当前位置:文档之家› 高中数学复习教案:数列求和

高中数学复习教案:数列求和

高中数学复习教案:数列求和
高中数学复习教案:数列求和

第四节 数列求和

[考纲传真] 1.掌握等差、等比数列的前n 项和公式.2.掌握特殊的非等差、等比数列的几种常见的求和方法.

1.公式法

(1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1

+n (n -1)2d ; (2)等比数列的前n 项和公式:

2.分组转化法

把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. 3.裂项相消法

把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 4.错位相减法

如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解.

5.倒序相加法

如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.

6.并项求和法

一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解.

例如,S n =1002-992+982-972+…+22-12 =(100+99)+(98+97)+…+(2+1)=5 050. [常用结论]

1.一些常见的数列前n 项和公式:

(1)1+2+3+4+…+n =n (n +1)

2; (2)1+3+5+7+…+2n -1=n 2; (3)2+4+6+8+…+2n =n 2+n . 2.常用的裂项公式 (1)

1n (n +k )=1k ? ??

??1

n -1n +k ;

(2)14n 2-1=1(2n -1)(2n +1)=12?

????1

2n -1-12n +1; (3)

1n +n +1

=n +1-n ;

(4)log a ? ?

?

??1+1n =log a (n +1)-log a n .

[基础自测]

1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)如果数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +1

1-q .

( )

(2)当n ≥2时,1n 2-1=12? ??

??1n -1-1n +1.

( )

(3)求S n =a +2a 2+3a 3+…+na n 之和时只要把上式等号两边同时乘以a 即可根据错位相减法求得.

( )

(4)推导等差数列求和公式的方法叫做倒序求和法,利用此法可求得sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°=44.5.

( )

[答案] (1)√ (2)√ (3)× (4)√

2.(教材改编)数列{a n }的前n 项和为S n ,若a n =1

n (n +1)

,则S 5等于( )

A .1 B.56 C.1

6

D.130

B [∵a n =1n (n +1)=1n -1

n +1

,

∴S 5=a 1+a 2+…+a 5=1-12+12-13+…-16=5

6.]

3.若S n =1-2+3-4+5-6+…+(-1)n -1·n ,则S 50=________. -25 [S 50=(1-2)+(3-4)+…+(49-50)=-25.]

4.数列112,314,518,7116,…,(2n -1)+1

2n ,…的前n 项和S n 的值等于________. n 2+1

-12n [S n =[1+3+5+…+(2n -1)]+? ????12+14+1

8+ (12)

=n 2+12??????

1-? ????12n 1-12

=n 2

+1-

12n .] 5.3·2-1+4·2-2+5·2-3+…+(n +2)·2-n =__________.

4-n +42n [设S =3×12+4×122+5×123+…+(n +2)×12n ,则12S =3×122+4×123+5×1

24+…+(n +2)×

1

2n +1. 两式相减得12S =3×12+? ????122+1

23+…+12n -n +22n +1.

∴S =3+? ????12+1

22+…+12n -1-n +22n

=3+12??????1-? ????12n -11-12-n +22n

=4-n +42n .]

分组转化求和

【例1】 (2019·黄山模拟)已知数列{a n }的前n 项和S n =2,n ∈N *. (1)求数列{a n }的通项公式;

(2)设b n =2a n +(-1)n a n ,求数列{b n }的前2n 项和.

[解] (1)当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n .

a 1也满足a n =n ,故数列{a n }的通项公式为a n =n . (2)由(1)知a n =n ,故

b n =2n +(-1)n n .

记数列{b n }的前2n 项和为T 2n ,则T 2n =(21+22+…+22n )+(-1+2-3+4-…+2n ). 记A =21

+22

+ (22)

,B =-1+2-3+4-…+2n ,则A =2(1-22n )1-2

=22n +1

-2,

B =(-1+2)+(-3+4)+…+[-(2n -1)+2n ]=n . 故数列{b n }的前2n 项和T 2n =A +B =22n +

1+n -2.

[拓展探究] 在本例(2)中,如何求数列{b n }的前n 项和T n . [解] 由本例(1)知b n =2n +(-1)n ·n . 当n 为偶数时,

T n =(21+22+…+2n )+[-1+2-3+4-…-(n -1)+n ]=2-2n +1

1-2

+n 2=2n +1+n

2-2;

当n 为奇数时,T n =(21+22+…+2n )+[-1+2-3+4-…-(n -2)+(n -1)-n ] =2n +1-2+n -1

2-n =2n +1-n 2-5

2.

所以T n =???

??

2n +1+n 2-2,n 为偶数,

2n +1-n 2-52,n 为奇数.

[规律方法] 分组转化法求和的常见类型,(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,

可采用分组求和法求{a n }的前n 项和;,(2)通项公式为的数列,

其中数列{b n },{c n }是等比数列或等差数列,可采用分组转化法求和.

n n n 112210,a 5-2b 2=a 3.

(1)求数列{a n }和{b n }的通项公式; (2)令c n =?????

2S n

,n 为奇数,

b n ,n 为偶数,

设数列{c n }的前n 项和为T n ,求T 2n .

[解] (1)设数列{a n }的公差为d ,数列{b n }的公比为q , 由???

b 2+S 2=10,

a 5-2

b 2=a 3

, 得??? q +6+d =10,3+4d -2q =3+2d ,解得???

d =2.q =2, ∴a n =3+2(n -1)=2n +1,b n =2n -1.

(2)由a 1=3,a n =2n +1, 得S n =n (a 1+a n )

2=n (n +2),

则c n =?????

2n (n +2),n 为奇数,2n -1,n 为偶数,

即c n =?????

1n -1n +2,n 为奇数,2n -1,n 为偶数,

∴T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )

=??????? ????1-13+? ????13-15+…+? ????12n -1-12n +1+(2+23+…+22n -1)

=1-1

2n +1+2(1-4n )1-4

2n 2n +1

+2

3(4n -1). 错位相减法求

【例2】 (2017·天津高考)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4.

(1)求{a n }和{b n }的通项公式;

(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).

[解] (1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2,所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8. ① 由S 11=11b 4,可得a 1+5d =16. ②

联立①②,解得a 1=1,d =3, 由此可得a n =3n -2.

所以数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,

b 2n -1=2×4n -1,得a 2n b 2n -1=(3n -1)×4n ,故 T n =2×4+5×42+8×43+…+(3n -1)×4n , ①

4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1,② ①-②,得

-3T n =2×4+3×42

+3×43

+…+3×4n

-(3n -1)×4n +1

=12×(1-4n )1-4

-4-(3n -1)×4n +1

=-(3n -2)×4n +1-8, 得T n =3n -23×4n +1+8

3.

所以数列{a 2n b 2n -1}的前n 项和为3n -23×4n +

1+83. [规律方法] 错位相减法求和时的3个注意点

(1)要善于识别题目类型,特别是等比数列公比为负数的情形.

(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式,同时应注意差式中成等比数列的项数.

(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.

n n n 为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.

(1)求数列{a n },{b n }的通项公式;

(2)当d >1时,记c n =a n

b n ,求数列{

c n }的前n 项和T n .

[解] (1)由题意得

??? 10a 1+45d =100,a 1d =2,即???

2a 1+9d =20,a 1d =2, 解得???

a 1=1,d =2或?

????

a 1=9,d =2

9.

故???

a n =2n -1,

b n =2n -

1

或???

??

a n =19(2n +79),

b n =9·? ??

??29n -

1.

(2)由d >1,知a n =2n -1,b n =2n -1,故c n =2n -1

2

n -1,于是

T n =1+32+522+723+9

24+…+2n -12n -1, ①

12T n =12+322+523+724+9

25+…+2n -12n . ②

①-②可得

12T n =2+12+122+…+1

2n -2-2n -12n =3-2n +32n , 故T n =6-2n +3

2

n -1.

裂项相消法求

?考法1 形如a n =1

n (n +k )

【例3】 (2019·济南模拟)已知数列{a n }的各项都为正数,其前n 项和为S n ,且满足4S n =a 2n +2a n -3对任意的正整数n 都成立.

(1)证明数列{a n }是等差数列,并求其通项公式; (2)设b n =1

S n

,求数列{b n }的前n 项和T n .

[解] (1)当n =1时,4S 1=a 21+2a 1-3,即a 2

1-2a 1-3=0,

解得a 1=3或a 1=-1(舍去),

由4S n =a 2n +2a n -3,得当n ≥2时,4S n -1=a 2n -1+2a n -1-3,两式相减, 得4a n =a 2n -a 2n -1+2a n -2a n -1,即(a n +a n -1)(a n -a n -1-2)=0,

又a n >0,∴a n -a n -1-2=0,即a n -a n -1=2(n ≥2), ∴数列{a n }是以3为首项,2为公差的等差数列, ∴a n =3+2(n -1)=2n +1.

(2)由a n =2n +1,得S n =3+2n +12·n =n (n +2),

∴b n =1S n

1n (n +2)=12? ??

??1

n -1n +2,

∴T n =b 1+b 2+b 3+…+b n -1+b n =121-13+12-14+13-15+…+1n -1-1n +1+1n -1

n +2

=12? ?

???1+12-1n +1-1n +2=34-2n +32(n +1)(n +2).

?考法2 形如a n =

1

n +k +n

【例4】 已知函数f (x )=x α的图象过点(4,2),令a n =1

f (n +1)+f (n ),n ∈N *.记数列{a n }的前n

项和为S n ,则S 2 019=________.

2505-1 [由f (4)=2,可得4α=2, 解得α=12,则f (x )=x 1

2.

∴a n =1f (n +1)+f (n )=1

n +1+n =n +1-n ,

S 2 019=a 1+a 2+a 3+…+a 2 019

=(2-1)+(3-2)+(4-3)+…+( 2 019- 2 018)+( 2 020- 2 019)= 2 020-1=2505-1.]

[规律方法] 利用裂项相消法求和的注意事项

(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项;或者前面剩几项,后面也剩几项;

(2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.

如:若{a n }是公差d ≠0的等差数列,则,.

n 2147n (1)求数列{a n }的通项公式;

(2)求数列????

??

????1S n +2n 的前n 项和T n .

[解] (1)设等差数列{a n }的公差为d .

法一:由已知可得???

a 1+d =4,

a 1+(a 1+3d )+(a 1+6d )=30,

即??? a 1+d =4,3a 1+9d =30,解得???

a 1=1,d =3,

所以a n =a 1+(n -1)d =1+(n -1)×3=3n -2.

法二:由等差数列的性质可得a 1+a 4+a 7=3a 4=30,解得a 4=10, 所以d =

a 4-a 24-2

=10-4

2=3, 所以a n =a 2+(n -2)d =4+(n -2)×3=3n -2. (2)由(1)知S n =3n 2-n

2,

所以S n +2n =3n 2-n 2+2n =3n 2+3n 2=3n (n +1)

2,

所以1S n +2n =23n (n +1)=23?

??

??1n -1n +1. 所以T n =23×? ????1-12+23×? ????12-13+…+23? ????1n -1n +1=23?

????1-1n +1=2n 3(n +1).

1.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n . (1)求{a n }的通项公式;

(2)求数列??????

???

?a n 2n +1的前

n 项和.

[解] (1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时, a 1+3a 2+…+(2n -3)a n -1=2(n -1), 两式相减得(2n -1)a n =2, 所以a n =2

2n -1(n ≥2).

又由题设可得a 1=2,满足上式, 所以{a n }的通项公式为a n =2

2n -1

.

(2)记??????

???

?a n 2n +1的前

n 项和为S n .

由(1)知

a n 2n +1=2(2n +1)(2n -1)=12n -1-1

2n +1

, 则S n =11-13+13-1

5+…+

12n -1-12n +1=2n 2n +1

. 2.(2014·全国卷Ⅰ)已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根. (1)求{a n }的通项公式;

(2)求数列????

??

a n 2n 的前

n 项和.

[解] (1)方程x 2-5x +6=0的两根为2,3, 由题意得a 2=2,a 4=3.

设数列{a n }的公差为d ,则a 4-a 2=2d ,故d =1

2, 从而a 1=3

2.

所以{a n }的通项公式为a n =1

2n +1.

(2)设????

??a n 2n 的前n 项和为S n .由(1)知a n 2n =n +22n +1,则

S n =322+4

23+…+n +12n +n +22n +1,

12S n =323+4

24+…+n +12n +1+n +22n +2. 两式相减得

12S n =34+? ????1

23+…+12n +1-n +22n +2 =34+14? ????1-12n -1-n +22n +2. 所以S n =2-n +4

2

n +1.

数列求和方法和经典例题

数列求和方法和经典例题 求数列的前n 项和,一般有下列几种方法: 一、公式法 1、等差数列前n 项和公式 2、等比数列前n 项和公式 二、拆项分组求和法 某些数列,通过适当分组可得出两个或几个等差数列或等比数列,进而利用等差数列或等比数列求和公式求和,从而得出原数列的和。 三、裂项相消求和法 将数列中的每一项都分拆成几项的和、差的形式,使一些项相互拆消,只剩下有限的几项,裂项时可直接从通项入手,且要判断清楚消项后余下哪些项。 四、重新组合数列求和法 将原数列的各项重新组合,使它成为一个或n 个等差数列或等比数列后再求和 五、错位相减求和法 适用于一个等差数列和一个等比数列对应项相乘构成的数列求和 典型例题 一、拆项分组求和法 例1、求数列1111123,2482n n ??+ ???,,,,的前n 项和 例2、求和:222 221111n n x x x x x ??????++++++ ? ? ?????? ?

例3、求数列2211,12,122,,1222,n -+++++++的前n 项和 例4、求数列5,55,555,5555,的前n 项和 二、裂项相消求和法 例5、求和:()()11113352121n S n n =+++??-+ 例6、求数列1111,, ,,,12123123n +++++++的前n 项和 例7、求和:()11113242n S n n =+++??+

例8、数列{} n a 的通项公式n a =,求数列的前n 项和 三、重新组合数列求和法 例9、求2222222212345699100-+-+-++- 四、错位相减求和法 例10、求数列123,,,,,2482n n 的前n 项和 例11、求和:()23230n n S x x x nx x =++++≠

等比数列求和教案

课题:等比数列的前n项和(一课时) 教材:浙江省职业学校文化课教材《数学》下册 (人民教育出版社) 一、教材分析 ●教学内容 《等比数列的前n项和》是中职数学人教版(基础模块)(下)第六章《数列》第四节的内容。是数列这一章中的一个重要内容, 就知识的应用价值上看,它是从大量数学问题和现实问题中抽象出来的一个模型,在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等,另外公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.就内容的人文价值来看,等比数列的前n项和公式的探究与推导需要学生观察、归纳、猜想、证明,这有助于培养学生的创新思维和探索精神,同时也是培养学生应用意识和数学能力的良好载体. 二、学情分析 ●知识基础:前几节课学生已学习了等差数列求和,等比数列的定义及通项公式等内容,这为过渡到本节的学习起着铺垫作用. ●认知水平与能力:高二学生具有自主探究的能力,能在教师的引导下独立、合作地解决一些问题,但从学生的思维特点看,很容易把本节内容与等差数列前n项和公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有所不同,这对学生 q 这一特殊情况,学生也往往容易忽略,尤的思维是一个突破,另外,对于1 其是在后面使用的过程中容易出错. 三、目标分析 依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标: 1.教学目标

●知识与技能目标 理解用错位相减法推导等比数列前n项和公式的过程,掌握公式的特点,并在此基础上能初步应用公式解决与之有关的问题. ●过程与方法目标 通过对公式的研究过程,提高学生的建模意识及探究问题、培养学生观察、 分析的能力和协作、竞争意识。 ●情感、态度与价值目标 通过学生自主对公式的探索,激发学生的求知欲,鼓励学生大胆尝试、勇于 探索、敢于创新,磨练思维品质,培养学生主动探索的求知精神和团结协作精神, 感受数学的美。 2.教学重点、难点 ●重点:等比数列前n项和公式的推导及公式的简单应用. ●难点:错位相减法的生成和等比数列前n项和公式的运用. 突破难点的手段:“抓两点,破难点”,即一抓学生情感和思维的兴奋点, 激发他们的兴趣,鼓励学生大胆猜想、积极探索,并及时给予肯定;二抓知识的 切入点,从学生原有的认知水平和所需的知识特点入手,教师在学生主体下给予 适当的提示和指导. 四、教学模式与教法、学法 根据学生的认知特点,本着学生为主体教师为主导的原则采用多元教学法,让学生至于情景中。学生动手操作实践分组讨论探究,而教师重在启发,引导。基于教学平台和数学软件让学生可观,可感,可交流的环境中轻松的学习。 五、教学过程

(完整版)放缩法典型例题

放缩法典型例题 数列与不等式的综合问题常常出现在高考的压轴题中,是历年高考命题的热点,这类问题能有效地考查学生综合运用数列与不等式知识解决问题的能力.本文介绍一类与数列和有关的不等式问题,解决这类问题常常用到放缩法,而求解途径一般有两条:一是先求和再放缩,二是先放缩再求和. 一.先求和后放缩 例1.正数数列的前项的和,满足,试求: (1)数列的通项公式; (2)设,数列的前项的和为,求证: 解:(1)由已知得,时,,作差得: ,所以,又因为为正数数列,所以,即是公差为2的等差数列,由,得,所以 (2),所以 注:一般先分析数列的通项公式.如果此数列的前项和能直接求和或者通过变形后求和,则采用先求和再放缩的方法来证明不等式.求和的方式一般要用到等差、等比、差比数列(这 里所谓的差比数列,即指数列满足条件)求和或者利用分组、裂项、倒序相加等方法来求和. 二.先放缩再求和 1.放缩后成等差数列,再求和 例2.已知各项均为正数的数列的前项和为,且. (1) 求证:; (2)求证:

解:(1)在条件中,令,得,,又由条件有,上述两式相减,注意到得 ∴ 所以,, 所以 (2)因为,所以,所以 ; 2.放缩后成等比数列,再求和 例3.(1)设a,n∈N*,a≥2,证明:; (2)等比数列{a n}中,,前n项的和为A n,且A7,A9,A8成等差数列.设,数列{b n}前n项的和为B n,证明:B n<. 解:(1)当n为奇数时,a n≥a,于是,. 当n为偶数时,a-1≥1,且a n≥a2,于是 .(2)∵,,,∴公比. ∴..

∴.3.放缩后为差比数列,再求和 例4.已知数列满足:,.求证: 证明:因为,所以与同号,又因为,所以,即,即.所以数列为递增数列,所以,即,累加得:. 令,所以,两式相减得: ,所以,所以, 故得. 4.放缩后为裂项相消,再求和 例5.在m(m≥2)个不同数的排列P1P2…P n中,若1≤i<j≤m时P i>P(即前面某数大于后面某数),则称P i与P j构成一个逆序.一个排列的全部逆序的总数称为该排列的逆序数. 记排列的逆序数为a n,如排列21的逆序数,排列321的逆序数.j (1)求a4、a5,并写出a n的表达式; (2)令,证明,n=1,2,…. (2)因为,

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

数列求和方法分类及经典例题

数列求和方法总结 一、公式法 ()()111122 n n a a n n n .na d +-==+等差型 S ()111111n n na q a q q q =??=-?≠?-? ,2.等比型 S , →3.分式型/阶乘型 裂项相消法 () 1111111n n n n n a a a d a a ++??=- ???? ,其中为等差; ( 12n a d = ,其中为等差; ()()() ()113=+1+1+1n n n!n !n!.n !n!n !-?=- , ()()()( )1111153759 11121121231233n n . .,n N n *???++++∈+++++++KK KK K KK 例1:求下列各数列的前项和S ,,, 二、等差等比混合型 (){}=n n n a b kn b q ??+?→ 1.等差等比 错位相减法 n n S 例2:求下列各数列的前项和 ()()112n n .a n =+? ()()12312n n .a n ??=-? ??? ()()()3312n n .a n =-+?-

{}111122n n k n b a q a q ±+++→ 2.等差等比 分组求和 n n S 例3:求下列各数列的前项和 ()1111123248 .,,,KK ()2211121333333 n n .,,,,+++KK → 3.奇偶项不同 分组求和 n n S 例4:求下列各数列的前项和 ()()()1115913143n n .n -=-+-++--K 相邻异号 例:S ()11211n n n .a ,a a ,S -=+= 和为常数 例:求()122314=+2n n n .a ,a ,a a ,S -== 差为常数 例:求()12+11142=63n n n n n .a a ,a a ,a S ??== ??? 比为常数 例:,求及 三、倒叙相加/相乘型 n n S 例5:求下列各数列的前项和 ()11110142n x n .f (x ),S f ()f ()f ()f ()n n -= =++++ 已知求;()211121220121201220112 x .f (x ),f ()f ()f ()f ()f ()f ()x =+++++++KK KK 已知求;()1312.n n n n n ++ 在和之间插入个正数,使这个数成等比数列,求插入个数之积; ()1412.n n n n n ++ 在和之间插入个正数,使这个数成等差数列,求插入个数之和; 22112n n n n n n n +++??== ??? T ,S

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

数列求和汇总例题与答案)

数列求和汇总答案 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 )1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n 例1、已知3 log 1log 23-=x ,求???++???+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=?-=?-=x x x 由等比数列求和公式得n n x x x x S +???+++=32(利用常用公式) =x x x n --1)1(=2 11)211(21--n =1-n 21 练习:求22222222123456...99100-+-+-+--+的和。 解:2222222212345699100-+-+-+--+ 由等差数列的求和公式得 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{a n }、{b n }分别是等差数列和等比数列. 例2求和:132)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=……………………….②(设制错位) ①-②得n n n x n x x x x x S x )12(222221)1(1432--+???+++++=--(错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----?+=-- ∴2 1)1()1()12()12(x x x n x n S n n n -+++--=+ 练习:求数列??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1}的通项之积 设n n n S 2 226242232+???+++=…………………………………①

等差数列求和教案

等差数列求和 教学目标 1.掌握等差数列前项和的公式,并能运用公式解决简单的问题. (1)了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式; (2)用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值; (3)会利用等差数列通项公式与前项和的公式研究的最值. 2.通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法. 3.通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 4.通过公式的推导过程,展现数学中的对称美;通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题. 教学建议 (1)知识结构 本节内容是等差数列前项和公式的推导和应用,首先通过具体的例子给出了求等差数列前项和的思路,而后导出了一般的公式,并加以应用;再与等差数列通项公式组成方程组,共同运用,解决有关问题. (2)重点、难点分析 教学重点是等差数列前项和公式的推导和应用,难点是公式推导的思路. 推导过程的展示体现了人类解决问题的一般思路,即从特殊问题的解决中提炼一般方法,再试图运用这一方法解决一般情况,所以推导公式的过程中所蕴含的思想方法比公式本身更为重

要.等差数列前项和公式有两种形式,应根据条件选择适当的形式进行计算;另外反用公式、变用公式、前项和公式与通项公式的综合运用体现了方程(组)思想. 高斯算法表现了大数学家的智慧和巧思,对一般学生来说有很大难度,但大多数学生都听说过这个故事,所以难点在于一般等差数列求和的思路上. (3)教法建议 ①本节内容分为两课时,一节为公式推导及简单应用,一节侧重于通项公式与前项和公式综合运用. ②前项和公式的推导,建议由具体问题引入,使学生体会问题源于生活. ③强调从特殊到一般,再从一般到特殊的思考方法与研究方法. ④补充等差数列前项和的最大值、最小值问题. ⑤用梯形面积公式记忆等差数列前项和公式. 等差数列的前项和公式教学设计示例 教学目标 1.通过教学使学生理解等差数列的前项和公式的推导过程,并能用公式解决简单的问题. 2.通过公式推导的教学使学生进一步体会从特殊到一般,再从一般到特殊的思想方法,通过公式的运用体会方程的思想. 教学重点,难点 教学重点是等差数列的前项和公式的推导和应用,难点是获得推导公式的思路. 教学用具 实物投影仪,多媒体软件,电脑. 教学方法 讲授法.

(完整版)常见递推数列通项公式的求法典型例题及习题

常见递推数列通项公式的求法典型例题及习题 【典型例题】 [例1] b ka a n n +=+1型。 (1)1=k 时,}{1n n n a b a a ?=-+是等差数列,)(1b a n b a n -+?= (2)1≠k 时,设)(1m a k m a n n +=++ ∴ m km ka a n n -+=+1 比较系数:b m km =- ∴ 1-= k b m ∴ }1{-+ k b a n 是等比数列,公比为k ,首项为11-+k b a ∴ 11)1(1-?-+=-+ n n k k b a k b a ∴ 1)1(11--?-+=-k b k k b a a n n [例2] )(1n f ka a n n +=+型。 (1)1=k 时,)(1n f a a n n =-+,若)(n f 可求和,则可用累加消项的方法。 例:已知}{n a 满足11=a ,)1(1 1+= -+n n a a n n 求}{n a 的通项公式。 解: ∵ 11 1)1(11+- =+= -+n n n n a a n n ∴ n n a a n n 1111--= -- 112121---=---n n a a n n 21 3132-- -=---n n a a n n …… 312123-= -a a 21112-=-a a 对这(1-n )个式子求和得: n a a n 111- =- ∴ n a n 1 2- =

(2)1≠k 时,当b an n f +=)(则可设)()1(1B An a k B n A a n n ++=++++ ∴ A B k An k ka a n n --+-+=+)1()1(1 ∴ ???=--=-b A B k a A k )1()1( 解得:1-=k a A ,2 )1(1-+-=k a k b B ∴ }{B An a n ++是以B A a ++1为首项,k 为公比的等比数列 ∴ 1 1)(-?++=++n n k B A a B An a ∴ B An k B A a a n n --?++=-11)( 将A 、B 代入即可 (3)n q n f =)((≠q 0,1) 等式两边同时除以1 +n q 得q q a q k q a n n n n 1 11+?=++ 令 n n n q a C = 则q C q k C n n 1 1+ =+ ∴ }{n C 可归为b ka a n n +=+1型 [例3] n n a n f a ?=+)(1型。 (1)若)(n f 是常数时,可归为等比数列。 (2)若)(n f 可求积,可用累积约项的方法化简求通项。 例:已知: 311= a ,1121 2-+-=n n a n n a (2≥n )求数列}{n a 的通项。 解:123537532521232121212233 2211+= ?--?--?+-=???-----n n n n n n n a a a a a a a a a a n n n n n n ΛΛ ∴ 1211231+= +? =n n a a n [例4] 11 --+?? =n n n a m a m k a 型。

(完整版)数列求和经典题型总结

三、数列求和 数列求和的方法. (1)公式法:①等差数列的前n 项求和公式 n S =__________________=_______________________. ② 等 比 数 列 的 前 n 项 和 求 和 公 式 ? ? ?≠===)1(___________________)1(__________q q S n (2)....++=n n n b a C ,数列{}n C 的通项公式能够分解成几部分,一般用“分组求和法”. (3)n n n C a b =?,数列{}n C 的通项公式能够分解成等差数列和等比数列的乘积,一般用“错 位相减法”. (4)1 n n n C a b = ?,数列{}n C 的通项公式是一个分式结构,一般采用“裂项相消法”. (5)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和。适用于形如()()n f a n n 1-=的类型。举例如下: ()()() 5050 12979899100129798991002 22222=++???++++=-+???+-+-= n S 常见的裂项公式: (1) 111)1(1+-=+n n n n ;(2) =+-) 12)(12(1 n n ____________________;(3)1 1++n n =__________________ 题型一 数列求解通项公式 1. 若数列{a n }的前n 项的和1232 +-=n n S n ,则{a n }的通项公式是n a =_________________。 2. 数列}{n a 中,已知对任意的正整数n ,1321-=+???++n n a a a ,则22221n a a a +???++等 于_____________。 3. 数列中,如果数列是等差数列,则________________。 4. 已知数列{a n }中,a 1=1且 3 1 111+=+n n a a ,则=10a ____________。 5. 已知数列{a n }满足)2(1 1≥-= -n a n n a n n ,则n a =_____________.。 6. 已知数列{a n }满足)2(11≥++=-n n a a n n ,则n a =_____________.。 {}n a 352,1,a a ==1 { }1 n a +11a =

数列求和公开课教案(1)

《数列求和复习》教学设计 开课时间:2016/12/22 开课人:洪来春一、学情分析: 学生在前一阶段的学习中已经基本掌握了等差、等比数列这两类最基本的数列的定义、通项公式、求和公式,同时也掌握了与等差、等比数列相关的综合问题的一般解决方法。本节课作为一节复习课,将会根据已知数列的特点选择适当的方法求出数列的前n项和,从而培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力。 二、教法设计: 本节课设计的指导思想是:讲究效率,加强变式训练、合作学习。采用以具体题目为切入点,引导学生进行探索、讨论,注重分析、启发、反馈。先引出相应的知识点,然后剖析需要解决的问题,在例题中巩固相应方法,再从讨论、反馈中深化对问题和方法的理解,从而较好地完成知识的建构,更好地锻炼学生探索和解决问题的能力。 在教学过程中采取如下方法: (1)诱导思维法:使学生对知识进行主动建构,有利于调动学生的主动性和积极性,发挥其创造性; (2)讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。 三、教学设计: 1、教材的地位与作用: 对数列求和的考查是近几年高考的热点内容之一,属于高考命题中常考的内容;另一个面,数学思想方法的考查在高考中逐年加大了它的份量。化归与转化思想是本课时的重点数学思想方法,化归思想就是把不熟悉的问题转化成熟悉问题的数学思想,即把数学中待解决或未解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换、转化,归结到某个或某些已经解决或比较容易解决的问题上,最终解决原问题的一种数学思想方法;化归思想是解决数学问题的基本思想,解题的过程实际上就是转化的过程。 2、教学重点、难点: 教学重点:根据数列通项求数列的前n项,本节课重点复习分组求和与裂项法求和。 教学难点:解题过程中方法的正确选择。 3、教学目标: (1)知识与技能: 会根据通项公式选择求和的方法,并能运用分组求和与裂项法求数列的前n项。 (2)过程与方法: ①培养学生观察、分析、归纳、猜想的能力、逻辑思维能力以及演绎推理的能力; ②通过阶梯性练习和分层能力培养练习,提高学生分析问题和解决问题的能力,使不同层次的学生的能力都能得到提高。

等差数列求和及练习题(整理)

等差数列求和 引例:计算1+2+3+4+……+97+98+99+100 一、有关概念: 像1、2、3、4、5、6、7、8、9、……这样连起来的一串数称为数列;数列中每一个数叫这个数列的一项,排在第一个位置的叫首项,第二个叫第二项,第三个叫第三项,……,最后一项又叫末项;共有多少个数又叫项数;如果一个数列,从第二项开始,每一项与前一项之差都等于一个固定的数,我们就叫做等差数列。这个固定的数就叫做“公差”。 二、有关公式: 和=(首项+末项)×项数÷2 末项=首项+公差×(项数-1) 公差=(末项-首项)÷(项数-1) 项数=(末项-首项)÷公差+1 三、典型例题: 例1、聪明脑筋转转转: 判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项、公差及项数写出来,如果不是请打“×”。 判断首项末项公差项数 (1)1、2、4、8、16、32. ()()()()()(2)42、49、56、63、70、77. ()()()()()(3)5、1、4、1、3、1、2、1. ()()()()()(4)44、55、66、77、88、99、110()()()()() 例2、已知等差数列1,8,15,…,78.共12项,和是多少?(博易P27例2)

(看ppt,推出公式) 例3、计算1+3+5+7+……+35+37+39 练习2:计算下列各题 (1)6+10+14+18+22+26+30 (3)1+3+5+7+……+95+97+99 (2)3+15+27+39+51+63 (4)2+4+6+8+……+96+98+100 (3)已知一列数4,6,8,10,…,64,共有31个数,这个数列的和是多少? 例5、有一堆圆木堆成一堆,从上到下,上面一层有10根,每向下一层增加一根,共堆了10层。这堆圆木共有多少根?(博易P27例3)(看ppt) 练习3: 丹丹学英语单词,第一天学了6个单词,以后每一天都比前一天多学会一个,最后一天学会了26个。丹丹在这些天中共学会了多少个单词? 等差数列求和练习题 一、判断下列数列是否是等差数列?是的请打“√”,并把等差数列的首项,末项 及公差写出来,如果不是请打“×”。 判断首项末项公差 1. 2、4、6、8、10、12、14、16.()()()() 2. 1、3、6、8、9、11、12、14. ()()()() 3. 5、10、15、20、25、30、35. ()()()() 4. 3、6、8、9、12、16、20、26.()()()() 二、请计算下列各题。 (1)3+6+9+12+15+18+21+24+27+30+33 (2)4+8+12+16+20+24+28+32+36+40 (3)求3、6、9、12、15、18、21、这个数列各项相加的和。 (4)2+4+6+8+……+198+200 ★(5)求出所有三位数的和。 (其他作业:练习册B 1题、4题、6题)

备战高考技巧大全之高中数学黄金解题模板:专题26 数列求和方法答案解析

【高考地位】 数列是高中数学的重要内容,又是高中数学与高等数学的重要衔接点,其涉及的基础知识、数学思想与方法,在高等数学的学习中起着重要作用,因而成为历年高考久考不衰的热点题型,在历年的高考中都占有重要地位。数列求和的常用方法是我们在高中数学学习中必须掌握的基本方法,是高考的必考热点之一。此类问题中除了利用等差数列和等比数列求和公式外,大部分数列的求和都需要一定的技巧。下面,就近几年高考数学中的几个例子来谈谈数列求和的基本方法和技巧。 【方法点评】 方法一 公式法 解题模板:第一步 结合所求结论,寻找已知与未知的关系; 第二步 根据已知条件列方程求出未知量; 第三步 利用前n 项和公式求和结果 例1.设}{n a 为等差数列,n S 为数列}{n a 的前n 项和,已知77=S ,7515=S ,n T 为数列}{n S n 的前n 项和,求n T . 【评析】直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.常用的数列求和公式有:

等差数列前n 项和公式: 11()(1)22 n n n a a n n S na d +-==+. 等比数列前n 项和公式:111(1)(1)(1)11n n n na q S a q a a q q q q =??=--?=≠?--? . 自然数方幂和公式:1123(1)2 n n n +++???+=+ 22221123(1)(21)6 n n n n +++???+=++ 333321123[(1)]2 n n n +++???+=+ 【变式演练1】已知{a n }是等差数列,a 1+a 2=4,a 7+a 8=28,则该数列前10项和S 10等于( ) A.64 B.100 C.110 D.120 【答案】B 【解析】 试题分析:a 1+a 2=4,a 7+a 8=28,解方程组可得11,2a d == 101109101002 S a d ?∴=+ = 考点:等差数列通项公式及求和 方法二 分组法 解题模板:第一步 定通项公式:即根据已知条件求出数列的通项公式; 第二步 巧拆分:即根据通项公式特征,将其分解为几个可以直接求和的数列; 第三步 分别求和:即分别求出各个数列的和; 第四步 组合:即把拆分后每个数列的求和进行组合,可求得原数列的和. 例2. 已知数列{a n }是3+2-1,6+22-1,9+23-1,12+24-1,…,写出数列{a n }的通项公式并求其前n 项 S n .

数列求和与求通项方法汇总与经典例题

15 数列求通项问题 数列求通项方法一:累加法,解决形如型数列通项问题)(1n f a a n n =-+. 例.设数列}{a n 的前n 项和为S n ,}{a n }满足a 1=1,a n +1﹣a n =n d ,n ∈N *.若n d =3n ,求数列}{a n 的通项公式; 解:(1)若a n +1﹣a n =d n =3n ,则a 2﹣a 1=3, a 3﹣a 2=32,a 4﹣a 3=33,……a n ﹣a n ﹣1=3n ﹣1, 累加得:a n ﹣a 1==,又由a 1=1,∴a n =. 数列求和方法二:构造法,解决形如型或接近于等差或d pa n n +=+1a .等比数列型 例.已知数列{a n }满足a 1=1且a n +1=2a n +1,求a n ; 解:∵a n +1=2a n +1,∴a n +1+1=2a n +2=2(a n +1),又a 1+1=2≠0,所以, ∴数列{a n +1}是等比数列,公比q =2,首项为2.则, ∴; 例 数列{a n }中,a 1=1,a n +1=2a n +n ﹣1.求数列{a n }的通项公式. 解:根据题意,a n +1=2a n +n ﹣1,则a n +1+n +1=2a n +n ﹣1+n +1=2a n +2n =2(a n +n ) 所以,所以数列{a n +n }为等比数列. 数列{a n +n }为以2为公比的等比数列,又a 1=1,所以a 1+1=2. 所以,所以. 例.设S n 是数列{a n }的前n 项和,且a 1=﹣1,a n +1=S n ?S n +1,求{a n }的通项公式. 解:因为a n +1=S n +1﹣S n ,所以S n +1﹣S n =S n ?S n +1. 两边同除以S n ?S n +1得﹣=﹣1.因为a 1=﹣1,所以=﹣1. 因此数列{ }是首项为﹣1,公差为﹣1的等差数列. 得=﹣1+(n ﹣1)(﹣1)=﹣n ,S n =﹣.

高中数学数列求和专题复习知识点习题.doc

数列求和例题精讲 1. 公式法求和 (1)等差数列前 n 项和公式 S n n(a 1 a n ) n(a k 1 a n k ) n( n 1) d 2 2 na 1 2 (2)等比数列前 n 项和公式 q 1 时 S n na 1 q 1 时 S n a 1 (1 q n ) a 1 a n q 1 q 1 q (3)前 n 个正整数的和 1 2 3 n(n 1) n 2 前 n 个正整数的平方和 12 22 32 n 2 n(n 1)(2n 1) 6 前 n 个正整数的立方和 13 23 33 n 3 [ n(n 1) ] 2 ( 1)弄准求和项数 n 的值; 2 公式法求和注意事项 ( 2)等比数列公比 q 未知时,运用前 n 项和公式要分类。 例 1.求数列 1,4,7, ,3n 1 的所有项的和 例 2.求和 1 x x 2 x n 2 ( n 2, x 0 )

2.分组法求和 例 3.求数列 1, 1 2,1 2 3,,1 2 3 n 的所有项的和。 5n 1 (n为奇数 ) 例 4.已知数列a n中,a n ,求 S2m。 ( 2) n (n为偶数 ) 3.并项法求和 例 5.数列a n 中, a n ( 1) n 1 n2,求 S100。 例 6.数列a n中,,a n( 1) n 4n ,求 S20及 S35。 4.错位相减法求和 若a n 为等差数列,b n 为等比数列,求数列a n b n(差比数列)前n项 b n 的公比。 和,可由S n qS n求 S n,其中q 为

例 7.求和12x 3x 2nx n 1(x0 )。 5.裂项法求和 :把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。 例 8.求和 1 1 1 1 。 1 3 3 5 5 7 (2n 1)(2n 1) 例 9.求和 1 1 1 1 2 1 3 2 23 。 n 1n [练习] 1 1 1 1 1 2 3 2 3 n 1 2 1 a n S n 2 1 n 1

数列求和方法及典型例题

数列求和方法及典型例题 1.基本数列的前n 项和 ⑴ 等差数列{}n a 的前n 项和:n S ???? ??????+?-++=n b n a d n n na a a n n 211)1(212)( ⑵ 等比数列{}n a 的前n 项和n S : ①当1=q 时,1na S n =;②当1≠q 时,q q a a q q a S n n n --=--=11)1(11; 2. 数列求和的常用方法:公式法;性质法;拆项分组法;裂项相消法;错位相减法;倒序相加法. 题型一 公式法、性质法求和 1.已知n S 为等比数列{}n a 的前n 项和,公比7,299==S q ,则=++++99963a a a a 2.等差数列{}n a 中,公差2 1= d ,且6099531=++++a a a a ,则=++++100321a a a a . [例1]求数列 ,,,,,)21(813412211n n +的前n 项和n S . 题型二 拆项分组法求和 [练2]在数列{} n a 中,已知a 1=2,a n+1=4a n -3n +1,n ∈*N . (1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和为S n ,求S n 。 [练].求数列{}2)12(-n 的前n 项和n S . [例].求和:) 1(1431321211+++?+?+?n n . 题型三 裂项相消法求和 [例].求和: n n +++++++++11341231121 . [例]求和:n +++++++++++ 321132112111 [练4]已知数列{}n a 满足()*1112,1N n a a a n n ∈+==+

数列经典例题(裂项相消法)20392

数列裂项相消求和的典型题型 1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1 {1 +n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .101100 2.数列,)1(1+=n n a n 其前n 项之和为,10 9 则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距 为( ) A .-10 B .-9 C .10 D .9 3.等比数列}{n a 的各项均为正数,且622 3219,132a a a a a ==+. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1 { n b 的前n 项和. 4.正项数列}{n a 满足02)12(2 =---n a n a n n . (Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1 n n a n b += 求数列}{n b 的前n 项和n T . 5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足 ,,2 1 1*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(1 1*2 N n a b n n ∈-= 求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a n a a 2 11)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;

涵盖所有高中数列求和的方法和典型例题

数列的求和 1.直接法:即直接用等差、等比数列的求和公式求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)等比数列的求和公式?????≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定要讨论) 2 . 公 式 法 : 222221 (1)(21) 1236 n k n n n k n =++=++++= ∑L 2 3 3 3 3 3 1 (1)1232n k n n k n =+?? =++++=????∑L 3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。 常 见 拆 项公式 : 1 11)1(1+-=+n n n n ; 1111 ()(2)22 n n n n =-++ )1 21 121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=? (三)例题分析: 例1.求和:①321ΛΛ个 n n S 111111111++++= ②22222)1()1()1 (n n n x x x x x x S ++++ ++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。 解:①)110(9 1 10101011112-= ++++==k k k k a Λ321Λ个 ])101010[(9 1)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[ 911--=--=+n n n n ②)21()21()21(224422+++++++++ =n n n x x x x x x S Λ n x x x x x x n n 2)1 11()(242242++++++++=ΛΛ (1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2) 1() 1)(1(21)1(1)1(2 2222222222+-+-=+--+--=+---

相关主题
文本预览
相关文档 最新文档