牛顿迭代法
- 格式:pdf
- 大小:138.77 KB
- 文档页数:4
牛顿迭代法(Newton’s Method)又称为牛顿-拉夫逊(拉弗森)方法(Newton-Raphson Method),它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。
与一阶方法相比,二阶方法使用二阶导数改进了优化,其中最广泛使用的二阶方法是牛顿法。
考虑无约束最优化问题:其中 \theta^{\ast} 为目标函数的极小点,假设 f\left( \theta \right) 具有二阶连续偏导数,若第 k 次迭代值为 \theta^{k} ,则可将f\left( \theta \right)在\theta^{k}近进行二阶泰勒展开:这里,g_{k}=x^{\left( \theta^{k} \right)}=∇f\left( \theta^{k} \right)是f\left( \theta \right) 的梯度向量在点 \theta^{k}的值, H\left( \theta^{k} \right) 是 f\left( \theta \right) 的Hessian矩阵:在点 \theta^{\left( k \right)}的值。
函数 f\left( \theta \right) 有极值的必要条件是在极值点处一阶导数为0,即梯度向量为0,特别是当H\left( \theta\right) 是正定矩阵时,函数 f\left( \theta \right) 的极值为极小值。
牛顿法利用极小点的必要条件:这就是牛顿迭代法。
迭代过程可参考下图:在深度学习中,目标函数的表面通常非凸(有很多特征),如鞍点。
因此使用牛顿法是有问题的。
如果Hessian矩阵的特征值并不都是正的,例如,靠近鞍点处,牛顿法实际上会导致更新朝错误的方向移动。
这种情况可以通过正则化Hessian矩阵来避免。
常用的正则化策略包括在Hessian矩阵对角线上增加常数α 。
正则化更新变为:这个正则化策略用于牛顿法的近似,例如Levenberg-Marquardt算,只要Hessian矩阵的负特征值仍然相对接近零,效果就会很好。
牛顿迭代法及其应用牛顿迭代法是一种求解函数零点的迭代方法,具有快速收敛、精度高等优点,被广泛应用于计算机、数学、物理等领域。
本文将从理论和实际应用两方面介绍牛顿迭代法,并对其应用进行探讨。
一、理论基础牛顿迭代法是通过一点处的切线来逼近函数零点的方法。
设$f(x)$在$x_0$点有一个零点,且其导数$f'(x_0)$存在且不为零,那么该零点可以通过一点$(x_0,f(x_0))$处的切线与$x$轴的交点来逐步逼近。
假设切线的方程为$y=f'(x_0)(x-x_0)+f(x_0)$,则其中$x$轴上的交点为$x_1=x_0-\frac{f(x_0)}{f'(x_0)}$,这是零点的一个更好的近似值。
用$x_1$代替$x_0$,再利用同样的方法得到$x_2$,不断重复这个过程,即可逐步逼近零点。
这个过程可以用下面的公式表示:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$这就是牛顿迭代法的基本公式。
从初始值$x_0$开始迭代,不断利用公式进行逼近,直到找到满足$f(x_n)=0$的解。
二、实际应用牛顿迭代法在实际应用中广泛存在,比如在计算机图形学中,通过牛顿迭代法可以精确计算出圆的周长、面积等参数,也可以实现快速的路径追踪和光线追踪。
在金融领域中,牛顿迭代法可以用来计算隐含波动率,即在期权定价模型中,寻找满足期权定价公式的波动率。
由于这个过程中往往要用到反函数,所以牛顿迭代法可以快速找到隐含波动率。
另外,在机器学习、神经网络中,多次用到牛顿迭代法进行梯度下降,智能化运用牛顿迭代法可以提高计算效率,降低误差。
三、应用探讨牛顿迭代法的应用范围较广,但在实际应用中也存在一些问题。
如何避免迭代过程中出现抖动、越界、阻尼等现象,可以通过设置收敛条件、调整步长等方式进行优化。
此外,当函数的导数存在零点或迭代公式不存在时,牛顿迭代法也会失效。
因此,在选择牛顿迭代法时,需要了解函数特性,根据情况选择适合的迭代方法。
有一种迭代方法叫牛顿迭代法,是用于求方程或方程组近似根的一种常用的算法设计方法。
设方程为f(x)=0,用某种数学方法导出等价的形式x(n+1) = g(x(n)) = x (n)–f(x(n))/f‘(x(n)).然后按以下步骤执行:(1) 选一个方程的近似根,赋给变量x1;(2) 将x0的值保存于变量x1,然后计算g(x1),并将结果存于变量x0;(3) 当x0与x1的差的绝对值还小于指定的精度要求时,重复步骤(2)的计算。
若方程有根,并且用上述方法计算出来的近似根序列收敛,则按上述方法求得的x0就认为是方程的根。
例1:已知f(x) = cos(x) - x。
x的初值为3.14159/4,用牛顿法求解方程f(x) =0的近似值,要求精确到10E-6。
算法分析:f(x)的Newton代法构造方程为:x(n+1) = xn - (cos(xn)-xn) / (-sin(xn)-1)。
#include<stdio.h>double F1(double x); //要求解的函数double F2(double x); //要求解的函数的一阶导数函数double Newton(double x0, double e);//通用Newton迭代子程序int main(){double x0 = 3.14159/4;double e = 10E-6;printf("x = %f\n", Newton(x0, e));getchar();return 0;}double F1(double x) //要求解的函数{return cos(x) - x;}double F2(double x) //要求解的函数的一阶导数函数{return -sin(x) - 1;}double Newton(double x0, double e)//通用Newton迭代子程序{double x1;do{x1 = x0;x0 = x1 - F1(x1) / F2(x1);} while (fabs(x0 - x1) > e);return x0; //若返回x0和x1的平均值则更佳}例2:用牛顿迭代法求方程x^2 - 5x + 6 = 0,要求精确到10E-6。