城市公交线路选择模型
- 格式:pdf
- 大小:251.17 KB
- 文档页数:29
2007B题:乘公交,看奥运(数据有变化)我国人民翘首企盼的第29届奥运会明年8月将在北京举行,届时有大量观众到现场观看奥运比赛,其中大部分人将会乘坐公共交通工具(简称公交,包括公汽、地铁等)出行。
这些年来,城市的公交系统有了很大发展,北京市的公交线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题。
针对市场需求,某公司准备研制开发一个解决公交线路选择问题的自主查询计算机系统。
为了设计这样一个系统,其核心是线路选择的模型与算法,应该从实际情况出发考虑,满足查询者的各种不同需求。
请你们解决如下问题:1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型与算法。
并根据附录数据,利用你们的模型与算法,求出以下6对起始站→终到站之间的最佳路线(要有清晰的评价说明)。
(1)、S3769→S2857 (2)、S1557→S0481 (3)、S1879→S2322(4)、S0008→S0073 (5)、S0148→S0485 (6)、S0087→S36762、同时考虑公汽与地铁线路,解决以上问题。
3、假设又知道所有站点之间的步行时间,请你给出任意两站点之间线路选择问题的数学模型。
【附录1】基本参数设定相邻公汽站平均行驶时间(包括停站时间):3分钟相邻地铁站平均行驶时间(包括停站时间): 2.5分钟公汽换乘公汽平均耗时:6分钟(其中步行时间2分钟)地铁换乘地铁平均耗时:5分钟(其中步行时间2分钟)地铁换乘公汽平均耗时:8分钟(其中步行时间4分钟)公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟)公汽票价:分为单一票价与分段计价两种,标记于线路后;其中分段计价的票价为:0~20站:1元;21~40站:2元;40站以上:3元地铁票价:3元(无论地铁线路间是否换乘)注:以上参数均为简化问题而作的假设,未必与实际数据完全吻合。
【附录2】公交线路及相关信息(见公汽线路信息,对原数据文件B2007data.rar 有少量更改)城市公交线路选择优化模型摘要本文针对城市公交线路选择问题建立了两个模型,一个是基于集合寻线算法模型,另一个是图论模型。
第17卷第2期 湖南城市学院学报(自然科学版)V ol.17 No.2 2008年6月 Journal of Hunan City University (Natural Science) Jun. 2008公交最优路径选择的数学模型及算法雷一鸣(广东工业大学华立学院,广州 511325)摘要:在公交出行查询系统中,最关键的部分是寻找两站点间乘车的出行最优路径问题.建立了以最小换乘次数为第一目标,最小途经站点为第二目标的公交出行最优路径模型.同时,设计了一种算法以确定最优公交线路序列,分析了线路相交的几种情况,给出了换乘点选择方法.关键词:最优路径;换乘次数;公交网络中图分类号:O232文献标识码:A文章编号:1672–7304(2008)02–0050–03公交最优路径问题一直是应用数学、运筹学、计算机科学等学科的一个研究热点.对公交最优路径问题的理论研究主要包括公交网络的数学描述和设计最优路径算法.在公交网络描述方面,Anez等用对偶图描述能够涵盖公交线路的交通网络,Choi等讨论了利用GIS技术从街道的地理数据产生公交线路和站点的问题;在设计最优算法方面,常用的算法[1]有Dijkstra算法、Floyd 算法、Moore-pape算法等.Moore-pape算法计算速度较快,适用于大型网络,但它无法进行“一对一”的计算.Floyd算法虽然可以快速地进行“多对多”的计算,但它不能应用于大型网络,而Dijkstra算法是目前公认的最好的算法,但它数据结构复杂、算法时间长,不适合公交线路的查询.本文首先对公交网络进行了数学描述,考虑到公交乘客出行时所面临的各种重要因素,包括换乘次数、途径站点、出行耗时和出行费用等,选择以换乘次数最少作为最优路径算法的第一约束目标,而出行耗时虽难以准确测算但它与途径站点数相关,所以选择易于量化的途经站点数最少作为第二约束目标,建立公交乘车数学模型,设计相应的算法,并利用有关实验数据验证了它的有效性和可行性.1 模型的建立及其算法1.1 模型假设及符号规定为了更好地建立数学模型,首先对公交网络及出行者作出以下假设[2]:1)不考虑高峰期、道路交通堵塞等外界因素对乘车耗时的影响.2)假设出行者熟悉公交站点及附近地理位置,并且知道可乘的各种公汽和地铁以及到达目的地有哪几种不同选择的机会.在公交线路网中,不同的公交线路在行程上一定会有重叠,也就是说不同的线路上一定会有同名站点.在进行网络分析时,把空间上相近的异线同名站点合理抽象成一个节点.3)假设出行者对公汽和地铁的偏好程度不一样.在不换乘的情况下,宁愿乘地铁,以求舒适;在路途较近的情况下,宁愿坐公汽而放弃乘地铁.出行者可根据自己的偏好结合自己的出行需求(换乘次数、最短路程、费用等),可在各种出行方案中选出满足自己出行需求的乘车方案.设()L I为经过点A或其附近的公交线路集,其中1,2,...,I m=;()S J为经过点B或其附近的公交线路集,其中,,...,J12n=;(,)E I U为线路)(IL上的站点,其中,,...,U12p=;(,)F J V为线路)(JS上的站点,其中,,...,V12q=;()X K为经过站点),(UIE的线路,其中,,...,K12w=;()Y O 为经过站点),(VJF的线路,其中,,...,O12v=;(,)d E F M≤表示从站点E步行到站点F之间的距离不超过乘客换车时步行的最大心理承受值M,其中M表示乘客在换车时步行的最大心理承受值.通常,M与公交站点间的平均距离呈线性正相关.AiZ表示站点A的下行第i个站点;BjZ表示站点B的上行第j个站点;另外,公交的可行线路的集合可表示为:{|i iTR TR TR== 0112,1,,,,,,i i i i da p a p a−< ,}id dp a>,其中,{}01,1,,,,i i d da a a a−为站点集合,{}12,1,,,,i i i d dp p p p−为公交车次的集合,iTR收稿日期:2008-03-10作者简介:雷一鸣(1972-),男,湖南临武人,助教,硕士,主要从事数学模型及经济信息管理研究.雷一鸣:公交最优路径选择的数学模型及算法第17卷51表示在起始站点0a 通过乘坐公交到达终点站d a 的可行的一条路线表示线路)(J S .1.2 模型描述设线路i TR 的换乘次数为i N ,出行费用为i X ,路上总耗时为i T ,则该线路途经总站数为d ,不包括起始站点.出行费用、路上总耗时与途径站点正相关.在日常生活中,公交乘客的个人偏好往往是要求换乘次数少、出行费用低、出行耗时短,但在实践中这3个要素往往很难同时满足,所以选择效用函数()U •作为目标函数为:(),,max iiTR i i N X T U ,目标函数具有以下性质:0i U N ∂<∂,0i U X ∂<∂,0iUT ∂<∂,i i U U N X ∂∂〉〉∂∂. 在上式,设相邻公汽站点间的平均行驶时间(包括停站时间)为1t ,公汽换乘公汽平均耗时为2t .总行程时间i T 与换乘次数i N 的函数关系为:21t N dt T i i +=.设第一次换乘前的价格为0X ,第i 次换乘后到第1+i 次换乘前这段线路的价格为i N X ,则有 01ij N i N j X X X ==+∑.1.3 最优路径算法根据公交路线的现实情况,一般乘客转乘次数不会超过3次[3],如图1所示.假设起始站点为A ,终点站点为B .从A 、B 两点出发,寻找出分别经过该两点的所有的线路,再进行比较分析,看是否能找出直接到达的路线,有则停止搜索,没有则选择两点中经过该路线中较少的站点的所有下一个站点,再进行线路搜索,再跟没有选中站点的线路进行比较,选择最优的站点.没有相同的线路则再进行同样的搜索,直到同样的路线出现才停止搜索.最后比较所有可行的结果,从中选择最优的方案.图1 公交线路换乘方案示意图公交路线选择的最优方案的算法步骤,如下所示:Step 1:输入乘车起始站点A 和终止站点B ;Step 2:分别求经过站点A 和B 的所有车次组成的集合)(I L 和)(J S ;Step 3:判断φ≠∩)()(J S I L 是否成立? 若成立,则)()(J S I L ∩中的元素即为直达车次,即乘坐该车次可由起始站点A 直达终点站点B ,输出)()(J S I L ∩的结果,计算)()(J S I L ∩中各直达车次经过的站点数,站点数最少的车次即为最优选择,终止算法.若不成立,则执行下一步.Step 4:判断两条公交线路是否有相同站点,即),(),(V J F U I E =或存在紧邻站点,即满足Μ≤),(F E d .如果满足),(),(V J F U I E =,则线路)(I L 、)(J S 即为转乘一次的线路,),(U I E 即为转乘站点;如果),(),(V J F U I E ≠,但满足Μ≤),(F E d ,说明乘客可以步行到邻近的站点转乘一次车到达目的地.乘客可从站点),(U I E 下车,然后步行到邻近的站点),(V J F 换乘下一条线路的车,否则转入下一步.Step 5:设))((x L C 表示经过站点x 线路的条数.比较))((A L C 与))((B S C 的大小,即)(A L 与)(B S 集合中元素个数的多少.若))(())((B S C A L C ≤,则查找经过站点A 的车次中的下一站点1+i A Z ,这些所有站点1+i A Z 构成一个集合,记为)(1+i A Z G ,查找经过)(1+i A Z G 中的元素(比如站点1+i A Z )的所有车次,组成一个集合)(1+i A Z L ,分别判断集合)(1+i A Z L 中的元素是否与),(V J F 有交集.若有交集,则),(V J F 为第二中转站点,即乘客在站点1+i A Z 转乘一次,然后在站点),(V J F 第二次转乘即可到达终点站B .若没有交集,再看下一个站点.若))(())((B S C A L C ≥,则查找经过站点B 车次的前一个站1−i B Z ,所有这些站点构成一个集合,记为)(1−i B Z G ,查找经过)(1−i B Z G 中的元素(比如站点1−i B Z )的所有车次,组成一个集合)(1−i B Z S ,分别判断集合)(1−i B Z S 中的元素是否与),(U I E 有交集.若有交集,则),(U I E 为第二中转站点,即乘客在站点),(U I E 转乘一次,然后在站点1−i B Z 第二次转乘即可到达终点站B .若没有交集,则转入下一步.湖 南 城 市 学 院 学 报(自然科学版) 2008年第2期52Step 6:判断φ≠∩)()(O Y K X 是否成立?若成立,不妨设交集中的站点为(,)(1,2,)i Z X Y i = ,则找到了转乘3次的线路,如图1中所示.若不成立,把1+i A Z 作为起始站点,1−i B Z 作为终止站点,转入Step 5继续类推搜索.1.4 算法中的程序 算法中用Matlab 求交集的程序[4]如下: %求集合A 与B 的交集A=[ ]; %输入A 的元素B=[ ]; %输入B 的元素1111(max((),()));();(2);();(2);C zeros size A size B n size A n n m size B m m ===== for i=2:nfor j=1:mif A(i)==B(j)C=[C(1:i-1),B(j)] end end end2 模型的拓广上述模型可以推广到以下情况:在城市交通网络系统中,同时有公共汽车和地铁.为了节约出行时间,乘客不是立即搭乘公共汽车,而是选择步行到临近的一个或两个站点在选择交通工具.由于地铁可以给乘客带来舒适、便捷,人们也会选择转乘地铁,而放弃路途遥远的直达公汽.当然考虑到地铁转乘公汽以及公汽转乘地铁所耗时间较长,在没有地铁直达或是距离地铁遥远的站点,乘客只有选择公汽,甚至不得不需要转乘几次.在考虑存在地铁的情况下,可以把地铁线路作为一条特殊的公汽线路.地铁线上有许多站点,地铁出口及其附近的所有公交站点可构成一个集合,本文把该集合作为一个站点来看待.如果经过起始点的某条公汽线路上的站点属于这个集合,说明乘客可以在该地铁站转乘地铁.如果地铁站旁的某公汽站点属于经过目的地的某条公汽线,说明乘客可以在该地铁站点出站转乘公汽到达目的地.其算法基本与不存在地铁的情形一样.当然,如果进一步考虑乘客在路途行走时间、公汽上所耗时间、地铁上所耗时间以及最后转乘公汽所耗时间等4部分的时间,可以考虑在上述模型的目标函数中加入时间变量,在约束条件中加入一个时间的限制条件,其算法依然满足这种情形.另外,由于在上下班的高峰期,车流量比较多,可以根据实际的情况给出一个关于时间的分段函数加入到约束条件中,这样,可使模型更加接近实际情况. 3 结束语本文深入分析了一般公交网络系统的特点,建立了以换乘次数最小为第一目标,途径站数最少为第二目标的最优公交出行路径模型.对这一组合优化模型,设计了双向优先搜索算法.当然,公交出行的实际情况要复杂的多,本文对这一问题进行了相当程度的简化,从提供最优出行计划的角度进行了初步研究.目前还有许多问题,如环行线路、换乘的难易、时间的因素、非线性费用结构以及个人偏好等因素,都需要进一步研究.参考文献:[1]陈宝林. 最优化理论与算法[M]. 北京: 清华大学出版社, 2005.[2]姜启源. 数学模型[M]. 第3版. 北京: 高等教育出版社, 2003. [3]Johnsonbaugh R. 离散数学[M]. 石纯一, 译. 北京: 人民邮电出版社, 2003.[4]王正东. 数学软件与数学实验[M]. 北京: 科学出版社, 2004.Optimum Route Mode and Its Algorithm to Public Traffic NetworkLEI Yi-ming(Huali College, Guangdong University of Technology, Guangzhou 511325, China )Abstract: The key portion in the travel query system for public transportation is the problem of seeking optimum travel route based on two transportation ports provided. A mathematic model of optimum route with minimal transfer times as primary goal and the minimal stops as the second goal was built in the paper. And an algorithm was designed to find the lines serial of the optimum route. The transferring was determined based on the analysis of some class of interconnectivity of line . The optimum route was comprised of lines serial and transfers.Key words: Optimum route; transfer time; public traffic network(责任编校:曾 伟)。
公交线路中寻求最优路线的模型与算法摘要本文对公交线路查询问题进行了研究。
根据查询者的各种不同需求,以换乘车次最少为约束条件,分别以出行耗时和出行费用为目标函数,建立多目标规划模型,运用公交换乘搜索算法可得到合理的出行路线。
针对问题一,在仅考虑公汽线路时,用520条公汽线路构建公共交通矩阵。
以此矩阵作为搜索对象,运用基于广度优先的公交换乘搜索算法,找出符合“换乘次数最少”的可行解。
分别以出行耗时和出行费用为目标建立规划模型。
然后,对有限个可行解采用枚举法,将其出行耗时和出行费用一一求出,通过比较得到规划模型的最优解,结果见正文第6页表3。
同时,在换乘次数和是否穿过地铁站等方面对结果作了清晰评价。
公汽线路。
重新构建共公交通矩阵。
在考虑地铁站与公汽站点相互连通的情况下,运用问题一的解法求得规划模型的最优解,结果见正文第7页表4。
针对问题三,当已知所有站点之间的步行时间时,在模型二的基础上对公交换乘搜索算法改进,相邻近的两站点间乘客可以通过步行到达,并对整个乘车过程中步行次数和步行时间进行约束得出了问题三的模型。
关键词:公共交通矩阵公交换乘搜索算法目标规划相邻站点第29届奥林匹克运动会将于2008年8月在首都北京举行,这是我国第一次成功的申办奥运会,极大的鼓舞了全国人民。
经过近六年筹备,各大奥运会场馆相继竣工。
作为奥运会的重要交通工具,举办城市的公共交通系统也有了很大发展。
现在北京市的公汽线路已达800以上,较好的满足了到现场观看奥运比赛的国内外观众的交通需求,使公众的出行更加通畅、便利,与此同时人们也面临着多条线路的选择问题。
因此,根据市场需求,某公司准备研制开发一个解决公汽线路选择问题的自主查询计算机系统,系统核心是线路选择的模型与算法。
设计该系统要从实际情况出发考虑,满足查询者的各种不同需求,现有三个问题需要解决:1、仅考虑公汽线路,给出任意两公汽站点之间线路选择问题的一般数学模型和算法。
利用此模型与算法,求出以下6对起始站到终到站之间的最佳路线,并给出清晰的评价说明。
北京市公交最优乘车路径选择的数学模型摘要2008年8月,奥运圣火将在北京点燃。
盛大的奥运赛事聚焦了全世界人民的目光,明年的北京将绽放最绚丽的光彩。
届时,客流量将会大幅上升,环境、交通、城市建设都将面临很大考验。
怎样才能更好的解决奥运期间市民和游客的出行问题呢?针对这样的实际问题,我们设计了一个城市公交线路的自主查询系统,建立了关于城市公交最优乘车路径选择的数学模型和算法,巧妙的运用Java语言编写程序,解决了现实生活中乘车路径选择的问题。
针对问题 1,在只考虑公汽线路时,首先求出起始站和终到站所有公交线路集合的交集,若此交集为非空交集,则选择所有直达线路中途经站点数最少,即花费最少的线路出行;若交集为空,选择起始站附近的站点,求出此站和终到站所有公交线路集合的交集,若为非空交集,则可选择换乘一次的方法出行;否则,换乘两次,换乘三次……直到找到换乘N次的乘车方案为止。
存在多条乘车线路时,考虑途经站点最少的乘车方式。
在此基础上,通过运用Java语言编程,确定了所需的最优乘车路径:(1)乘坐L436路公交车从S3359到S1784站,在S1784站换乘L167或L217路到S1828站,全程换乘一次,耗时101分钟,乘车费用为3元;(2)乘坐L84路公交车从S1557到S1919站,在S1919站换乘L189到S1402站,在S1402换乘L460到S0481站,全程换乘两次,耗时112分钟,乘车费用为3元;(3)乘坐L13路公交车从S0971到S2184,在S2184站换乘L417路到S0485站,全程换乘一次,耗时128分钟,乘车费用为3元;(4)乘坐L43路公交车从S0008到S1383,在S1383站换乘L282路到S0073站,全程换乘一次,耗时113分钟,乘车费用为3元;(5)乘坐L308路公交车从S0148到S0302,在S0302站换乘L427到S2027站,在S2027站换乘L469到S0485,全程换乘两次,耗时118分钟,乘车费用为3元;(6)乘坐L454路公交车从S0087到S3469,在S3469站换乘L209路到S3676站,全程换乘一次,耗时65分钟,乘车费用为2元;针对问题 2,要求同时考虑公汽线路和地铁线路,在同一地铁站对应的任意公汽站间可免费换乘,利用问题1的思想建立数学模型,运用Java语言编程,得到同时考虑公汽和地铁时的最优乘车路径:前五对起始站→终到站的最优乘车路径的选择与问题1一致。
公交线路选择的优化模型作者:张俊丽来源:《价值工程》2015年第28期摘要:本文针对城市公交线路选择问题建立了相应的数学模型。
将公共自行车看作独立于公汽、地铁的第三种交通方式。
利用网络图,主要从换乘次数、出行花费和出行总时间三个方面来确定最佳线路,分别考虑了各单目标,增加不同的上限约束,建立了任意两站点的最佳线路相应的网络流模型。
Abstract: In this paper, the corresponding mathematical model is established for the problem of urban public transportation route selection. The public bicycle as independent of the bus, the subway third modes of transport. Using the network diagram, three main factors are considered to find the best route, the number of trips, travel expenses and travel time.The network flow model of the best optimal line between any two sites, which considers the single objective and the different upper bound constraints.关键词:公交系统;最佳线路;最小费用流;优先因子Key words: bus system;best line;minimum cost flow;priority factor中图分类号:U491.1+7 文献标识码:A 文章编号:1006-4311(2015)28-0206-020 引言城市公共交通网络是城市交通网络的重要组成部分,提高城市交通系统的利用率被公认为是改善交通拥堵的有效途径之一。
乘客公汽线路选择优化模型刘国英曹才子吴华香(三峡大学湖北·宜昌443000)摘要公汽是整个城市交通系统中的一个重要组成部分,在方便人们出行的同时也给乘客带来了线路选择的困扰。
本文给出任意两公汽站点之间线路选择问题的一般数学模型与算法,首先利用图论思想建立邻接矩阵,将其转化为有向最短线路问题,再根据公众出行对时间、费用和换乘次数的不同需求,建立单目标优化模型,得出单目标最优方案;此外通过建立多目标优化模型,还提供了同时考虑三种因素的综合最优方案,供乘客选择符合自己乘车需求的路线。
关键词图论思想最短线路单目标优化模型多目标优化模型中图分类号:TP301文献标识码:A1公汽线路选择分析1.1公汽线路的三种情况本文依据公汽行驶的轨迹,综合考虑实际情况后将公汽线路主要划分为三种类型:(1)上行线、下行线原路返回:这种线路有两个端点站,在两个端点站之间双向行车,而且两个方向上的行车路线相同,经过同样的站点序列。
由于路线的方向不同,因此上行线和下行线可抽象成两条线路处理,线路号与收费规则相同。
(2)环行线:对于环形线路,一次线路无重复经过的站点,以城市中心为基点,从始发站绕市中心行驶一圈到终点站,且始发站与终点站相同。
(3)往返线路不一致:上行线、下行线经过的站点不完全一致。
1.2公汽线路选择的影响因素随着城市化的加速,城市交通线路逐渐四通八达,公汽作为城市重要的交通方式之一,在优化城市交通,方便市民出行,发展城市经济等方面均发挥着重要的作用。
在实际生活中,公众乘坐公汽主要考虑步行时间、转乘次数、行程时间、车站始发情况、负载量及乘车费用等因素,其中转乘次数、时间、车费三个因素对乘客公汽线路的选择影响最大,因此本文主要基于这三个因素建立优化模型来设计不同的乘车方案以满足乘客不同的出行需求。
其中对于换乘次数,本文把换乘次数限制在转乘两次之内,这符合大多数乘客的乘车习惯,换乘次数分别为直达、一次换乘和两次换乘;时间由乘车时间和换乘时间决定,换乘时间包含步行时间和等车时间;费用的差别主要由换乘次数决定,换乘次数越多费用越高。
烟台市公交线路优化模型摘要:乘坐公交车出行时,我们都希望直接达到U的地,即使没有直达车,我们也希望尽可能少的转乘。
本文旨在研究在烟台市区乘坐公交车出行选择线路问题, 出于对问题的考虑,本文对用。
)〃-瞅〃〃算法进行了改进,将公交转乘问题抽象为分层最短路问题。
然后,建立了多目标规划模型,并任取六对起始站f终到站站点对模型进行了验证,得到最佳路线,如下:鲁东大学(66)4—祥和花鸟市场(163)4—烟台大学(151)上尧花园(65)4U石沟屯(30)」^滨州医学院(391)烟台三中(15)的>牟平长途汽车站(719)血路>双良家园(1000)鲁东大学(66)缈>官庄(53)201-^ >石屋营(778)迢路>富士康东门(924)上尧花园(65)4U北马路汽车站(76)4U西蒙西(348)南山公园(142)4^北马路汽车站(76)」^幸福十六村(162)关键词:最短路径;Floyd算法;多LI标规划;公交路线优化1问题的提出随着社会的不断发展,每个城市的公交系统都得到了不同程度的提高,人们出行时更倾向乘坐公交车。
在乘坐公交时,每个乘客都希望直接达到H的地,即使没有直达车,他们也希望尽可能少的转乘。
因此,如何做到经济、方便、快捷的到达LJ地的,成为每个乘客比较关心的问题:而且转乘次数是乘客最关心的乘车因素。
题H中要求根据烟台市区公交车线路图,给出任意两个公交车站点应如何选择线路,使转乘尽可能少,建立数学模型与算法,并利用该算法,在烟台市区任意选择6对起始站一终到站站点,计算最佳路线。
2条件的假设与符号的约定2.1条件的假设(1)假设所有公交线路双向发车,所以线路中的各个站点没有乘车的先后次序之分,线路上任意站点可以互达;(2)假设车从首站出发开往尾站和从尾站出发开往首站所经过的站点都是一样的;(3)假设任意相邻站点的距离相同;(4)假设每条公交线路况和车况相同,不影响公交的正常运行,且不考虑交通拥挤、交通事故及道路流量对乘车时间和选择路线的影响;(5)假设公交车准时出发并准时到达站点;2.23问题的分析该问题是烟台市公交路线选择最优问题,主要要求为建立线路选择的模型和设计相应的算法,来满足乘客的各种不同需求。
最优公交线路选择问题的数学模型及算法
周文峰;李珍萍;刘洪伟;王吉光
【期刊名称】《运筹与管理》
【年(卷),期】2008(17)5
【摘要】公交线路选择问题是城市公共交通信息查询的重要内容,本文建立了满足不同公交线路查询者需求的最优线路选择模型并给出了相应的算法.首先通过引入各条公交线路直达最短距离矩阵构造了公交网络直达关系图(直达矩阵),在直达关系周(直达矩阵)上,利用修改了的最短路算法,即可求得最优换乘路线.根据出行者的不同需求,通过在直达关系图上定义不同的权系数,可以分别求得换乘次数最少的公交出行线路、经过站点最少的公交出行线路;通过修改最短路算法,可以求得出行耗时最少的线路及出行费用最低的线路,另外,本模型还可以综合考虑出行者的需求情况,求得出行者满意度最大的出行路线.
【总页数】5页(P80-84)
【作者】周文峰;李珍萍;刘洪伟;王吉光
【作者单位】北京物资学院,教务处,北京,101149;;北京物资学院,信息学院,北京,101149;北京物资学院,信息学院,北京,101149;中国科学院,数学与系统科学研究院,北京,100080
【正文语种】中文
【中图分类】O223
【相关文献】
1.基于蚁群算法参数的最优选择问题研究 [J], 黄敏
2.公交线路换乘与最优出行路径算法 [J], 张军芳
3.时滞积微分系统最优参数选择问题的一致算法 [J], 孙文兵;杨立君
4.公交线路中最优路线的查询算法设计 [J], 王朝晖;杨洁
5.公交线路选择问题的数学模型与算法 [J], 侯晓利;薛伟坡;张军委
因版权原因,仅展示原文概要,查看原文内容请购买。
市民对公交现状满意度0%10%20%30%40%50%60%优化城市公交线路站点的数学模型课题组成员:汕头一中高一(3)班:许毅、徐栩、吴岳峰、江琳、李奕莹、李晓枫、林木松、林枫润课题组长:许毅 相关课程:数学 指导老师:汤威摘要:本文讨论的是日常生活中公交线路设站选址的合理性问题。
主要针对本市第20路公交车的运行状况及其设站选址进行调查研究,通过建立数学模型,对现有的设站选址进行评价和改进,阐述我们对“合理选取城市公交线路站点”的看法。
首先根据实地调查、访问得到的真实数据,在现有的设站选址基础上找出弊端,运用已有的数学、经济学、统计学知识,建立数学模型,然后对模型加以修改,使修改后的模型更具合理性。
接着,为了弥补修改后的模型仍存在的不足,又重新建立了一个新的模型——高峰期辅助路线。
新的模型与改进后的模型并用,将能发挥更大的作用。
关键词:设站选址、满载率、运行效率、公交站点一、问题的提出公共交通作为城市交通动脉的重要组成部分,关系到百姓生活的切身利益。
良好的交通状况,对带动城市经济持续、健康、稳定的发展,发挥着越来越重要的作用。
公交事业的发展受到广泛的关注,而在百姓对公交事业表现出强烈需求的情况下,根据一份我们对汕头市乘客的调查显示,有50%以上的人对公交现状持勉强接受的态度。
认为基本满意的不到40%,甚至有一些人对公交现状表示极为不满。
这一调查充分说明了现行公交状况无法满足乘客的需求。
如何通过合理设站选址优化城市公交线路站点,以完善城市交通状况,方便市民出行,提高公交车的运行效率,将是我们探讨的重点。
图一二、对数学模型的假设和说明由于本课题所涉及到的实际干扰因素繁多,其影响无法估计,故需在此做一些假设和说明,排除一些次要因素的影响,才有可能建立数学模型。
1. 题目中所调查来的20路一个工作日高峰期客流量统计数据是具有代表性的。
2. 其他工作日高峰期客流量大致相同。
3. 公交线路上的所有车辆正常运行。
最佳公交线路的实时查询模型及算法摘要本文针对查询者的不同需求,为公交查询系统提供了最佳线路查询的模型与算法。
查询者的需求从换乘次数少、时间少和费用少三方面进行考虑。
故查询算法从换乘次数(从实际出发,换乘不超过两次)入手:对直通的任意两站点,可设计出较简单的最佳直通线路查询算法(直通算法)。
故对需要查询的两站点,算法先由线路、站点的原始数据判断此两站点是否直通,若是,便可通过直通算法进行查询。
不论是否存在直通线路,算法都考虑对换乘的情形进行查询。
考虑到城市公交系统中的站点基数较大,可行的换乘方案数也将较大,故查询算法根据所有可行的一、二换乘点必与起、止站点直通的原则,对可能成为给定两站点的换乘点的站点进行了筛选,得到相关站点集,较大的缩小了查询的范围。
得到相关站点集后,建立了反映站点集中任意两站点直通关系的连通矩阵,并通过矩阵乘法,较快地得出了所有可行的一次、二次换乘点。
考虑到所有可行的换乘点可能较多,特别是二次换乘的情形,故查询算法采用分支定界法以较高效率对最佳方案进行了最后的筛选。
在考虑地铁的公交系统时,本文从实际出发,对模型进行了一定的修改。
同时,本文考虑了引入站点之间的步行时间的情况,提出了线路选择的模型。
由于筛选算法、矩阵乘法和分支定界法的高效性,整个查询算法具有很高的效率,并能在换乘次数不超过两次的条件下,求得全局最优解,得出满足查询者不同需求的所有最佳方案。
并且,从系统设计的角度出发,整个系统需要预存的数据量很小,系统的实用性很强。
对给定的六对站点,采用本算法进行查询,在1.7GHZ的CPU环境下,平均运行时间为:1.27秒,最长运行时间为7.43秒,验证了算法的实时性。
同时,对每一对站点,得到了满足不同查询需求的所有最佳线路方案,验证了模型与算法的精确性。
关键词:最佳线路、实时、筛选算法、分支定界一、问题重述第29届奥运会将于今年8月在北京举行,届时有大量观众到现场观看比赛,其中大部分人将乘坐公共交通工具(包括公汽、地铁等)出行。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):数模指导组日期: 2011 年 8 月 26 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):公交查询系统的研究与设计摘要本文旨在设计一个解决公交线路选择问题的自主查询计算机系统。
问题一,鉴于实际生活中公交路线复杂多样,我们将不同公交线路抽象化。
把公汽换乘和直达综合考虑,模型比较复杂,所以我们首先建立公汽直达数据库Q,用户查询时,系统首先查询Q,得到所有直达车方案。
在需要转乘时,针对不同用户需求,分别以转乘次数最少、总耗时最短、总费用最少为目标,量化不同目标为有向赋权图的不同权矩阵,始、终点连通为约束建立 0-1 整数线性规划模型来设计最佳路线。
为了能提供多种公交线路备选方案,我们首先使用基于Dijkstra 的邻接算法求解,得到不同目标下的多种优化方案;对于邻接算法不易求解的多次转乘最优方案,我们采用Lingo 软件直接求得全局最优解。
综合方案集(见5.1.6模型表1.1-1.6),其中6条线路时间最短目标分别为67、102、106、62、105、49(分钟)。
城市公交线路优化的数学模型和算法摘要:随着我国城市化的不断发展,城市的交通状况成了摆在我们面前的亟待解决的一个问题.建立数学模型的方式,以“分离目标,逐次优化”为原则,假设的乘客od量和公交行驶时间已知,对公交线网进行布设和优化,并且逐步修正.在保证线路走向能与主要客流方向基本一致的情况下,实现全服务区总乘行时间最短,换乘次数最少,客流分布均匀的目标.关键词:最优路径公交网络乘客od量随着城市建设的迅猛发展,公交出行已成为人们的一个重要出行方式。
公共交通作为一个城市经济发展的象征性基础设施,它为广大居民的日常出行提供了方便,因此也关系到一个城市的基本保障问题.优化公交网络,提高公交运载效率越发受到社会的关注,成为人们的迫切需求.公交规划就是一个多目标的优化问题.进行公交优化设计需要区分主次,设定专门的优化措施.为此,我们提出了“分离目标,逐步解决”的办法.主要是利用数学模型,通过计算机进行处理,得到一个初步优化完善的公交网络.再适当做些调整,使得线路能够分布相对均匀,消除空白的公交区域.1.dijkstra算法dijkstra算法是很有代表性的最短路算法,其基本思想是,设置顶点集合s并不断地作贪心选择来扩充这个集合.一个顶点属于集合s当且仅当从源到该顶点的最短路径长度已知.初始时,s中仅含有源.设u是g的某一个顶点,把从源到u且中间只经过s中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度.dijkstra算法每次从v-s中取出具有最短特殊路长度的顶点u,将u添加到s中,同时对数组dist作必要的修改.一旦s包含了所有v中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度.2.公交线路布设模型2.1公交线路的布设原则公交网络本身具有快捷、灵活、网络覆盖率高的特点,适合中短距离出行.一般公共汽车的起讫站点相隔在500m到800m之间,如果是在城市中心的话站点之间可以缩短到400m,时间上在客流高峰的时候发车间隔会在3到5分,除此之外的时间可以增加到6到8分,站点设置一般能和其他站点有较好的换乘[1].2.2城市客流集散点的计算在已知公交od矩阵的条件下,将研究区域划分成若干地理性质相似的区域,也可以依据行政意义进行划分,把每一个分好的小区看作一个单一的节点,同时又要能被城市中的主要干路线路贯通,然后通过具体分析可以确定以下指标,并且作为节点的重要度指标.这些指标有地理位置、路况、od集散程度、人口数量、金融指标等[2].节点的加权平均值为:l■=■α■·■,l■表示区域内节点i 的重要度;α■表示第j项指标的权重;m是指标数量;e■是节点i的第j项的指标.e■为区域内所有节点的第j项指标算数平均值.客流集散强度:e■= ∑■ q■·δ■■,q■是od点k,1间的od客流量(人)δ■■=1,当j,k间的最短路径经过i0,否则式子中权重值α■的确定即确定出各个标准对于每个节点重要程度的影响效果.2.3线路起讫点确定客流量集散地点确定以后,就可以根据公交区域的客流量(od 量),即根据交通区域的发生量还有吸收量最终找到起讫点.2.3.1按照客流量设定站点当交通小区处于高峰时期,发生量和吸引量都超过了此线路中间站点的最大运载能力的时候,仅仅依靠中间站点无法完成运载任务,那么这个交通小区就要设置为起讫站点,从而增加运载量.所以可以依据中间站点的运载量设定起讫站.某一个交通小区发生量和运载量超过某一个值时候,需要设定站点.单个中间站点运输力为c■=60b/t■,c■是中间站点运载力(即人次/高峰小时);t■是高峰每小时的发车时间间距;b是高峰小时每辆车从中间站搭乘乘客数量的平均值,所取的值可以通过调查得出.交通小区中间站运载力为c(i)=c■n(i),全规划区域的站点个数n■=ρs/d,n■为全规划区域站点的数量;ρ是规划的公交网络的密度;s是规划区域的面积;d为站点的平均间隔.先根据各个交通小区的出行数量的相对值大小确定出中间站的数量n(i),n(i)=n■t(i)/t,t(i)为交通小区公交乘客发商量或者是吸引量的总和;t为全规划区域的公交发生量的总和.t=■t(i),一个起讫站点的最大运载力为c■=60rr/(t■k■).2.3.2按照实际的要求设置起讫点一些特殊的地区,如汽车车站、热门旅游景点、船运港湾、生活区等,为了满足乘客的出行路线,服务人民生活,即使总的发生量和吸引量没有达到设站的要求,也可以设定起讫站点.2.4公交线路的校正和优化2.4.1设置网络的最佳走向确定起讫点以后,就要根据路段的不同将行驶所用时间作为阻抗,从而来求得各个起讫站点配对以后的最短路径.又由于这里想到要把优化的网络经过集散点,因此又提出了一个“集散点吸引系数”.2.4.2直达乘客数量的校正2.4.2.1公交线路长短的校正公交网络的路线距离不能过于长和短,必须按照该城市里的实际情况来确定,对已经拟定的待选路线来筛定.对于那些不满足该条件的首末点之间我们不设定公交线路,这时候就要把直达的乘客数量z■设置为0.2.4.2.2防止线路间的自相配对同一个节点是不可以作为相同单向路线起讫站点,因此令z■=0.2.4.2.3对于同一区域设定多个站点的校正当有些划定区域的出行量值非常大的时候,就要确定多个起讫站点了,这个时候,在直达乘客的矩阵里,相对应的起点那一行和终点那一列就要校正,校正次数和这个区域的起讫站点数量是一致的.2.4.3所设定线路的优化校正优化线路需要考虑以下问题:校正乘客的od量,确定od量的剩余数值,校正行车时间,以及复线系数.3.实例我们假设一个交通路线分区和基本路段的路线图,od量我们假设已经通过调查求出.图中线路上的数字是该条路段车辆的行驶时间(单位:分钟).待选路线中的直达乘客数量表示为:再按照线路的长度要求,防止自相的配对、一个区域设定多个站然后再次对直达的乘客量进行校正.经过最后的计算.od在[b,c]的乘客量是最大的.这就要设定一个b到c、c到b的公交网,那么最短路径就会是6-12-18-17-16-15-14-20-19.通过之前的复线系数把第一条公交路通过行车行驶时间修正(其中的数值可以参考待选的最短路径).到这里,第一条线路设置工作就全部结束了,除去b和c点以外,再一次查询最短路径,逐次去布设第二条、第三条公交线,最后得到完整的网络线路图.现实生活中公交网络问题受到诸多因素的影响,需要综合考虑这些因素的制约,而且需要搜集大量的数据,并进行实际论证,需要通过数学建模的方法进行研究,合理且便于操作的方法,这也是后续研究的方向.参考文献:[1]成邦文,王齐庄,胡绪祖.城市公共交通线网优化设计模型和方法[m].系统工程理论与实践.[2]李维斌.汽车运输工程[m].北京:人民交通出版社,1987.[3]赵志峰.城市公共交通线路网规划方法[j].上海交通大学学报,1988,22(6).[4]易汉文.城市公交线路系统的规划与设计[m].系统工程,1987,5(1).[5]肖位枢主编.图论及其解法[m].北京:航空工业出版社,1993.[6]胡运权.运筹学教程(第三版)[m].北京:清华大学出版社,2007.4.。
第25卷 第4期2009年2月甘肃科技Gansu Science and Technol ogyV ol.25 N o.4Feb. 2009公交线路优选模型及算法曹永春,马 明(西北民族大学计算机科学与信息工程学院,甘肃兰州730030)摘 要:建立了在仅考虑公汽线路选择情况下以换乘次数最少和途经站数最少为首要目标,出行耗时、出行费用为次要目标的优化模型,设计出以D ijkstra为核心的模型求解算法,并在考虑公汽地铁混乘和步行换乘的复杂情况对模型进行了改进。
关键词:最优路径;D ijkstra算法;换乘次数中图分类号:TP319 这些年来,城市的公交系统有了很大发展,并且大部分人乘坐公共交通工具(简称公交,包括公汽、地铁等)出行,目前国内各大城市的公交线路达到几百条,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择问题。
设计和实现一个高效的公交线路选择计算机自主查询系统将大大方便乘客的出行;而设计这样一个系统,其核心是线路选择的模型与算法。
乘客选择公汽线路主要考虑换乘次数、途经站数、出行耗时、出行费用等四种因素。
本文根据乘客的各种不同需求,分别建立了以换乘次数最少和途经站数最少为首要目标,出行耗时、出行费用为次要目标的优化模型。
并且在同时考虑公汽与地铁线路换乘以及站点之间步行时间的问题我们对模型进行了改进。
模型求解的难点在于最优路径算法的设计。
我们将站点看作是网络图中的节点,分别以是否能一线可达和一站可达作为相邻关系建立图中的边;然后应用D ijkstra算法求出仅包含站点的最短路径(这些路径已满足首要目标);再根据关联这些节点的公汽线路,借鉴深度优先搜索算法搜索出满足次要目标的线路选择方案。
1 模型建立乘客选择公汽线路主要考虑换乘次数、途经站数、出行耗时、出行费用等四种因素。
文献[1]对乘客的出行心理进行了调查分析,其结果表明,“换乘次数”是大部分公交乘客在选择出行方案时首先考虑的因素,“出行距离最短”为第二目标。