煤柱=5053221.5 t 两个风井保护煤柱=2397981 t 75%?? ??? ??-----=两个风井保护煤柱区段保护煤柱带区保护煤柱巷道保护煤柱工业广场保护煤柱矿井设计可采储量设计可采储量 5351056857. =t 2.2 矿井生产能力及服务年限

2.2.1 矿井工作制度 设计年工作日:年设计工作日为300天,四班作业,班工作时数:六个小时,“四六”交叉。 2.2.2 矿井设计生产能力及服务年限 矿井设计生产能力3Mt/a,日产量8280t/d,本矿井设计为年产3Mt,为现代 大型矿井,矿井设计服务年限70年,由于选择了靠近工业广场的煤层作为首 采区,其距离井底车场较近,所以本矿井预计在三年内可以达到设计产量, 且超产的可能性较大。 第2章矿井储量与生产能力(模板2) 2.1 井田境界及储量 2.1.1 井田境界 2.1.2 储量 1.矿井地质储量:勘探(精查)报告提供的储量,包括“能利用储量”和“暂不能利用储量”; 2.矿井工业储量:勘探(精查)地质报告提供的“能利用储量”中的A、B、C三级储量,A、B、C三级储量的计算方法,应符合国家现行标准《煤炭资 源地质勘探规范》的规定; 3.矿井设计储量:矿井工业储量减去设计计算的断层煤柱,防水煤柱,井 田境界煤柱和已有的地面建筑物,构筑物需要留设的保护煤柱等永久性煤柱 损失量后的储量; 4.矿井设计可采储量:矿井设计储量减去工业场地的保护煤柱,矿井井下 主要巷道及上、下山保护煤柱煤量后乘以采区回采率[1]。 截至2005年9月30日,东海煤矿采矿许可证范围内煤炭资源储量总量

相关主题
文本预览
相关文档 最新文档