蛋白质组学研究内容和相关技术
- 格式:doc
- 大小:45.00 KB
- 文档页数:5
一、什么是蛋白质组?与基因组差别?蛋白质组学的主要研究内容及技术体系?
答:蛋白质组:Proteome,源于蛋白质(protein)与基因组(genome)两个词的组合,意指“一种基因组所表达的全套蛋白质”,即包括一种细胞乃至一种生物所表达的全部蛋白质。蛋白质组学本质上指的是在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,由此获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识,这个概念最早是由Marc Wilkins 在1994年提出的。
基因组:Genome,一个细胞或者生物体所携带的一套完整的单倍体序列,包括全套基因和间隔序列。可是基因组测序的结果发现基因编码序列只占整个基因组序列的很小一部分。因此,基因组应该指单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子。
二者区别:蛋白质组研究和基因组研究依然是形影相随的两个重要领域,它们之间既为互相补充又能互相帮助,但二者之间仍有一些区别:
蛋白质组:多样性,无限性,动态性,空间性,互相作用。
基因组:同一性,有限性,静态性,周期性,孤立性。
蛋白质组学的主要研究内容:
(1)表达蛋白质组学(expressionproteomics):是对蛋白质组表达模式的研究,即检测细胞、组织中的蛋白质,建立蛋白质定量表达图谱,或扫描表达序列(EST)图谱。在整个蛋白质组水平上提供了研究细胞通路、疾病、药物相互作用和一些生物刺激引起的功能紊乱的可能性,对寻找疾病诊断标志、筛选药物靶点、毒理学研究等具有重要作用。
(2)细胞图谱蛋白质组学(cellmapproteomocis):是对蛋白质组功能模式的研究,即确定蛋白质在亚细胞结构中的位置和鉴定蛋白质复合物组成等,便于研究蛋白质在细胞内的行为、运输及蛋白质相互作用网络关系,它对确定蛋白质功能和疾病诊疗的靶位极有价值。
蛋白质组学技术体系:
(1)蛋白质组学分离技术,在整个蛋白质组学的研究中,分离技术是最基础的部分。如何实现对复杂的蛋白质样品或者其酶解产物进行有效的分离,是对样品做后续鉴定的先决条件。目前蛋白质组学常用的分离技术主要有两种类型,一是凝胶技术,主要包括双向凝胶电泳(2-DE)技术以及后来出现的双向荧光差异凝胶电泳技术(2D-DIGE);二是非凝胶技术,主要是色谱(LC)技术,尤其是高效液相色谱(HPLC)和多维液相色谱(MDLC)。
(2)蛋白质组学鉴定技术,在蛋白质组学研究流程中,蛋白质鉴定技术是最关键的部分。质谱技术在二十世纪初就已出现,但一直仅应用于有机小分子领域,直到八十年代才渐
渐应用到生物大分子领域。经过二十多年来的应用和发展,质谱技术已是蛋白质组研究中必不可少的工具,并成为蛋白质组研究中的主要支撑技术。根据离子化源的不同,质谱主要可以分为电喷雾电离质谱(ESI-MS)和基质辅助激光解析电离质谱(MALDI-MS)两大类。
(3)蛋白质组学定量技术,蛋白质组学的研究目的是以大规模的尺度研究细胞内蛋白质的功能,这种研究要走向成熟必然要脱离对蛋白质的简单鉴定,实现对蛋白质的表达水平及其变化的检测。因此,定量技术应该说是整个蛋白质组学的精华部分。而这种定量通常不必是检测蛋白质在细胞内的绝对含量,而只需对其相对含量进行定量即可。目前,蛋白质组研究中应用的比较成熟和可信的定量策略和方法主要有两种。一种是基于传统双向凝胶电泳及染色基础上的定量,另外一种是基于质谱检测技术的定量。
(4)蛋白质组生物信息学,生物信息学(bioinformatics)是在生命科学、计算机科学和数学分析的基础上逐步发展而形成的一门新兴交叉学科,是运用数学与计算机科学手段进行生物数据等信息的收集、加工、存储、分析与解析的科学。随着蛋白质组学的不断发展,也对生物信息学提出了更多的挑战,两者不断的相互作用形成了蛋白质组生物信息学这一活跃的研究分支。
二、什么是Cytokine?按功能可分为几类?
答:Cytokine,即细胞因子。为了维持机体的生理平衡,抵抗病原微生物的侵袭,防止肿瘤发生,机体的许多细胞,特别是免疫细胞合成和分泌许多种微量的多肽类因子,即细胞因子。它们在细胞之间传递信息,调节细胞的生理过程,提高机体的免疫力,在异常情况下也有可能引起发烧、炎症、休克等病理过程。
按功能可分为以下几类:
(1)白细胞介素(interleukin, IL),由淋巴细胞、单核细胞或其它非单个核细胞产生的细胞因子;
(2)集落刺激因子(colony stimulating factor, CSF)根据不同细胞因子刺激造血干细胞或分化不同阶段的造血细胞在半固体培养基中形成不同的细胞集落,分别命名为G(粒细胞)-CSF、M(巨噬细胞)-CSF、GM(粒细胞、巨噬细胞)-CSF、Multi(多重)-CSF(IL-3)、SCF、EPO等;
(3)干扰素(interferon, IFN)根据干扰素产生的来源和结构不同,可分为IFN-α、IFN-β和IFN-γ,他们分别由白细胞、成纤维细胞和活化T细胞所产生;
(4)肿瘤坏死因子(tumor necrosis factor, TNF)根据其产生来源和结构不同,可分为TNF-α和TNF-β两类,前者由单核-巨噬细胞产生,后者由活化T细胞产生,又名淋巴毒素
(lymphotoxin, LT);
(5)转化生长因子-β家族(transforming growth factor-β family, TGF-β family)由多种细胞产生,主要包括TGF-β1、TGF-β2、TGF-β3、TGFβ1β2以及骨形成蛋白(BMP)等;
(6)生长因子(growth factor,GF)如表皮生长因子(EGF)、血小板衍生的生长因子(PDGF)、成纤维细胞生长因子(FGF)、肝细胞生长因子(HGF)、胰岛素样生长因子-I (IGF-1)、IGF-Ⅱ、白血病抑制因子(LIF)、神经生长因子(NGF)、抑瘤素M(OSM)、血小板衍生的内皮细胞生长因子(PDECGF)、转化生长因子-α(TGF-α)、血管内皮细胞生长因子(VEGF)等;
(7)趋化因子家族(chemokinefamily)包括四个亚族:(1)C-X-C/α亚族;(2)C-C/β亚族;(3)C型亚家族的代表有淋巴细胞趋化蛋白;(4)CX3C亚家族。
三、简述Western blot原理及步骤。
Western blot原理:经过聚丙烯酰胺凝胶电泳(PAGE)分离的蛋白质样品,转移到固相载体(如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。
Western blot步骤:
(1)试剂准备:SDS-PAGE试剂、匀浆缓冲液、转膜缓冲液、PBS、膜染色液、显色液;
(2)蛋白样品制备:单层贴壁细胞总蛋白、组织中总蛋白或加药物处理的贴壁细胞总蛋白的提取;
(3)聚丙烯酰胺凝胶电泳(PAGE);
(4)转膜(如硝酸纤维素薄膜);
(5)免疫反应:封闭,用稀释过的一抗进行孵育,再用稀释过的二抗进行孵育。
(6)显影;
(7)凝胶图象分析。
四、双向电泳原理。
答:双向电泳(two-dimensional electrophoresis)是等电聚焦电泳和SDS-聚丙烯酰胺凝胶电泳的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。