超疏水材料的研究现状及应用

  • 格式:doc
  • 大小:28.50 KB
  • 文档页数:11

下载文档原格式

  / 11
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超疏水材料的研究现状及应用

超疏水材料的研究现状及应用摘要: 超疏水表面材料具有防水、防污、可减

少流体的粘滞等优良特性,是目前功能材料研究的热点之一。由于超疏水表面在自清洁表面、微流体系统和生物相容性等方面的潜在应用,有关超疏水表面的研究引起了极大的关注,本文简述了超疏水表面的制备方法,归纳了超疏水表面的应用,对超疏水表面研究的发展进行了展望。

关键词:超疏水表面材料;微流体系统;表面制备方法;表面应用

Superhydrophobic materials Research

and Application

Li Yongliang

(Jiangnan University, College of Chemistry and Materials Engineering Jiangsu

Wuxi 214122,China)

Abstract: Superhydrophobic surface material with a waterproof, anti-fouling, can reduce the viscosity of the fluid and other excellent features, is currently one of the hot functional materials. As super-hydrophobic surface in the self-cleaning surfaces, microfluidic systems, biocompatibility and other potential applications, research on super-hydrophobic surface caused a great deal of attention, this paper

outlines the super-hydrophobic surface preparation methods, summarized the super-hydrophobic surface application of research for the development of super-hydrophobic surfaces were discussed.

Keywords: Superhydrophobic surface material; Microfluidic systems; Surface preparation methods; Surface application

近年来,植物叶表面的超疏水现象引起了人们的关注。所谓植物超疏水能力,就是植物叶面具有显著的疏水,脱附,防粘,自清洁功能等。随着科学的发展 , 各种疏水表面的设计和应用成为研究的热点问题之一。一般认为水滴接触角大于150?的表面称为超疏水表面。自然界里有很多动植物表面都具有高疏水性和自洁功能,例如荷叶和水稻叶表面,其表面水的接触角都高达160?以上,滚动角小于3?。超疏水表面的制备通常包括粗糙表面的制备和使用低表面能物质

对粗糙表面进行修饰这两个步骤。随着实验技术的不断革新,一些添加剂、助

剂的使用, 使得制备工艺进一步完善, 进而得到了一些简单、可操作性强且产出成品性能良好的制备方法。近年来, 超疏水表面凭借其特有的自清洁性及良好的生物相容性, 受到了更加广泛的关注。由于超疏水材料独特的表面特性,使其可广泛应用于防水、防污、自清洁、流体减阻、抑菌等领域,因此超疏水材料在现实生产和生活中具有广阔的应用前景。近年来, 超疏水性表面的研究已成为比较活跃的研究课题之一, 这对制备新的高性能的功能材料表面有重要的作用。

1 超疏水材料的表面特征

润湿性是指液体与固体表面接触时, 液体可以渐渐渗入或附着在固体表面上, 是固体表面的重要特征之一,这种特征由固体表面的化学组成及微观结构共同决定。接触角和滚动角是评价固体表面润湿性的重要参数,理论上疏水表面既要有较大的接触角,又要有较小的滚动角。超疏水性表面一般是指与水的接触角大于 150?,而滚动角小于10?的表面,这样的表面具有防雪、防污染、抗氧化及防止电流传导

等特性。

植物叶子表面有许多丛生的放射状微茸毛, 该微茸毛尖端极易亲水,入水后能

瞬间锁定水分子,使叶片表层到茸毛尖端之间形成了一薄层空气膜,从而避免叶片与

水直接接触.Barthlott研究发现,这种微茸毛由乳突及蜡状物构成,其为微米结构。中科院研究员江雷研究发现, 乳突为纳米结构,这种纳米与微米相结合的双微观结构正是引起表面防污自洁的根本原因。

研究表明, 具有较大接触角和较小滚动角的超疏水性表面结构为微米级及纳米级结构的双微观复合结构,且这种结构直接影响水滴的运动趋势。超疏水表面的结构通常采用两种方法,一是在疏水材料表面上构建微观结构,二是在粗糙表面上修饰低表面能物质。由于降低表面自由能在技术上容易实现,因此超疏水表面制备技术的关键在于构建合适的表面微细结构。当前,已报道的超疏水表面制备技术主要有溶胶一凝胶法、模板法、自组装法及化学刻蚀法等。 2 超疏水材料表面的制备方法

2.1相分离方法制备超疏水材料

将本体聚合制备的聚苯乙烯溶于四氢呋喃,然后向该溶液中滴加乙醇来引发相分离,通过控制乙醇的含量来控制相分离的程度,从而制备出表面结构可控的聚苯乙烯薄膜。科学家发现向聚丙烯的溶液中滴加适量的不良溶剂,会增加聚丙烯图层的表面粗糙度,这是因为由于不良溶剂的加入导致了聚丙烯溶液的相分离。因此向PS的THF溶液中滴加适量的PS的不良溶剂乙醇,会导致PS溶液的相分离,从而制备出表面结构粗糙的材料表面。并且乙醇的加入量影响着相分离的程度,进而影响着PS薄膜的表面粗糙程度。相分离过程发生在涂膜后,随着不良溶剂乙醇的挥发,在溶液中大量积聚的PS分子为了减少表面能自发的形成小球,有的小球之间会团聚形成大球。从结构分析,材料表面就形成了微纳双重结构。通过实验发现乙醇的浓度(体积比)在49,左右时接触角达到最大值151(6?。乙醇浓度较小时,相分离程度不充分,只形成小球无大球。乙醇浓度较大时,材料表面只形成大球而无小球。因此,适量的乙醇浓度,才能使材料表面形成良好的微纳双重结构,从而得到性能优异的超疏水材料。