实验12一级反应——蔗糖的转化
- 格式:doc
- 大小:455.00 KB
- 文档页数:6
实验九蔗糖的转化一、实验目的1. 掌握蔗糖的转化反应原理及方法。
2. 了解酵母细胞的发酵过程。
二、实验原理蔗糖是一种二糖,在发酵过程中可以被酵母菌分解为两个单糖——葡萄糖和果糖。
这个过程是通过酵母细胞内的酶途径进行的。
首先,酵母细胞外部的酶——蔗糖酶,将蔗糖水解为葡萄糖和果糖。
然后,葡萄糖和果糖进入酵母细胞,接受不同途径的代谢,进而通过乳酸酸精、酒精发酵等途径转化为乳酸、酒精等产物。
本实验是通过蔗糖的转化反应,观察其转化过程。
三、实验步骤1. 将6个干净无菌培养瓶(50ml)放入常压蒸馏水锅中加热10min,取出并晾干。
2. 用大约1ml的无菌蔗糖水解液均匀涂抹在培养瓶内的玻璃明片上,倾斜瓶子30度,约10min后透镜检查观察玻璃明片表面上是否有球形菌落,如果有殖物不均匀,再涂抹无菌的蔗糖水解液,待殖物浓度足够,用无菌棉签在液面涂心形,并使之在玻璃明片上连成一线。
3. 取出蔗糖酵母菌液(5ml),用透过菌膜纸过滤的方法在培养瓶中注入5ml。
其余瓶中加入蔗糖酵母菌液或蔗糖水解液,用无菌棉签在液面涂成心形,使得殖物在玻璃明片上连成一线。
4. 把培养瓶标上标签,分别记录添加菌量、添加液量和发酵温度(24℃、28℃和32℃)。
5. 将培养瓶放置到发酵箱中温度为24℃、28℃和32℃的三个恒温培养箱中,关闭箱门。
6. 观察转化反应产物的变化情况,在适当时间取出发酵液,用无菌的玻璃纤维滴头过滤,观察滤液是否浑浊。
如果产物表现完全转化,则停止发酵反应。
7. 根据实验数据计算计算变化情况,消耗蔗糖转化产生的CO2数量可以用气相色谱法进行分析,用光谱分析、色谱分析、红外光谱分析等方法可以分析转化产物的组成,从而得出蔗糖的转化过程。
四、实验注意事项1. 实验前应将所有玻璃器皿用去离子水和2%双氧水混合溶液清洗3-4次,并用水洗涤干净,晾干或烘干。
2. 操作时必须戴口罩、手套、实验服等。
3. 严格按照实验步骤进行,不要随意更改。
蔗糖水解反应实验报告一、实验目的1、了解蔗糖水解反应体系中各物质浓度与旋光度之间的关系。
2、测定蔗糖水解反应的速率常数和半衰期。
3、了解旋光仪的基本原理,并掌握其正确的操作技术。
二、实验原理蔗糖在水中转化成葡萄糖与果糖,其反应为:C12H22O11 + H2OC6H12O6 + C6H12O6(蔗糖) (葡萄糖) (果糖)它属于二级反应,在纯水中此反应的速率极慢,通常需要在H+离子催化作用下进行。
由于反应时水大量存在,尽管有部分水分子参与反应,仍可近似地认为整个反应过程中水的浓度是恒定的,而且H+是催化剂,其浓度也保持不变。
因此蔗糖转化反应可看作为一级反应。
一级反应的速率方程可由下式表示:—式中c为时间t时的反应物浓度,k为反应速率常数。
积分可得: Inc=-kt + Inc0c0为反应开始时反应物浓度。
一级反应的半衰期为: t1/2=从上式中我们不难看出,在不同时间测定反应物的相应浓度,是可以求出反应速率常数k的。
然而反应是在不断进行的,要快速分析出反应物的浓度是困难的。
但是,蔗糖及其转化产物,都具有旋光性,而且它们的旋光能力不同,故可以利用体系在反应进程中旋光度的变化来度量反应进程。
测量物质旋光度所用的仪器称为旋光仪。
溶液的旋光度与溶液中所含旋光物质的旋光能力,溶剂性质,溶液浓度,样品管长度及温度等均有关系。
当其它条件均固定时,旋光度α与反应物浓度c呈线性关系,即α=Kc式中比例常数K与物质旋光能力,溶剂性质,样品管长度,温度等有关。
物质的旋光能力用比旋光度来度量,比旋光度用下式表示:式中“20”表示实验时温度为20℃,D是指用纳灯光源D线的波长(即589毫微米),α为测得的旋光度,l为样品管长度(dm),c A为浓度(g/100mL)。
作为反应物的蔗糖是右旋性物质,其比旋光度=66.6°;生成物中葡萄糖也是右旋性物质,其比旋光度=52.5°,但果糖是左旋性物质,其比旋光度=-91.9°。
蔗糖的转化旋光法蔗糖的转化旋光法蔗糖的转化(旋光法)【物理化学实验】蔗糖的转化(旋光法)一、实验目的1测定不同温度时蔗糖转化反应的速率常数和半衰期,并求算蔗糖转化反应的活化能。
2介绍旋光仪的结构、工作原理,掌控旋光仪的采用方法。
二、基本建议1.了解在蔗糖反应的动力学方程式中,任何时刻t的蔗糖浓渡可以被反应体系在该时刻的旋光度与反应终了时的旋光度之差所替代的依据。
2.测量蔗糖转化率的速率常数的半衰期。
3.介绍旋光仪的基本原理,掌控其实用方法。
三、实验原理ln(αt-α∞)=-kt+ln(α。
-α∞)以ln(αt-α∞)对t作图为一直线,由该直线的斜率即可求出反应速率常数k。
进而可以求出半衰期t1/2。
根据阿累尼乌斯公式ln(k2/k1)=ea(t2-t1)/rt1t2纡出来蔗糖转变反应的活化能ea。
四、仪器试剂仪器:旋光仪1台;恒温旋光管1只;恒温槽1套;台称1台;停表1块;烧杯(100ml)1个;移液管(30ml)2只;带塞三角瓶(100ml)2只。
药品:hcl溶液(4或2mol·dm-3);蔗糖(分析氢铵)。
五、实验步骤1.将恒温槽调节至(25.0±0.1)℃恒温,然后在恒温旋光管中接通恒温水。
2.旋光仪零点的校正晒干恒温旋光管,将管子一端的盖子旋紧,向管内转化成蒸馏水,把玻璃片盖好,使管内无气泡(或小气泡)存在。
再旋紧套盖,勿使漏水。
用吸水纸擦净旋光管,再用擦镜纸将管两端的玻璃片擦净。
放入旋光仪中盖上槽盖,打开光源,调节目镜使视野清晰,然后旋转检偏镜至观察到的三分视野最暗且暗度相等为止,记下检偏镜之旋转角α,重复操作三次,取其平均值,即为旋光仪的零点。
3.蔗糖水解过程中αt的测定用台表示称取20g蔗糖,放进250ml烧杯中,重新加入100ml蒸馏水硝酸锶溶液(若溶液浑浊则须要过滤器)。
用移液管挑30ml蔗糖溶液放在100ml带塞三角瓶中。
(六)旋光法测定蔗糖转化反应的速率常数之马矢奏春创作创作时间:二零二一年六月三十日一、目的要求1、测定蔗糖转化反应的速率常数和半衰期.2、了解该反应的反应物浓度与旋光度之间的关系.3、了解旋光仪的基来源根基理, 掌握旋光仪的正确使用方法.二、仪器与试剂WZZ2B自动旋光仪, 样品管, 秒表, 恒温槽, 量筒, 锥形瓶, 蔗糖水溶液, 盐酸水溶液三、实验原理蔗糖在水中水解成葡萄糖与果糖的反应为C12H22O11(蔗糖)+ H2O C6H12O6 (葡萄糖)+ C6H12O6(果糖)为使水解反应加速, 反应经常以H+为催化剂.由于在较稀的蔗糖溶液中, 水是年夜量的, 反应达终点时, 虽然有部份水分子介入了反应, 但与溶质(蔗糖)浓度相比可以认为它的浓度没有改变.因此, 在一定的酸度下, 反应速度只与蔗糖的浓度有关, 所以该反应可视为一级反应(动力学中称之为准一级反应).该反应的速度方程为:-dC/dt = kC其中C为蔗糖溶液的浓度, k为蔗糖在该条件下的水解反应速度常数该反应的半衰期与k的关系为:t1/2 = ln2/k蔗糖、葡萄糖、果糖都是旋光性的物质, 即都能使透过它们的偏振光的振动面旋转一定的角度, 称为旋光度, 以暗示.其中蔗糖、葡萄糖能使偏振光的振动面按顺时针方向旋转, 为右旋光性物质, 旋光度为正值.而果糖能使偏振光的振动面按逆时针方向旋转, 为左旋光性物质, 旋光度为负值.反应进程中, 溶液的旋光度变动情况如下:当反应开始时, t=0, 溶液只有蔗糖的右旋, 旋光度为正值, 随着反应的进行, 蔗糖溶液减少, 葡萄糖和果糖浓度增年夜, 由于果糖的左旋能力强于葡萄糖的右旋.整体来说, 溶液的旋光度随着时间而减少.当反应进行完全时, 蔗糖溶液为零, 溶液中只有葡萄糖和果糖, 这时, 溶液的旋光度为负值.可见, 反应过程中物质浓度的变动可以用旋光度来取代暗示.ln( t-) = - k t +ln(0-)从上式可见, 以ln( t-)对 t作图, 可得一直线, 由直线斜率可求得速度常数k.四、实验步伐1、从烘箱中取出锥形瓶.恒温槽调至55℃.2、开启旋光仪, 按下“光源”和“丈量”.预热10分钟后, 洗净样品管, 然后在样品管中装人蒸馏水, 丈量蒸馏水的旋光度, 之后清零.3、量取蔗糖和盐酸溶液各30毫升至干净干燥的锥形瓶, 盐酸倒入蔗糖中, 摇匀, 然后迅速用此溶液洗涮样品管3次, 再装满样品管, 放入旋光仪中, 开始记时.将锥形瓶放入恒温槽中加热, 待30分钟后取出, 冷却至室温.4、记时至2分钟时, 按动“复测”, 记录.如此, 每隔2分钟丈量一次, 直至30分钟(注意:数值为正值时使用“+复测”, 数值为负值时使用“复测”).5、倒去样品管中的溶液, 用加热过的溶液洗涮样品管3次, 再装满样品管, 测其旋光值, 共测5次, 求平均值.五、实验数据记录、0.610 .六、数据处置蔗糖的转化反应速率K=0.0662半衰期:t12 =2Ink=0.693k七、思考题1.实验中, 为什么用蒸馏水来校正旋光仪的零点? 在蔗糖转化反应过程中, 所测的旋光度αt是否需要零点校正?为什么?答:蒸馏水无旋光性, 消除旋光仪的系统误差;实验中, 所测的旋光度αt可以不校正零点, 因αtα∞ , 已将系统的零点误差消除失落.2.蔗糖溶液为什么可粗略配制?答:初始浓度对数据影响不年夜.速率常数K与温度和催化剂的浓度有关, 实验测定反应速率常数k, 以l n(αtα∞)对t作图, 由所得直线的斜率求出反应速率常数k, 与初始浓度无关3.蔗糖的转化速度和哪些因素有关?答:温度, 催化剂得浓度、种类等.4.溶液的旋光度与哪些因素有关?答:溶液的旋光度与溶液中所含旋光物质的种类、浓度、溶剂的性质、液层厚度、光源波长及温度等因素有关.5.反应开始时, 为什么将盐酸溶液倒入蔗糖溶液中, 而不是相反?答:因为盐酸是作为催化剂.若把蔗糖倒入盐酸傍边, 会招致反应液中盐酸的浓渡过年夜, 使得蔗糖在还没检测的时候就反应完全, 使实验存在很年夜误差.若那盐酸倒入蔗糖溶液中, 可以防止这种事情发生, 最年夜地降低了误差的呈现.八、实验结果与讨论:本实验测得蔗糖的转化反应速率K=0.0662 ,半衰期为10.47min, 测得的旋光度变动趋势是从年夜到小, 最终呈现负值.证明果糖的旋光度为负值, 并在数值上年夜于葡萄糖的旋光度值.而最终的旋光度几乎不变, 这说明反应几乎已经到达极限.通过该实验, 了解该反应的反应物浓度与旋光度之间的关系, 同时明白旋光仪的基来源根基理, 掌握旋光仪的正确使用方法.。
关于旋光法测定蔗糖转化反应的实验报告蔗糖浓度:0.3817完成下表:=-1.913表1蔗糖转化反应旋光度的测定结果五、作lnt~t图,求出反应速率常数k及半衰期t1/2求算过程:由计算机作图可得斜率=-0.02既测得反应速率常数k=0.02t1/2=ln2/k=34.66min六、讨论思考:1.在测量蔗糖转化速率常数的,选用长的旋光管好?还是短的旋光管好?答:选用较长的旋光管好。
根据公式〔α〕=α×1000/Lc,在其它条件不变情况下,L越长,α越大,则α的相对测量误差越小。
2.如何根据蔗糖、葡萄糖和果糟的比旋光度计算α0和α∞答:α0=〔α蔗糖〕Dt℃L[蔗糖]0/100α∞=〔α葡萄糖〕Dt℃L[葡萄糖]∞/100+〔α果糖〕Dt℃L[果糖]∞/100式中:[α蔗糖]Dt℃,[α葡萄糖]Dt℃,[α果糖]Dt℃分别表示用钠黄光作光源在t℃时蔗糖、葡萄糖和果糖的比旋光度,L(用dm 表示)为旋光管的长度,[蔗糖]0为反应液中蔗糖的初始浓度,[葡萄糖]∞和[果糖]∞表示葡萄糖和果糖在反应完成时的浓度。
设t=20℃L=2dm[蔗糖]0=10g/100mL则:α0=66.6×2×10/100=13.32°α∞=骸2×10/100×=-3.94°3.在旋光度的测量中,为什么要对零点进行校正可否用蒸馏水来进行校正在本实验中若不进行校正,对结果是否有影响答:若需要精确测量α的绝对值,则需要对仪器零点进行校正,因为仪器本身有一系统误差;水本身没有旋光性,故可用来校正仪器零点。
本实验测定k不需要对α进行零点校正,因为αt,α∞是在同一台仪器上测量,而结果是以ln(αt-α∞)对t作图求得的。
4.记录反应开始的时间晚了一些,是否影响k值的测定为什么答:不会影响;因为蔗糖转化反应对蔗糖为一级反应,本实验是以ln(αt-α∞)对t作图求k,不需要α0的数值。
蔗糖转化速度实验报告
实验目的:通过实验探究蔗糖的转化速度。
实验原理:蔗糖是由葡萄糖和果糖组成的二糖,经过水解反应可以将蔗糖分解为葡萄糖和果糖。
该反应可以由酶催化进行,催化剂为蔗糖酶。
蔗糖酶是一种酶类,能够加快蔗糖分解的速率。
实验步骤:
1. 准备实验所需材料:蔗糖溶液、蔗糖酶溶液、苏丹III溶液、特定体积的试管、计时器等。
2. 定量取一定体积的蔗糖溶液放入试管中。
3. 加入一定量的蔗糖酶溶液,充分混合。
4. 开始计时,记录反应时间。
5. 在一定时间间隔内取出少量反应液,在试管中滴加苏丹III
溶液进行检测。
6. 观察苏丹III溶液的颜色变化,颜色越深代表蔗糖转化的速
度越快。
实验结果:记录在一定时间段内蔗糖转化的速度以及苏丹III
溶液的颜色变化。
根据实验数据可以绘制出蔗糖转化速度与时间的关系曲线。
实验讨论:根据实验结果可以分析蔗糖转化速度随时间的变化趋势。
同时可以讨论影响蔗糖转化速度的因素,如温度、pH
值等。
实验结论:通过实验可以得出蔗糖转化速度随时间的变化曲线,并对蔗糖转化速度的影响因素进行讨论。
根据实验结果可以得出蔗糖转化速度在一定时间段内是逐渐增加的。
实验一 旋光法测定蔗糖转化反应的速率常数1目的要求(1) 测定蔗糖转化反应的速率常数和半衰期。
(2)了解旋光仪的基本原理,掌握旋光仪的使用方法。
2基本原理(1) 蔗糖转化的反应式为果糖葡萄糖蔗糖 O H C O H C O H O H C 62166126H2112221+−→−++在纯水中此反应的速度极慢,通常需要在H +催化作用下进行,该反应为二级反应。
但是由于水是大量存在的,尽管有部分水分子参加了反应,但仍可认为在反应过程中水的浓度是恒定的,而H +起催化作用,其浓度也保持不变。
因此,蔗糖转化反应可看作是一级反应。
一级反应的速率方程表达式如下:-dc/dt=kc (1)积分可得: lnc=-kt+lnc 0 (2) 式中:c —反应时间为t 时的反应物浓度;c 0—反应物起始浓度;t —反应时间; k —反应速率常数。
当c= 1/2c 0时,时间t 可用t 1/2表示,即反应的半衰期t 1/2=ln2/k=0.693/k (3)由式(2)可以看出,lnc 对t 作图为一直线,直线的斜率为反应速率常数k 。
若要直接测量不同时刻的反应物浓度非常困难,但蔗糖及其转化产物都有旋光性,而且旋光能力不同,故可以利用系统在反应过程中旋光度的变化来度量反应的进程。
(2) 测量旋光性所用的仪器称为旋光仪。
溶液的旋光度与溶液中所含旋光物质的旋光能力、溶剂性质、溶液的浓度、样品管长度、光源及温度等均有关系。
当其它条件固定时,旋光度与反应物浓度呈线性关系。
即α=Kc (4)式中K 为比例系数,与旋光物质的本性有关。
蔗糖是右旋物质,而反应产物混合物中,葡萄糖是右旋的,果糖是左旋的,但其旋光能力较葡萄糖大,所以从总体上反应产物呈左旋性质。
随着反应的进行,系统的右旋角不断减小,反应至某一瞬间,系统的旋光度恰好等于零,而后就变成左旋,直到蔗糖完全转化,这时左旋角达到最大值α∞。
则α0=K反c0 (蔗糖尚未分解t=0) (5)最后的溶液旋光度为α∞=K产c0 (蔗糖全部转化t=∞)(6)式中K反、K产分别表示反应物与产物之比例系数,c0为反应物的起始浓度,亦是生成物最后的浓度。
《物理化学基础实验》旋光法测定蔗糖转化反应的速率常数实验一、实验目的了解蔗糖转化反应体系中各物质浓度与旋光度之间的关系;测定蔗糖转化反应的速率常数和半衰期;了解旋光仪的基本原理,掌握其使用方法。
二、实验原理蔗糖转化反应为:C12H 22O 11(蔗糖)+H 2O → C 6H 12O 6(葡萄糖) + C 6H 12O 6(果糖)为使水解反应加速,常以酸为催化剂,故反应在酸性介质中进行。
由于反应中水是大量的,可以认为整个反应中水的浓度基本是恒定的。
而H +是催化剂,其浓度也是固定的。
所以,此反应可视为准一级反应。
其动力学方程为dckc dt-= (1) 式中,k 为反应速率常数;c 为时间t 时的反应物浓度。
将(1)式积分得:0ln c kt ln c =-+ (2)式中,C 0为反应物的初始浓度。
当C=1/2C 0时,t 可用t 1/2表示,即为反应的半衰期。
由(2)式可得:12ln 20.693t k k== (3) 蔗糖及水解产物均为旋光性物质。
但它们的旋光能力不同,故可以利用体系在反应过程中旋光度的变化来衡量反应的进程。
溶液的旋光度与溶液中所含旋光物质的种类、浓度、溶剂的性质、液层厚度、光源波长及温度等因素有关。
为了比较各种物质的旋光能力,引入比旋光度的概念。
比旋光度可用下式表示:[]tD lcαα= (4)式中,t 为实验温度(℃);D 为光源波长;α为旋光度;l 为液层厚度(m);c 为浓度(kg ·m -3)。
由(4)式可知,当其它条件不变时,旋光度α与浓度c 成正比。
即:Kc α= (5)式中的K 是一个与物质旋光能力、液层厚度、溶剂性质、光源波长、温度等因素有关的常数。
在蔗糖的水解反应中,反应物蔗糖是右旋性物质,其比旋光度[]︒=6.6620D α。
产物中葡萄糖也是右旋性物质,其比旋光度[]︒=5.5220D α;而产物中的果糖则是左旋性物质,其比旋光度[]︒-=9.9120D α。
旋光法测定蔗糖转化反应的速率常数实验报告院(系) 生化系 年级 10级 专业 化工 姓名 学号课程名称 物化实验 实验日期 2012 年 9 月 9 日 实验地点 3栋 指导老师一、实验目的:1·测定蔗糖转化放映的速率常数k ,半衰期t1/2,和活化能Ea 。
2·了解反应的反应物溶度与旋光度之间的关系。
3·了解旋光仪的基本原理,掌握旋光仪的正确使用方法。
二、实验原理:1、 蔗糖在水中转化成葡萄糖和果糖,器反应为: C 12H 22011+H 2OC 6H 12O 6+C 6H 12O 6(蔗糖) (葡萄糖) (果糖)这是一个二级反应,但在H+浓度和水量保持不变时,反应可视为一级反应,速率方程式可表示为: ,积分后可得: 由此可知:在不同时间测定反应物的相对浓度,并以㏑c 对t 作图,可得一直线,由直线斜率即可求得反应速率常数 k 。
当c=0.5c 0时 T1/2=ln2/K2、本实验中的反应物及产物均有旋光性,且旋光能力不同,在溶剂性质、溶液浓度、样品管长度及温度等条件均固定时,旋光度与反应物浓度呈线性关系,即:kc dt dc =-kt cc -=0ln。
反应时间 t=0,蔗糖尚未转化: ;反应时间为 t ,蔗糖部分转化: ; 反应时间 t=∞,蔗糖全部转化:, 联立上述三式并代入积分式可得: 对t作图可得一直线,从直线斜率可得反应速率常数k 。
三、仪器与试剂:WZZ-2B 型旋光仪 1台 501超级恒温水浴 1台 烧杯100ml 2个 移液管(25ml ) 2只 蔗糖溶液 (分析纯)(20.0g/100ml) Hcl 溶液(分析纯)(4.00mol/dm -3) 四、实验步骤: ①恒温准备:②旋光仪调零: 1)、2)、5分钟稳定后将4mol/L Hcl 和蔗糖50ml 分别置于100ml 的烧杯中调恒温水浴至45oc开启旋光仪将光源调至交流(AC)调开关至直流(DC)cβα=00c 反βα=)(生反c t -+=0c c ββα0c 生βα=∞)ln()ln(0∞∞-+-=-ααααkt t )ln(∞-ααt 以洗净样品管 向管内装满蒸馏水,并盖上玻璃片和套盖,不要有气泡用滤纸擦干管外的水,放入旋光仪光路中打开光源,调节目镜聚焦,使视野清晰 再旋转检偏镜至能观察到三分视野均匀但较暗为止记下检偏镜的旋光度,重复测量数次,取其平均值即为零点洗净样品管 向管内装满蒸馏水,盖上端盖,滤纸擦干③测定a t :④测定a ∞:⑤、依次关闭测量、光源、电源开关。
实验12 一级反应——蔗糖的转化
一、目的要求
1. 根据物质的光学性质,用测定旋光度的方法测定蔗糖水溶液在酸催化作用下的反应
速率常数和半衰期。
2. 了解该反应的反应物浓度与旋光度之间的关系及一级反应的动力学特征。
3. 了解旋光仪的基本原理,掌握其使用方法及在化学反应动力学测定中的应用。
二、原理
蔗糖转化过程的方程是:
C 12H 22O 12H 2O
+
C 6H 12O 6+C 6H 12O 6(蔗糖)
(葡萄糖)
(果糖)+
其速率方程为: +⋅⋅'=-
H O H s s
c c c k dt
dc 2 (12-1) 式中k '为反应速率常数,s c 为时间t 时蔗糖浓度,此反应在定温条件下,在纯水中进行的反应速率很慢,通常需要在+
H 催化下进行,因此+
H 做催化剂,在反应过程中浓度可视为不变,则式(12-1)变为:
O H s s
c c k dt
dc 2⋅''=- (12-2) 式中+'=''H c k k 。
(12-2)式表明该反应为二级反应,但由于有大量水存在,虽然有部分水分子参加反应,但在反应过程中水的浓度变化极小而视为常数合并到k ''中,故式(12-2)可写成:
s s
c k dt
dc 1表,=- (12-3) 式中O
H H c c k k 21⋅'=+表,,故蔗糖转化反应可看作表观一级反应,当0=t 时,蔗糖的初始浓度为0c ,积分(12-3)式得:
01ln ln c t k c s +-=表, (12-4)
若以s c ln 对t 做图,可得一条直线,从直线斜率可求得1表,k ,当2/10,2
1
t t c c s
==时,半衰期1
12/16931
.02ln 表,表,k k t ==
,2/1t 只决定于1表,k 而与蔗糖起始浓度无关,
这是一级反应的特征。
如何获得不同时刻t 时的s c 呢?因蔗糖及其转化产物葡萄糖和果糖都含不对称的碳原子,都具有旋光性,但旋光能力不同,故可利用体系在反应过程中旋光度的变化来度量反应过程,度量旋光度所用的仪器称为旋光仪,它是利用偏振光通过具有旋光性的被测物质,用检偏镜来测定旋光度的,其构造及测量原理图12-1。
图12-1 旋光仪的构造示意图
从图12-1看出,自然光通过起偏镜产生偏振光,该偏振光部分通过狭长石英条(宽度为视野的1/3),偏振面被旋转了一个角度Ф(Ф角很小),这种中间与两边偏振面不同(相差Ф角)的偏振光在样品管中被旋转(同样角度)后到达检偏镜。
如果检偏镜能通过的光振面与中间光偏振面一致,则视野中可见到如图12-2(a ),中间亮两边暗;同样检偏镜能通过的光偏振面与两边的光一致,则视野中出现图12-2(b ),中间暗两边亮;在与图12-2(a )和12-2(b )的角度都相差Ф/2角的地方,存在一点,整个视野的光亮度一致,如图12-2(c )。
这点作为读数点,某溶液和纯水的读数之差就是溶液的旋光度。
图12-2 旋光仪的三分视野图
旋光仪的大小与溶液中所含旋光物质之旋光能力、溶剂性质、溶液的浓度、光源波长以及温度等有关。
当其它条件均固定是,旋光度α与反应物质浓度c 呈线性关系,即:
Kc =α
式中的比例常数K 与物质之旋光能力、溶剂性质、溶液厚度、温度等有关。
当波长、溶剂及温度一定时,溶液的旋光度与浓度、样品长度成正比,即
[]100
20c
L D
⋅=αα 式中的比例常数[]20
D α称为比旋光度,可用来度量物质的旋光能力,20为实验温度20℃,D 是指所用钠光灯源D 线,波长5893
A ,L 为样品管长度(dm ),c 为浓度(g/100ml )。
反应物蔗糖为右旋物质,比旋光度[] 6.6620
=D α;生成物中葡萄糖也是右旋物质,
[] 5.5220=D α;果糖是左旋物质,其[] 9.9120-=D α。
由于生成物中果糖的左旋性比葡萄糖
的右旋性大,所以生成物总体呈现左旋性质。
因此,随着反应的进行,右旋角不断减小,反应至某一瞬间,体系的旋光度可恰好等于零。
而后变成左旋,直至蔗糖完全转化,这时左旋角达到最大值∞α。
设最初的旋光度为
00c K 反=α (蔗糖尚未转化0=t ) (12-5)
最后的旋光度为
0c K 生=∞α (蔗糖已完全转化∞=t ) (12-6)
式中生反、K K 分别为反应物与生成物的比例系数,0c 为反应物的起始浓度即生成物的最后浓度。
当时间为t 时,蔗糖浓度为s c ,此时旋光度为t α,
)(0s s t c c K c K -+=生反α (12-7)
由式12-5、12-6、12-7联立,可解得:
)(000∞∞
-=--=
ααααK K K c 生
反 (12-8)
)(∞∞
-=--=
ααααt t s K K K c 生
反 (12-9)
将此关系式代入(12-4)式即得:
)lg(303
.2)lg(01∞∞-+-
=-ααααt k t 表,
若以)lg(∞-ααt 对t 作图,从其斜率即可求得反应速率常数1表,k ,进而求出其半衰期2/1t 。
三、仪器和试剂
旋光仪1台;电热恒温水浴锅1台;量筒(500ml )2只;三角锥瓶(100ml )1只;停表;台秤;蔗糖(AR );盐酸(63
-⋅dm mol );擦镜纸。
四、实验步骤
1. 配置20%蔗糖溶液
在台秤上称取6g 蔗糖于锥形瓶中,加入24ml 蒸馏水摇动使其溶解。
2. 旋光仪零点的校正
把旋光管一端的盖旋开(注意盖内玻片以防跌碎),用蒸馏水洗净并充满,使液体在管口形成一凸出的液面,然后将玻片轻轻推放盖好,注意不要留有气泡,然后旋好管盖,注意不应过紧,使不漏水即可。
把旋光管外壳及两端玻片水渍吸干,把旋光管放入旋光仪中,打开电源,旋转刻度盘在0度附近。
调整目镜聚焦,使视野清楚,在旋光仪的视野中会看到如图12-3的三分视野图,旋转刻度盘使三分视野中的阴暗度完全相等,三分视野的分界线消失如图12-3(c ),则可读取数据。
重复三次,取其平均值,即为旋光仪的零点读数。
3. 反应过程中旋光度的测定
在蔗糖溶液锥瓶中,加入63
-⋅dm mol HCl 溶液30ml ,刚加至1半时开始记时,此时为反应开始的时间(注意:是一次性加入的!)。
倒出旋光管中蒸馏水,以少量蔗糖溶液荡洗一次,然后尽快放入旋光仪中,在时间间隔为5min 、10min 、15min 、20min 、30min 、40min 、50min 、60min ……时测其旋光度,直至旋光度为-2左右为止。
多次测定后关上钠光灯,欲测时提前5min 开灯。
为防止旋光仪发热而影响旋光管内反应系统的温度,最好每次测定后,将旋光管移出旋光仪。
4.∞α的测定
将剩下的溶液在65~75℃的水浴内恒温约5min ,然后冷却至原来的温度,并取少量溶液荡洗旋光管后,装满溶液,测其旋光度∞α。
5.实验完毕,洗净旋光管,擦干复原。
五、注意事项
1. 注意不要打破或丢失小玻璃片。
2. 加热反应溶液时,注意水温不能超过70℃,加热时间不超过5min ,否则会产生副 反应,溶液将会变成黄色。
加热的同时,要不断搅拌。
六、数据处理
1.仪器零点 ,∞α的值 ,实验温度 ℃。
2.列出t t α-表,并作出相应的t t -α图。
3.从t t -α曲线上,等时间间隔读取8~10个t α数值,并算出)lg(∞-ααt 和
)lg(0∞-αα的值,列出下表:
4.以)lg(∞-ααt 对t 做图,由直线斜率求出反应速率常数1表,k ,并计算出反应的半衰期2/1t 。
七、思考题
1. 本实验中,用蒸馏水校正旋光仪的零点时,若不进行校正,对实验结果是否有影响?
2. 一级反应有那些特征?为什么配置蔗糖溶液可用台秤称量?
3. 在混合蔗糖溶液和HCl 溶液时,是将HCl 溶液加入到蔗糖溶液中,可否把蔗糖溶液 加到HCl 溶液中,为什么?
4. 在测量蔗糖盐酸水溶液时刻t 对应的旋光度t α时,能否象测纯水的旋光度那样,重 复测三次后,取平均值?
5. 你认为该实验还有什么改进的地方? 八、参考资料
1. H.W.Salzberg et al.. physical Chemistry Laborotary. New York: Macmillan
Publishing co.,Inc,1978.17~220,421~423.
2. 北京大学化学系物理化学教研室. 物理化学实验. 修订本. 北京:北京大学出版社,
1985.120~124.。