当前位置:文档之家› 高速列车制动系统的基本要求

高速列车制动系统的基本要求

高速列车制动系统的基本要求
高速列车制动系统的基本要求

高速列车制动系统的基本要求

近年来,在我国客货列车的提速研究中已经充分反映了制动问题的重要性,特别是盘形制动装置和防滑器作为旅客列车提速的关键技术发挥了重要的作用。但随着我国铁路向高速化发展,制动问题将更为突出,制动距离随列车速度非线性增长的问题暂且不论,仅现有的空气制动装置从制动能量和舒适性方面考虑也远远不能满足300 km/h高速列车的运用要求。因此,对于高速列车的制动系统,必须彻底改变过去对于制动系统的陈旧观念和思考模式,根据国外经验以及我国发展高速列车的具体条件,从提高高速列车的安全性、可靠性和舒适性这3项基本要求出发,采用各种新技术,并综合考虑机车车辆制动性能和运输、通信、线桥建筑有关的系统工程问题。

1 高速列车制动系统的基本要求

1.1 安全性

紧急制动距离是检验列车制动性能和安全性的最基本条件。我国已研究制定了各种高速列车的基本技术条件,在考虑了必要的安全裕量的情况下,对紧急制动距离的要求如表1所示。

表1 高速列车的制动装置和紧急制动距离

为此,高速列车制动系统必须具有高速停车时足够的制动功率,以保证尽可能短

的制动距离。

1.2可靠性

高速列车必须随时保证有必要的停车制动能力。包括计算机网络或电空制动故障、

供电网络失电(无动力制动)、下坡道停车时的可靠性设计,表1所示的不良状态距离就

是考虑了可靠性的纯空气制动作用距离。

在该距离设计中,考虑了失电情况下空走时间延长和盘形制动摩擦因数误差对延

长制动距离的影响,例如京沪300 km/h高速列车按计算距离4 100 m增加10%左右后

为4 500 m,可以保证在失电情况下制动停车的可靠性。为此,高速列车必须采用多种

制动装置的复合制动模式。

1.3舒适性

高速列车的制动作用时间和制动减速度远大于普通旅客列车,而这些参数是判断

旅客舒适性的重要指标之一。由于高速列车制动系统采用微机控制的电气指令制动方

式和盘形制动装置,故其纵向舒适性指标较高,如表2所示。

表2 旅客列车纵向舒适性的评定指标比较

等。

2 复合制动模式

2.1 不同方式的能量分配

高速列车的复合制动系统包括空气制动、动力制动和非粘着制动,其基本作用方式是:在正常情况下以动力制动为主,不足部分再以空气制动作为补偿。在该制动模式中,动力制动能力主要取决于动车的数量和各动车的动力制动功率。所以,动力制动所占比例与列车编组方式有关。在动力分散式高速列车中,动力制动的能量占50%以上。对于动力集中式高速列车,在调速制动时,动力制动也占有较大的比例;但在常用全制动和紧急制动时,空气制动就占有较大的比例(如图1、图2所示),此时动力制动力已达到最大值,可调的是空气制动力,而且在低速及停车时必须依靠空气制动作用。

图1 TGV10辆编组列车常用制动力分配特性

图2 TGV10辆编组列车紧急制动力分配特性

2.2 不同车辆的制动能量分配

空气制动能力主要受到盘形制动结构(制动盘数量)和热容量的限制,并依赖于粘着利用。例如按我国高速试验列车粘着利用设计的制动率约为32.5%,拖车可按此限值设计,动车则受到制动盘数量的限制,其空气制动达不到粘着利用,而需依赖于再生制动的复合制动能力。因此,复合制动模式在广义上还包括高速列车中不同车辆的制动能量分配关系,其中动车的动力制动按最大设计功率考虑,在常用制动时还可以分担拖车的部分制动负荷。关键是紧急制动时空气制动能量的分配,要根据粘着和制动盘的热容量限制,分别计算每辆车的空气制动力,我国高速试验列车空气制动力的分配见表3。

表3 我国高速试验列车空气制动力分配

车型空心轴

动力车

方向轴

动力车

独立式

拖车

铰接式

三轴车

铰接式

二轴车

换算闸瓦压力/kN131.5131.5178.5152.4108.4

制动力/kN41.341.35647.934

换算制动率/%17.218.132.532.532.5

2.3 非粘着制动的制动能量

为保证紧急制动的安全性,高速列车的紧急制动能力应有10%左右的安全裕量。为此采用非粘着制动装置,在高速紧急制动时可以产生比较稳定的附加制动力,其制动减速度应在0.1 m/s2左右,以满足使用要求。

非粘着制动通常分为磁轨制动和轨道涡流制动2种方式。前者结构较简单,具有耗电量少、成本较低的优点,主要缺点是无可调性和对轨道有破坏作用;后者对轨道没有直接破坏作用并可实现无级调整,但对结构精度要求较高、耗电量大、重量较大,还会对信号产生影响。因此我国高速试验列车设计采用磁轨制动。在高速试验列车编组条件下,紧急制动时的磁轨制动能量分配如表4所示。

表4 我国高速试验列车300 km/h紧急制动时各种制动方式所转移的动能的

分配

%

3 微机应用技术

3.1 电气指令式的制动控制系统

该系统由列车管减压的控制方式变为高灵敏度电指令的控制方式,不仅仅是缩短列车制动空走时间和实现阶段缓解的简单的电空制动作用,其核心是应用微机进行智能化的列车制动控制,包括空重车计算、制动曲线计算、复合制动减速度控制、冲动控制、监控信息处理、数据显示和输出等功能,从而适应于ATP、ATC列车自动控制甚至最新的列车控制信息管理装置(TIS)。

3.2 自动监测和诊断系统

制动系统的监测与诊断是车载微机及信息传输网络系统中最重要的组成部分。该系统的主要功能是进行列车发车前的系统性能试验,指示试验项目并显示试验结果。在行车过程中,该系统能接收列车管、制动缸压力和空重车信号等,并监视制动机的故障状况。例如在发现缓解不良时,可对制动缸进行遥控排风,对保证高速列车的安全运行具有重要作用。

为便于监测和维修,高速列车制动装置的各个部件应最大限度地采用模块化和标准化设计。

3.3 高速列车运行仿真和制动计算

高速列车的运行涉及列车编组条件、司机操纵方式、速度、线路和列车牵引制动装置的性能等多种因素,利用多质点系统的列车运动模型和电算程序可以详细模拟各种条件进行高速列车的运行仿真研究,特别是对非稳态工况的制动计算有重要意义,也可应用于高速列车制动系统的辅助设计。目前,国内已研究了这方面的电算程序并在设计单位得到了广泛的应用。

京沪高速列车运行仿真的结果表明:最高时速为300 km/h的列车的直达运行时间约为4 h50 min,旅行速度可达到270 km/h;如在所有主要车站停车,则运行时间约为6 h7 min,旅行速度为195 km/h左右。可以计算研究线路限速、曲线、坡道、轴重、列车起停附加时分、司机操纵方式等对于高速列车运行时分和能耗的影响。在制动计算方面,则可以模拟计算在各种不同制动工况下的制动时间、距离、减速度以及线路条件对于制动操纵的影响。表5为北京—上海直达运行的区间数据结果。

表5 北京—上海300 km/h列车直达运行(无停站)结果

4 粘着利用

4.1 粘着制动和防滑控制

普通列车的制动方式都是粘着制动,其最大制动力受到轮轨制动粘着系数的限制,如表6所示,其取值由试验决定,并与钢轨表面状况有密切关系。

表6 粘着系数计算

注:表中μ0为制动停车时的最大粘着系数。

根据普通列车的制动率计算结果,其粘着利用率均较低,特别是在速度较高时,由于踏面制动的摩擦因数随速度增加而下降,因而远未能达到粘着限制。对粘着系数的充分利用是高速列车的新课题,也是ATP或ATC控制用

制动模式曲线的依据。

由于制动粘着系数受到运行速度、轮轨表面状态和气候条件的影响,当制动力超过粘着力时就会引起车轮滑行以至擦伤。因此,在提高列车制动力的同时,要求采用能有效利用粘着力的高性能滑行再粘着控制装置,即所谓防滑装置,其效果是可将粘着利用提高20%~30%,以达到提高制动率设计、缩短制动距离的目的。高速列车的防滑装置应采用微机控制,随着列车的高速化,应由宏观滑行的防滑控制发展为能在微小滑行区(即高蠕滑区)实现高精度控制的新一代防滑器。

4.2 增加粘着和非粘着制动

由于轮轨粘着系数的限制,为进一步缩短高速列车的制动距离,可采取增加粘着或采用非粘着制动方式的方法。前者实际上是改善轮轨或车轮表面的接触状态,例如撒沙、喷增粘剂和踏面制动方式的提高踏面粗糙度等,该种方式主要是改善不良粘着状态的粘着系数,例如日本通过增加粘着试验将湿态的轮轨粘着利用提高了1倍左右。后者使用较为普遍的是磁轨制动。我国高速试验列车制动系统的设计,有5辆拖车装有磁轨制动装置,全列车的磁轨制动力为58.4 kN,约能产生123 N/t的单位制动力和相应的制动减速度。表7为在失电故障情况下,考虑了空走时间为2 s时,纯空气制动加磁轨制动的紧急制动距离比较。

表7 紧急制动距离比较

由表7可见,磁轨制动可使纯空气紧急制动的制动距离缩短10%~13%,符合技术条件的设计要求。

5 有关列车制动性能的高速铁路系统工程问题

5.1 高速列车制动作用对线路和桥梁的影响

(1) 对线路坡道设计的影响。在线路设计中,不仅要考虑上坡道的牵引起动能力,还要考虑下坡道的制动问题。高速列车的制动能量几乎与速度平方成正比,制动距离也比普通列车长得多,因此需要设计下坡道的制动距离和限速。在车站附近的坡道大小及其长度更对司机停车制动的操纵方式有直接影响。

(2) 为缩短列车停车附加时间,保证追踪间隔时间,高速列车应使用较高的进站速度和制动减速度实现停车。例如在ATC停车模式中的制动初速度高达100 km/h以上,因此要求要有比普通列车更高的控制精度,其制动距离是设计列车到发线长度的主要依据之一。

(3) 对线路上部建筑的影响。由于高速列车具有巨大的制动能量,且其

制动作用时间长,因此对线桥上部建筑有一定的影响,特别在铁路桥梁设计中,必须考虑作用于轨面的制动力,还有制动热负荷对温度附加应力的影响。此外,紧急制动时的磁轨制动对钢轨有一定的磨耗破坏作用。

5.2 通信信号关系

制动能力是决定信号方式和信号闭塞区间长度、数目的主要因素。列车的各种运行控制方式无论超速防护、ATP或ATC方式的信号系统设计均必须符合列车的制动模式曲线,闭塞区间长度和信号显示方式更取决于列车的制动能力。表8为高速列车和既有提速旅客列车的制动能力之比较。

表8 旅客列车的制动距离限制

m

注:200 km/h~300 km/h列车为在纯空气制动条件下的仿真计算结果。

由表8可见,在我国既有线路闭塞区间长度为1 000 m的条件下,对于160 km/h的提速客车,紧急制动、0.8倍常用制动系数和0.5倍常用制动系数的进站停车分别需2、3、4个闭塞区间,追踪运行间隔至少需要5个闭塞区间。与此相比,300 km/h的高速列车紧急制动、0.8倍常用制动系数和0.5倍常用制动系数停车分别需要长1 500 m的闭塞区间3、4、6个,为将追踪运行间隔的闭塞区间控制在5个以内,应该采用ATP或ATC方式缩短常用制动的进站停车距离,而不宜采用普通列车0.5倍常用制动系数的停车方式。

5.3 运输组织关系

列车追踪间隔时间是行车密度的基础,该时间又取决于列车的起动和停车附加时间。为缩短列车间隔时间,势必要求高速列车有较高的起动加速和制动能力。根据现有对京沪高速列车技术条件的初步设想和京沪高速线路的设计方案,笔者应用电算程序对京沪高速列车进行了操纵模拟研究,结果表明,高速列车的起动附加时间平均在2 min左右;停车附加时间则主要和制动初速度、制动方式有关,计算结果见表9。

由表9可见,在建议采用常用全制动方式下的高速列车停车附加时间最多为50 s左右,约比提速列车增加90%。

表9 不同速度列车的停车附加时间

s

在上述条件下,运输组织的列车追踪间隔时间可以选用3 min~4 min。

此外,高、中速混跑的运输组织方案也必须建立在对不同速度列车进行牵引计算的基础上,因此也与列车的制动能力有密切的关系。

6 结束语

综上所述,由于高速列车的高性能高求以及近年来电子技术、机械技术、传感器技术等的发展,在制动技术方面已经突破了以往空气压力系统的结构,今后必将有更进一步的发展和提高。同时,高速铁路是一个复杂的系统工程问题,高速列车制动系统作为其中的一门高新技术,涉及运机工电各方面的问题,因此,必须重视和加强有关接口问题的高速铁路综合研究工作。

高速列车制动技术综述_彭辉水

高速列车制动技术综述 (1、株洲南车时代电气股份有限公司技术中心,高级工程师,彭辉水,湖南株洲,412001) (2、株洲南车时代电气股份有限公司技术中心,高级工程师,倪大成,湖南株洲,412001) 摘要:本文首先阐述了制动系统与高速列车安全性的关系,然后综述了高速列车的制动方式及其性能,并给出各自在国内外高速列车上的应用情况。同时介绍了高速列车制动力的控制模式,并就各种模式的优缺点进行对比,然后概述了高速列车的防滑再粘着控制技术并给出了其应用实例,最后论述了高速列车制动技术的发展趋势。 关键词:高速列车 制动 控制模式 防滑行再粘着控制 中图分类号:U260.35 文献标志码:A Braking Technology of the High-speed Trains Peng Hui-shui, Ni Da-cheng (Technology Center , Zhuzhou CSR Times Electric Co.,Ltd.,Zhuzhou,Hunan 412001,China) Abstract: This paper firstly presents the strong relationship between the braking system and the security of the high-speed trains, supplies the comparative analysis about the brake modes and the corresponding Braking performance, and reviews their applications in the high-speed trains. Then introduces the control mode of braking force in the high-speed trains and gives out the comparative analysis about their pros and cons. This paper reviews the technologies of Anti-skid re-adhesion control and supplies their application cases. Finally prospects the development trend of the braking technology of the high-speed trains. Keywords: High-speed Trains; Braking; Control Mode; Anti-skid Readhesion Control 高速铁路是新兴产业、战略性产业、带动性产业,是世界轨道交通发展的潮流。我国高速铁路异军突起,迅猛发展,打破了世界高速铁路技术的相对垄断格局,截止2011年1月底,我国高速铁路总里程达8358公里;规划到2012年底,总里程达到13000公里。高速铁路快速发展国人翘首以盼,但其安全性也备受瞩目!高速列车制动技术对于列车安全运行至关重要,在意外情况下,高速列车紧急制动距离越短,高速列车才能越安全,旅客安全系数越高,本文将对当前高速列车制动技术领域的关键技术及其进展进行综合论述。 作者简介:1、彭辉水,男,1979年生,2001年毕业于北方交通大学电气学院,高级工程师.现主要从事机车粘着控制理论研究及应用与高速列车牵引制动系统研究。2、倪大成,男,197年生,2001年毕业于湖南大学电气学院,高级工程师.现主要从事机车整流逆变控制理论研究及应用与高速列车牵引制动系统研究。

城市轨道交通列车制动系统的特点及发展趋势初探

城市轨道交通列车制动系统的特点及发展趋势初探 发表时间:2018-06-07T11:18:32.193Z 来源:《基层建设》2018年第11期作者:刘艳虎 [导读] 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 苏州市轨道交通集团有限公司运营分公司江苏苏州 215000 摘要:针对城市轨道交通车辆制动系统,对其空气压缩、制动盘和控制系统三个主要部分的特点和技术发展趋势进行深入分析,旨在为以后的技术研究和发展提供可靠参考依据。 关键词:城市轨道交通;车辆制动系统;空气压塑;制动盘;控制系统 城市轨道交通站间距短,列车制动频繁,其制动系统的可靠性决定了车辆运行安全,是现阶段城市轨道交通研究的重要内容这一。在科技快速发展的背景下,轨道交通车辆制动系统技术也得到很大程度的改进,为轨道交通发展奠定了坚实基础。 1空气压缩 1.1技术背景 如今,铁路对用气质量提出越来越高的要求,压缩气体必须达到较高的无水和无油条件,这使无油空压机进入快速发展时期。尽管现阶段铁路领域的无油空压机实际应用仍有限,但依靠其无油这一显著特征,将很快在市场占据主导地位。 若按压缩方式,可对无油空压机做以下分类:回转形式的无油空压机以及循环往复形式的无油空压机。后者与活塞式空压机相对应,前者则与最常用的螺杆形式的空压机相对应。从活塞式空压机的角度讲,主要有两种不同的润滑形式,即干式润滑及水润滑。 活塞与螺杆空压机常用于铁路领域,螺杆适合低压和中小流量,而活塞适合高压与多种压力范围。采用水润滑形式的无油螺杆,不仅结构复杂,而且对环境有严格要求,在铁路这种复杂环境下并不适用;采用干式的无油螺杆,其排量超过3m3/min,但仍未能达到出口压力,同样在铁路中不适用。从目前的铁路行业发展看,其对空压机有下列几项特殊要求:经久耐用;耐冲击、污染和高温;振动与噪声较低;维护难度与成本较低。 1.2技术原理 活塞式空压机进入随曲轴联动旋转状态后,在连杆提供的传动作用下促使活塞进行往复运动,此时活塞的顶部表面、气缸的内部表面和气缸盖三者形成的容积必定产生具有周期性特点的变化。活塞由气缸盖做运动后,容积不断增加,此时气体在进气管中推开进气阀门到达气缸,到容积不再增加为止,阀门关闭;活塞进入反向运动状态后,上述容积开始减少,但压力持续增大,超出排气压力以后,阀门打开,气体开始向外部不断排出,当活塞运动到最大行程后,阀门将自动关闭。活塞再次进入反向运动状态后,重复以上过程。 1.3特殊结构 对全无油形似的活塞空压机,其原理和油润滑形式的活塞空压机大致相同,区别为将油润滑换成自润滑。其中,气缸采用铝合金加工而成,表面做特殊处理,减小摩擦以延长使用寿命;活塞也采用铝合金加工而成,各活塞上设置导向环与密封环,二者都采用自润滑材料,能使摩擦达到最小;连杆和活塞由特殊销进行连接,配有全封闭式轴承,无需维护,并在设计过程中考虑了防超温使用。曲轴和各连杆间同样使用这种轴承;气阀为长寿命阀,能满足特殊的实际使用要求。 1.4优缺点 1.4.1优点 压缩空气输出更为洁净,只有极少量水和污染物,下游净化单元能直接去除,无油蒸汽和油滴,能防止下游管路被污染;压力范围较广,任何一种流量情况下,都能提供所需压力;具有很高的热效率,耗电省;具有较强的适用性,表现为排气范围广,受压力影响小等方面;可大幅降低维护成本,减少工作量;无润滑油方面的输出,过滤部件可长时间使用,负担小;由于不使用润滑油,所以还能解决低温启动方面的问题,而且对运转率也没有太高的要求。 1.4.2缺点 排气的连续性较差,存在一定气流脉动;在运转过程中可能产生较大的振动。 2制动盘 在当前的轨道交通车辆中,铝合金制动盘得到广泛应用,其优点有: 第一,自重轻,密度比铸钢与铸铁都小,能减轻车辆自重,尤其是簧下质量,若能减轻簧下质量,则能减小振动和噪音。此外,车辆自重减轻其能耗必定有所降低,能提高节能减排指标。 第二,有良好的耐磨性及导热性,且摩擦系数保持稳定,将钢铁替换为铝合金,能在减轻质量的同时,延长寿命,降低成本,保证可靠性与安全性。此外,出色的导热性能还能使制动盘适应反复变化的热负荷,降低了热疲劳裂纹产生率。 我国从九十年代起有相关院校开始研究铝基复合材料在列车制动盘中的应用,提出很多方法,如喷溅法和粉末冶金法等。然而,因研制难度相对较大,加之制造工艺十分复杂,所以成果主要为样件,要实现批量化生产的目标,还需要进一步的研究。 近几年,我国很多企业在广泛调研这项技术的前提下,对该行业现有技术能力进行综合,提出一套制造工艺,并通过一段时间的摸索与总结,初步掌握批量生产办法。制动盘摩擦副现已完成各项分析实验,其所有性能指标都达到要求,且优于同类产品。 3基于模块化的新制动系统 3.1系统特点 采用以CAN总线为基础的分布式控制,各控制单元均能在CAN总线的支持下构成整个控制网络。EP09/S能提供防滑控制与电空制动两项功能,仅存在紧急制动对应的输入输出接口,需由总线提供常用指令;对EP09/G而言,不仅具有EP09/S全部功能,而且还有列车总线接口及扩展接口,能起到类似网关的作用,并对制动力进行管理。 3.2性能要求 控制单元可提供的防滑控制与电空制动等功能都相对固定,具有实现模块化与小型化目标的条件。实际应用要求对于系统提出了很高的要求,集中在接口能力方面,如各模拟量实际扩展和不同接口方式等,而且对系统测试、故障诊断与时间存储也有着越来越高的实际要求,因受到架控单元机箱等因素的限制和影响,当前的网关单元在扩展能力上还有待于进一步提高。

东风日产天籁刹车制动系统概述

一、引言 从汽车诞生的是否开始,汽车的制动系统在车辆以及人的安全方面就扮演着至关重要的角色,随着着汽车技术以及科技的发展和进步,车速愈来越高。于是问题产生了: 这就是如何保障在高速行车中的安全?在这个时候刹车辅助系统应运而生。 电子制动辅助系统“EBA”和制动力辅助系统“BA”(也称为“BAS”)。在车辆行驶过程中,制动辅助系统会全程监测刹车踏板,一般正常刹车时该系统并不会介入,会让驾驶者自行决定刹车时的力度大小,通过判断驾驶者的刹车动作(力量及速度),在紧急制动时增加刹车力度,从而将制动距离缩短。 随着科技的发展刹车辅助系统的改善,大大的增加了汽车行驶的安全性,使汽车在保护人身权方面做得更加周到。 二、刹车辅助系统的发展 汽车的动系统、驻车制动系统、应急制动系统及辅助制动系统等。主要作用为使行驶中的汽车降低速度直至停车或使已停驶的汽车驻留原地不动等。其中这些系统在最先开始发展的时候多为机械式,液压式,气压式或者混合式等。 伴随着科技的发展越来越多先进的技术被用在了汽车的制动领域。随着人们对制动性能要求的提高,从汽车刚刚

起步时的机械式的制动到液压制动,防抱死制动系统、驱动防滑控制系统等技术逐渐融入到制动系统当中。在这些的基础上东风日产又引入了更加先进的刹车辅助系统,电子紧急制动辅助装置的前身,它以防抱死制动系统、驱动防滑控制系统等技术为基础,来实现车辆的安全高效并且稳定的制动。 1现阶段刹车辅助系统的组成 刹车辅助系统主要由:防抱死刹车系统(ABS)、电子制动力分配系统(EBD)、刹车辅助系统、车身稳定控制系统(VDC)、牵引力控制系统(TCS)等组成。 2刹车辅助系统的主要的作用 (1)用以在踩刹车的情况下,防止车轮锁死,使汽车在制动状态下仍能转向,保证汽车的制动方向稳定性,防止产生侧滑和跑偏. (2)于汽车制动时产生轴荷转移的不同,自动调节前、后轴的制动力分配比例,提高制动效能 (3)判断驾驶者刹车动作,在紧急刹车时增加刹车力,缩短刹车距离。 (4)当汽车出现车轮打滑、侧倾或者轮胎丧失附着力的瞬间,在降低发动机转速的同时,有目的地针对个别车轮进行制动控制,并最终将车引入正常的行驶轨道,从而避免车辆因失控而造成的危险。

高铁列车刹车片的研究现状与展望

高铁列车刹车片的研究现状与展望

高铁列车刹车片的研究现状与展望 学号 ZS10050017 姓名 成钰龙 摘 要:介绍了国内外列车刹车片材料的发展历程和现阶段新型刹车片材料的发展状况,并且展望了以碳系复合材料为主要发展方向的未来高速化铁路的新型刹车材料概况。 关键词:高速铁路;刹车片;粉末冶金;C/C 复合摩擦材料;高磨合成材料 0 引言 在当今时代,火车、汽车、城轨等已毫无例外地成为人类陆地客货运输无可替代的现代化工具,在社会生活中发挥着举足轻重的作用,并在可以预见的未来相当长的时间内,车辆工业仍将是国民经济重要的支柱产业,人类对车辆的要求越来越高,如高速、重载、安全可靠、乘坐舒适、操作方便、低能耗、无公害、轻量化等,车辆工业相应呈现出蓬勃的多元发展态势。 长期以来,我国列车一直在低速状态下运行,而铁路的高速化程度是评判国家交通发达与否的一个重要标志,早在20世纪90年代中期,日、法、德等国就已经开通了最高时速达300km/h 的高速铁路,而我国从1997年4月1日到2007年4月1日共进行了6次大提速,普通动车时速已经达到160~200km/h 。随着2008年6月京津城际高铁的开通,我国高铁最高时速已经超过350km/h 。而今年设计时速380km/h 的京沪高铁的完工标志着我国高速铁路已经走在世界的前列,为此国家在“十一五”计划纲要中指出,要逐步实现客运专线的高速化, 普通动车时速要提高到200~300km/h ,高速铁路最,高时速应大于350km/h [1]。 随着我国高速铁路的快速发展,其各项性能要求也相应的提高,尤其对制动性能提出了更严格的要求,这是因为列车的制动功率与车速呈3次方关系[2],也就是说,列车速度提高1倍,制动功率则需增加8倍。目前列车的紧急制动主要是依靠车辆制动系统中的制动盘和刹车片摩擦副的摩擦实现的,而制动系统中刹车片的性能好坏对列车制动效果有着非常大的影响,因此,对其性能提出了更加严格的要求。铁路车辆制动系统中刹车片的发展是随着铁路的发展而发展的,在其制动材料的研究和应用方面经历了一个漫长的发展过程。盘式制动器制动刹车片经历了合成刹车片到粉末冶金刹车片的发展历程,随着铁路列成 绩

高速动车组制动系统的分析研究

高速动车组制动系统的分析研究 发表时间:2018-08-21T16:39:22.757Z 来源:《基层建设》2018年第20期作者:王艳平1 麻亮2 [导读] 摘要:近年来,国内高速动车组得到了快速发展,制动技术吸收了国内外高速列车制动技术的先进经验,并进行了自主创新,技术水平得到了长足的进步,完成了时速250公里速度级、时速350公里速度级以及更高速度试验列车制动系统的匹配和应用,为高速动车组提供了安全、可靠、舒适和节能环保的制动系统。 包头车辆段呼和浩特动车所内蒙古呼和浩特市 010010摘要:近年来,国内高速动车组得到了快速发展,制动技术吸收了国内外高速列车制动技术的先进经验,并进行了自主创新,技术水平得到了长足的进步,完成了时速250公里速度级、时速350公里速度级以及更高速度试验列车制动系统的匹配和应用,为高速动车组提供了安全、可靠、舒适和节能环保的制动系统。本文就是针对高速动车制动系统进行研究和探讨,并提出新的技术发展方向。 关键词:高速动车组;制动系统;概述;发展 1制动方式概述动车组制动系统按照预设的减速度控制动车组减速或停车,按照制动方式一般分为粘着制动和非粘着制动。粘着制动即为依靠轮轨间的相互摩擦作用产生列车所需的制动力,如通过制动缸产生的空气制动和由牵引电机产生的电制动;非粘着制动即为通过利用外阻力作用在列车上,使列车产生制动力而停车,如风阻制动、磁轨制动和涡流制动等。粘着制动为国内外高速动车组主要的制动力来源,非粘着制动一般作为辅助制动方式,在高速工况下提供所需的制动力。本文以高速动车组常用的粘着制动为基础,对制动系统技术进行讨论。采用粘着制动方式的制动系统一般由电制动系统和空气制动系统两大部分组成,制动时采用复合制动方式,即电制动并用电气指令式空气制动。列车制动时,电制动优先,当电制动力不足时,由空气制动进行补足,有效降低了基础制动中制动盘和闸片的磨耗。 2高速动车组制动系统 2.1 制动模块设计 2.1.1电制动系统,动车组通过受电弓接收接触网的电力,经牵引变流器整流逆变后,提供给牵引电机,而在列车需要制动时,牵引变流器控制牵引电机切断电源,转变为发电机使用。制动时牵引电机将列车动能变为三相交流电,由牵引变流器将此三相交流转换为单相交流电,再由主变压器升压后回馈到电网,将列车运行的动能转变为电能. 2.1.2空气制动系统,空气制动系统主要由制动控制装置、风源装置和基础制动装置等组成,制动控制装置是制动系统的中枢,负责接收制动指令,进行制动控制,担负着制动力的计算和分配任务,风源装置为制动系统提供制动的源动力,高速动车组上通常由主空压机和辅助空压机构成,基础制动装置为制动系统的执行机构,将制动压力作用在车轮上,产生轮轨摩擦力,从而进行列车制动。电制动力的发挥及其与空气制动力的匹配都与制动控制系统的设计、元器件的品质密切相关。对于高速动车组来说,各种制动方式的匹配一定要处理好。 2.2 防滑控制设计 防滑控制是在制动力即将超过黏着力时(此时防滑器判断为“滑行”),降低制动力,使车轮继续处于滚动(或滚滑)状态,避免车轮滑行。防滑系统通过车辆速度传感器检测出此时的速度差和减速度,然后把检测到的信号传输到防滑控制器,通过微处理器的比较判断,发出防滑控制信号,从而迅速降低滑行车轮的制动缸压力,使滑行车轮所受的制动力快速降低。防滑控制系统主要由集成在制动控制单元中的防滑控制器、轴速度传感器及防滑排风阀组成的一个闭环控制结构。防滑控制器对轴速度脉冲信号进行处理,得到相应的轴速、轴加减速度和参考速度,对已经发生滑行的情况发出防滑控制指令,操纵防滑电磁阀,控制制动缸的压力。防滑系统能最佳利用有效黏着,以保证最短的制动距离。 2.3 安全防护设计 为了确保列车运行安全,尽管设置了准确可靠的地面信号装置,但在浓雾、风雪等气候条件下难以确认信号。另外,由于司机打磕睡或误看信号等原因,很有可能发生列车冲撞等重大事故。因此,在列车没按信号运行时需要报警引起司机注意,同时自动施行制动停车,以保证列车安全。高速列车的安全防护装置有以下几种:第一,自动停车装置,当列车接近停车信号机时,进行车内报警的装置,该装置报警后,如果司机仍不确认操作或没按规定减速度进行操纵时,便自动实施制动使列车自动停车;第二,自动控制装置,控制列车的运行速度低于地面速度信号的装置,例如,当信号速度下降时,ATC装置便自动实施制动以降低列车速度;第三,自动驾驶装置,根据多级速度信号及速度条件,对列车自动进行加速、减速的控制装置,保证列车正点运行和改善旅客的乘坐舒适度。同时,在防止列车冲撞和超速运行方面起到作用。 3.动车组新的制动技术发展方向 现阶段动车组采用的制动方式踏面制动、盘型制动、电阻制动、再生制动均属于黏着制动,制动力的产生的先决条件就是有接触黏着系数,随着旅客列车的提速,可利用的黏着资源越来越少,自然会考虑到采用越来越多的辅助紧急制动方式。现阶段的磁轨制动,轨道涡轮制动作为辅助紧急制动已经表现些有成效。 3.1.翼板制动技术 翼板制动要产生显著可靠地空气阻力,可在各车车体上,布置一定数量的空气阻力板,直接产生作用于车体的、与列车运动方向相反的外力。是一种不受轮轨间黏着限制的制动方式。翼板制动在中高速范围能够产生足够大的制动力,可以成为其主要的制动方式。同时其也带来以下问题: 3.1.1.由于处于高速扰流夏的翼板,会产生噪声和振动,必须加强车体的减震降噪设计; 3.1.2.因强大的纵向力直接作用于车体顶部,而不得不加强车体。 3.2.储能制动技术 在干线交通系统中,高速运行的列车要求启动加速度和制动减速度大。从能量相互转换的角度看,制动过程所消耗的能量相当可观,虽然这些再生能量的20%-80%被其它相邻列车吸收利用,剩余部分仍被车辆电阻以发热的方式消耗掉。在不具备再生反馈的条件时,如果能够把这些能量暂时储存,可以在随后的加速或启动过程加以利用,这也是能量再生的一种形式,对减低允许能耗、节约运输成本是非常有意义的。

列车制动系统

自动式空气制动系统的组成及其作用 自动式空气制动系统如下图所示: 各部分作用如下: 1.空气压缩机(1)、总风缸(2):原动力系统。空气压缩机:制 造压缩空气;总风缸: 储存压缩空气,供全列车系统使用。 2.给风阀(4):将总风缸的压缩空气调至规定压力,经自动制动阀 (5)充入制动管。 3.自动制动阀(5):操纵部件。通过它向制动管充入压缩空气/将 制动管压缩空气排向大气。 4.制动管(14):贯通全列车的压缩空气导管。向列车中各车辆的制

动装置输送压缩空气。通过自动制动阀(5)控制管内压缩空气压力变化实现操纵各列车制动机。 5.三通阀(8):车辆空气制动装置的主要部件,控制制动机产生不 同作用。和制动管联通,由制动管压力的变化产生作用位置。制动机缓解:制动管连通副风缸,制动缸连通大气。向副风缸充入压缩空气,把制动缸内压缩空气排向大气。制动机制动:制动管通大气,副风缸通制动缸。副风缸内压缩空气充入制动缸,产生制动作用。 6.副风缸(11):缓解储存的压缩空气,为制动时制动缸的动力源。 7.制动缸(10):制动时,把从副风缸送来的压缩空气转变为机械推 力。 8.基础制动装置(17):制动时,将制动缸推力放大若干倍传递到闸 瓦,使闸瓦夹紧车轮产生制动;缓解时,靠闸瓦自重使闸瓦离开车轮实现缓解。 9.闸瓦、车轮和钢轨:实现制动三大要素。制动时,闸瓦压紧转动 的车轮踏面后,闸瓦与车轮间的摩擦力借助钢轨,在与车轮接触点上产生与列车运行方向相反(与钢轨平行)的反作用力,即制动力。(黏着效应) 制动缸压力计算 1空气制动机的工作过程就是利用空气受压缩后体积与压力的自动变化来实现的。

高速列车制动方式分类

高速列车制动方式分类 从能量的观点来看,制动的实质就是将列车动能转变成其他能量或转移走;从作用力的观点来看,制动就是让制动装置产生与列车运行方向相反的外力,使列车产生较大的减速度,尽快减速或停车。 (1)根据列车动能转移方式的不同,列车制动可分为如下几种方式: ①盘形制动。 ②电阻制动。 ③再生制动。 ④磁轨制动。 ⑤轨道涡流制动。 ⑥旋转涡流制动。 ⑦风阻制动。 上述制动方式中的盘形制动和磁轨制动也可称为摩擦制动,都是通过机械摩擦来消耗高速列车动能的制动方式。其优点是制动力与列车速度无关。无论列车是高速运行还是低速运行,都有制动能力,特别是在低速运行时能对列车施行制动直至停车。可以说摩擦制动始终是高速列车最基本的制动方式。摩擦制动的缺点是制动力有限,因受散热限制而使制动功率增大。电阻制动、再生制动、轨道涡流制动和旋转涡流制动等也可称为动力制动,都是利用某种能量转换装置将运行中列车的动能转换为其他形式的能量,并予以消耗的制动方式。其特点是制动力与列车速度有很大关系,列车速度越高,制动力越大,随着列车速度的降低,制动力也随之下降。 (2)根据制动力的形成方式不同,制动方式可分为黏着制动和非黏着制动。车轮在钢轨上滚动时,轮轨接触处既非静止,也非滑动,在铁路术语中用“黏着”来说明这种状态。黏着制动是指依靠黏着滚动的车轮与钢轨黏着点之间的黏着力来实现列车制动的方式。黏着制度包括闸瓦制动、盘形制动、电阻制动、再生制动及电磁涡流转子制动等。以闸瓦制动为例,车轮、闸瓦和钢轨三者之间有3种可供分析的状态:第一种是难以实现的理想的纯滚动状态;第二种是应极力避

免的“滑行”状态;第三种是实际运用中的黏着状态。在上述3种情况中,纯滚动状态为最理想的轮轨接触状态,但实际上是不可能实现的;为避免车轮踏面擦伤、制动距离延长,需要防止“滑行”;黏着状态介于两者之间,它可以随气候与速度等条件的不同有相当大的变化。 由于列车的制动能量和速度的平方成正比,因此高速列车的动能很大,需要足够大的制动功率和更灵敏的制动操纵系统。而传统的空气制动装置要受制动热容量和机械制动部件磨耗寿命的限制,以及摩擦材料性能对黏着利用的局限性,因此,高速列车要采用能提供强大制动能力并更好利用黏着的复合制动系统。虽然考虑到乘座舒适度,但是制动距离随列车速度的提高而适当延长是不可避免的。高速列车制动的总目标是控制制动距离,因此制动距离不会随车速的提高而增长太多。复合制动系统通常由制动控制系统、动力制动、摩擦制动(如盘形制动和踏面制动等)系统、微机控制的防滑器和非黏着制动装置等组成。复合制动力的产生分别来自电气(动力制动)、机械(盘形制动或踏面制动)和非黏着力(磁轨制动或涡流制动)。高速列车的复合制动模式包括不同车辆在不同制动作用工况和各种速度下的制动能量分配关系,应根据列车的动力方式和编组条件进行设计并通过微机进行控制。

高速列车粉末冶金制动材料的研究进展

高速列车粉末冶金制动材料的研究进展 发表时间:2019-08-12T17:02:13.783Z 来源:《防护工程》2019年9期作者:孙鑫 [导读] 介绍了闸片/制动盘匹配性的研究;最后,归纳了摩擦磨损性能的评价与预测方法,总结了摩擦磨损机理的最新研究进展。 承德天大钒业有限责任公司河北承德 067000 摘要:目前,我国的综合国力在快速的发展,社会在不断的进步,为适应高速列车更快速、更安全、更舒适、更环保的发展需求,高速列车制动材料应具备合适且稳定的摩擦因数、优良的耐磨性、高的耐热性与抗热疲劳性、足够的机械强度、与制动盘匹配良好、良好的环境适应性及环境友好性等特性。由于在制动方面具有不可替代的优越性,目前300km/h及以上的高速列车均采用粉末冶金制动材料。从材料设计、制备技术、摩擦磨损性能与机理及性能评价等方面,对近年来高速列车粉末冶金制动材料的研究进展进行了综述。首先,阐述了材料中基体组元、润滑组元及摩擦组元的基础研究,以及材料的环保化、组元简易化发展趋势;其次,探讨了制备工艺参数对摩擦磨损性能的影响,简述了制备技术的发展;再次,分析了服役条件对摩擦磨损性能的影响规律,介绍了闸片/制动盘匹配性的研究;最后,归纳了摩擦磨损性能的评价与预测方法,总结了摩擦磨损机理的最新研究进展目前,我国的综合国力在快速的发展,社会在不断的进步,为适应高速列车更快速、更安全、更舒适、更环保的发展需求,高速列车制动材料应具备合适且稳定的摩擦因数、优良的耐磨性、高的耐热性与抗热疲劳性、足够的机械强度、与制动盘匹配良好、良好的环境适应性及环境友好性等特性。由于在制动方面具有不可替代的优越性,目前300km/h及以上的高速列车均采用粉末冶金制动材料。从材料设计、制备技术、摩擦磨损性能与机理及性能评价等方面,对近年来高速列车粉末冶金制动材料的研究进展进行了综述。首先,阐述了材料中基体组元、润滑组元及摩擦组元的基础研究,以及材料的环保化、组元简易化发展趋势;其次,探讨了制备工艺参数对摩擦磨损性能的影响,简述了制备技术的发展;再次,分析了服役条件对摩擦磨损性能的影响规律,介绍了闸片/制动盘匹配性的研究;最后,归纳了摩擦磨损性能的评价与预测方法,总结了摩擦磨损机理的最新研究进展。 关键词:高速列车;制动材料;粉末冶金;研究进展;摩擦磨损 引言 长期以来,我国列车一直在低速状态下运行。从1997年开始,经过全国范围内的几次大提速,目前已达到了160~200km/h。早在90年代初,日、法、德等国就已开通了最高速度达300km/h的高速列车,相比而言,我国现在的列车时速只能算是“中速”,离高速还有一段距离。 1材料设计及制备技术的研究现状 1.1基体组元 铜基体将摩擦组元和润滑组元保持其中而结为一体,为载荷和制动能量的主要载体,其结构和性能较大程度上决定了铜基制动材料的物理机械性能和摩擦磨损性能。通过研究铜粉特性、合金元素固溶强化及第二相强化等,可改善铜基体性能。采用粒度为106μm的铜粉,制备的铜基制动材料表现出良好的综合性能,摩擦因数稳定、磨损率低。研究表明,以氧化铝弥散强化铜粉为基体的材料展现出良好的摩擦因数稳定性,但磨损量较大;采用铁钴铜预合金化铜粉可避免单质粉末混合时的成分偏析,所制备的材料能形成稳定的氧化膜,磨耗量低而稳定。通常可以通过添加Sn,Ni,Al,Cr,W等合金元素来强化铜基体。Ni的添加不仅可以有效提高材料的硬度及强度,还可增加摩擦因数稳定性,减小磨损。W的添加可以提高材料的热容量、显著改善材料的摩擦磨损性能,添加含量小于3%(质量分数,下同)的W可小幅提高材料的硬度。近年来,又采用新型合金元素强化铜基体。Ti的添加引起铜基体晶格畸变,材料硬度及强度提高,减轻了材料的犁削,有利于提高材料的耐磨性。稀土元素La可细化铜基体晶粒,产生固溶强化及弥散强化,改善材料的微观结构,提高了材料的摩擦学性能和力学性能。Fe来源广泛,常作为关键组元添入铜基体,一方面起强化作用,同时又可调节摩擦因数及摩擦稳定性,大多数高速列车粉末冶金制动材料中添加了Fe。证实Fe可显著提高铜基制动材料的硬度、抗弯强度和抗压强度,Fe含量为15%的铜基制动材料具有高摩擦因数、制动稳定性及较低的磨损量。发现小粒度铁粉可显著提高材料的强度和硬度,但材料表现出低而不稳定的摩擦因数;含大粒度铁粉的材料剪切强度和硬度较低,但摩擦因数稳定。 1.2粉末冶金闸瓦和闸片 粉末冶金闸瓦和闸片的生产工艺相似,均是先把混合好的金属和非金属粉末压制成形,然后在分解氨气氛中进行加压烧结。粉末冶金闸瓦既具有铸铁闸瓦的摩擦系数不受天气气候影响的优点,又具有有机合成闸瓦的摩擦系数不随列车速度变化的优点,并且耐磨性和导热性都好。瑞典、加拿大等国的高速列车,大功率机车和法国TGV高速列车等均曾使用这种闸瓦,且都取得了一定的制动效果。但粉末冶金闸瓦对车轮的磨损较为严重,成本比铸铁及有机合成闸瓦高,因此使其难以大量使用。 1.3制备技术 由于制备工艺成熟、简单,又可保证材料具备高的强度,大多数高速列车粉末冶金制动材料的制备采用钟罩炉加压烧结技术,其基本工序为:原料混合→混合料压制成型→压坯与镀铜钢背板加压烧结成一体→烧结产品机加工。目前,该制备技术的研究主要集中于工艺参数和方法的优化。为避免混合料成分偏析,采用粘结化工艺制备铜基制动材料,显著改善粉末混合的均匀性,有利于材料的成分与密度均匀分布。作为加压烧结技术的重要环节之一,粉末压制影响着压坯的密度及其分布,压坯密度的增加有助于提高铜基制动材料的各项性能。在压制过程,影响压坯密度的因素有压制压力、加压速度、模具表面粗糙度等。 2摩擦磨损机理 制动材料的磨损伴随摩擦存在,有摩擦就有磨损,有磨损并不意味磨损失效,从磨损到磨损失效是一个由量变到质变及存在着磨损机制转变的过程。高速列车粉末冶金制动材料的磨损失效分析是研究和解决磨损问题的前提和关键,首先必须揭示造成材料磨损的原因,即研究摩擦磨损机理。探讨了制动速度对铜基制动材料摩擦磨损机理的影响,制动速度较低时,材料表面温度低,表面组织基本没有变化,摩擦作用主要以克服啮合为主,摩擦因数较高;当制动速度提高,表面材料因温度升高而塑性变形及磨料的压入,摩擦接触面积增大,磨损机理以磨粒为主,摩擦因数降低;进一步提高制动速度,摩擦表面温度升高,材料产生氧化,氧化膜破裂而新生表面又产生氧化,材料的硬质相脱离并参与摩擦,磨损机理转为氧化磨损、材料剥落及磨粒磨损。 结语 随着高速列车行驶速度和人们对安全、舒适、环保要求的不断提高,只有强化粉末冶金制动材料基础理论的研究,发展新材料、新工

动车组制动技术综述

动车组制动技术综述 列车制动的一般概念是指对行进中的列车施行减速或使在规定的距离内停车。制动的重要性不仅在于它直接关系到运输安全,还在于它是进一步提高列车运行速度的决定因素。列车速度越高,对制动的要求也就越高。因而,动车组的制动技术成为其高速运行的关键技术之一。 一、动车组制动方式分类 1.按动能消耗方式分: (1)摩擦制动:闸瓦制动、盘形制动、磁轨制动等; (2)动力制动:电阻制动、再生制动、轨道涡流制动、旋转涡流制动等。 2.按制动形成方式分: (1)粘着制动:闸瓦制动、盘形制动、电阻制动、再生制动、旋转涡流制动等; (2)非粘着制动:磁轨制动、轨道涡流制动等; 3.按动力的操作控制方式分:空气制动、电空制动、电磁制动。 二、高速动车组制动系统的基本要求 1.制动能力的要求 制动能力表现为停车制动时对制动距离的控制。在同样的制动装置、操纵方式和线路条件下,其制动距离基本上与列车制动初速度的平方成正比关系,所以随着列车速度的提高,必须相应地改进其制动装置和制动控制方式才能满足缩短制动距离的要求。 通过国外主要国家高速列车制动能力比较得知:国外300km/h高速列车的紧急制动距离均在3000~4000m之间。根据制动粘着利用和热负荷等理论计算的结果,我国动车组在初速300km/h条件下的复合紧急制动距离可保证在3700m

以内。 2.舒适性的要求 从列车动力学的观点出发,旅客的乘坐舒适性包括横向、垂向和纵向三方面的指标,高速动车组纵向运动的特点除起动加速度较快以外,主要是制动作用的时间和减速度远大于普通旅客列车,因此必需有相应措施来控制旅客纵向舒适性的指标,包括对制动平均减速度、最大减速度和纵向冲动的要求,均应高于普通旅客列车。 为满足纵向舒适性的高要求,动车组制动系统必须采用下述关键技术:(1)采用微机控制的电气指令制动系统以实现制动过程的优化控制,并在提高平均减速度的同时尽量减少减速度的变化率; (2)对复合制动的模式进行合理设计,使不同型式的制动力达到较佳的组合作用; (3)减少同编组列车中不同车辆制动力的差别,以缓和车辆之间的纵向动力作用; (4)采用摩擦性能良好的盘型制动装置和强有力的动力制动装置,以提供足够的制动力。 3.安全可靠性 制动系统作用的可靠性是列车行车安全的基本保证。特别是高速运行时制动系统失灵的后果将不堪设想。为此,动车组制动系统的安全可靠性设计涉及有下列四个方面: (1) 制动控制方式设计。动车组一般设有空气制动、微机控制的电空制动和计算机网络三种制动控制方式。在正常运行状况下由计算机网络控制并传递全列车各车辆的制动信息。当该控制系统发生故障时能自动转换为电空制动作用。

CRH2型动车组制动系统分析

CRH理动车组制动系统分析 自从1825 年世界上第一条铁路建成并通车开始,铁路逐渐成为了交通运输中的重要运输方式之一。快速、可靠、舒适、经济和环保是铁路在与其他运输方式的竞争中取胜的先决条件,许多国家都在通过新建或改建既有线发展高速铁路。国际上一般认为,高速铁路动车组是最高运行时速在200 公里以上的铁路运输系统。 所谓动车组就是由若干动力车和拖车或全部由动力车长期固定连挂在一起组成的车组。高速动车组的牵引动力配置基本上有两种型式,即集中配置型和分散配置型。传统的机车牵引形式就是牵引动力集中配置,列车由一台或几台机车集中于一端牵引。由于机车总功率受到限制,难以满足进一步提高速度的要求。动车组编组中的车辆全部为动力车,或大部分为动力车,即牵引动力分散配置。由于动车组可以根据某条线路的客流量变化进行灵活编组,可以实现高密度小编组发车以及具有安全性能好、运量大、往返不需掉转车头、污染小、节能、自带动力等优点,受到国内外市场的青睐,应用也越来越广泛,被称为铁路旅客运输的生力军 第六次铁路大提速,以“和谐号”为代表的高速动车组,如梭箭般穿行于大江南北,将中国铁路带入高速时代,我国既有线路列车运行速度也一举达到世界先进水平,铁路运输事业呈现飞速发展全新局面,高速动车组以其安全,准时,快速,舒适,节能,环保,等诸多优点,高速动车组是在现代科学技术的基础上发展起来,同时也带动并促进了科学技术发展,高速动车组有别于现在运用的内燃,电力机车。其区别在于动车组各部件大量运用高新技术,特别是在转向架结构,车体轻量化,列车动力分配,电传动控

制技术,列车信息网络及制动系统都具有各自的高科技含量。高速动车组制动系统具有先进科技技术,其中以CRH理动车组最为出名。 CRH2型高速动车组制动系统采用电气指令是微机控制直通式电控制动,制动指令的接收,处理和电气制动与空气制动协调配合等,一般都是有微机来完成,动车组各车辆上的制动控制装臵由制动控制单元,EP阀,中继阀,空重调整阀,紧急制动电磁阀等组成,载荷调压装臵直接来自空气簧空气压力,空气弹簧压力通过传感器转化为与车重相应的电信号,制动控制单元根据制动指令及车重信号计算出所需的制动力,并向电气制动控制装臵发出制动信号,电气制动控制装臵控制电气制动产生作用,并将实际制动力的等值信号反馈到制动控制器,制动控制器进行计算,并把与计算结果相应的电信号送到中继阀,中继阀进行流量放大后,使制动缸获得相应的压力,拖车常用制动时,制动控制装臵的动作过程与动车的基本相同,但是因为没有电气制动,所有不必进行电气制动与空气制动的协调,所需制动力全部通过EP阀转化为相应的空气压力信号,然后由中继阀使制动缸产生相应的制动力。 一国外动车组及CRH2型动车组的发展历史 1 国外动车组发展状况 世界高速铁路动车组技术最发达的国家有3 个:德国、日本和法国。各国使用动车的比重以日本为最大,占87%;荷兰、英国次之,分别占83%和61%;法国、德国又次之,分别占22%和12%。 德国铁路自20世纪80年代起开始发展250km^h以上的高速客运列

关于高速动车组制动系统的研究

龙源期刊网 https://www.doczj.com/doc/963467210.html, 关于高速动车组制动系统的研究 作者:郭超 来源:《中国科技博览》2018年第04期 [摘要]作为高速动车组的重要核心部件,制动系统性能的优劣直接影响着其运行状态。本文从基本的参数计算、设计要求、制动方式等方面对高速动车组制动系统设计的相关理论知识进行了概括,并从制动控制、防滑控制、安全防护等方面分析了高速动车组制动系统的构成。 [关键词]高速动车组;制动系统;防滑控制 中图分类号:S188 文献标识码:A 文章编号:1009-914X(2018)04-0345-01 引言 在城镇建设和发展过程中,交通体系得到完善和发展,动车组成为城市轨道交通的重要组成部分。随着技术的进步和经济的发展,动车组的速度越来越高,使用次数越来越频繁,每日行驶的里程也越来越多,这都对动车组的制动系统提出了更高的要求:既要保证行车安全,又要在尽量短的距离内停车,而且还要尽量减小制动过程中产生的纵向冲击力,传统的列车制动系统已经不能满足此要求。这就需要铁路有关科研单位加强高速动车组制动系统的控制方式、系统配置的优化设计,积极借鉴国内外高速列车制动技术的先进经验,并进行了自主创新。 1 高速动车组制动系统设计要点 1.1 基本参数计算原理 高速动车组运行在铁路快速客运专线或高速铁路上,速度高,固定编挂,一般分为动力集中型与动力分散型两类。根据质点动力学理论,得出了比照300km/h动车组以各种不同匀减速停车时的理论制动时间、停车距离和每吨质量所需的平均制动功率(如图1)。以300km/h动车组为例,经计算,其每吨质量的动能E为3472kJ,每吨质量在各种不同匀减速度下停车时 的最大瞬时制动功率是平均制动功率的2倍。也就是说,如果该动车组每轴14t,那么以1m/s 的匀减速度停车时所需的平均轴制动功率为583.4kw轴,最大瞬时制动功率为1166.8kw轴,纯制动距离为3472m。这些数值提供了一个高速动车组量化的各制动减速度下制动距离和制动功率的概念。当然,实际的制动过程不是一个匀减速运动,而是一个变速运动。 1.2 基本设计要求 第一,尽可能缩短制动距离以保障行车安全,高速列车必须尽可能缩短制动距离,因为自动闭塞的信号区间长度完全由列车允许的制动距离来决定,当制动距离一经确定后,不间断的机车信号装置中就将保存这些制动曲线,因而高速列车的制动系统必须保证在大雪、大雾、结冰、粘着下降,甚至系统部分失灵的情况下,也不能超过允许的制动距离,避免安全事故发

地铁车辆制动系统工作原理

地铁车辆制动系统工作原理 摘要:随着城市规模的快速发展和城市人口的不断增多,所面临的交通问题也越来越严重。本文对地铁车辆的制动功能设计进行了说明,并介绍了制动指令的相关设计,最后介绍了混合制动控制系统设计及相关控制策略,以供读者参考 关键词:地铁车辆;制动系统 随着我国经济建设的不断推进,近年来城市轨道交通快速发展,国内许多大型城市都已有了地铁或者轻轨,随着大量的轨道交通项目投入运营,人们的日常出行变得更加方便,可随之而来的担忧也困扰着人们:“我们经常乘坐的地铁会不会刹车失灵呢、会不会追尾呢?” 1.地铁车辆的制动功能设计 地铁车辆采用减速度控制模式,制动指令为电气指令,即制动系统根据电气减速度指令施加制动力。乘客通过站台固定区域上下车,因而地铁车辆每次停站位置要求准确无误,为满足此要求,ATO系统或司机根据停车距离给定列车减速度电气指令,地铁车辆制动过程中必须能够根据减速度指令快速施加相应制动力,即制动响应准确、迅速。 制动系统设有载荷补偿功能。由于城市轨道交通车辆载客量大,乘客上下频繁,因此要求制动过程中能够根据车辆载荷变化自动调整制动力,称之为载荷调整功能。 常用制动具有防冲动限制功能。制动指令是电气信号,制动指令变化瞬间可以完成,如果制动力跟随制动指令迅速变化,就可能造成冲动,引起乘客不适,而且常用制动需频繁施加,为减少制动时的冲动以避免制动力变化过快引起乘客不适,常用制动过程中需限制制动力的变化速率,称之为冲动限制功能。 2.制动系统功能 2.1常用制动 常用制动采用模拟电气指令方式,是由微处理器控制的直通式电空制动,它采用减速度控制模式,其制动力随输入指令大小无级控制,制动控制单元根据减速度指令和车辆实际载重来计算目标制动力,产生相应的减速度。常用制动具有冲击率限制功能,以改善乘坐的舒适性;常用制动采用空电混合制动并优先使用电制动,不足部分由空气制动补足,以尽可能减少空气制动的负荷。 2.2快速制动 当司机操作主控制器手柄使其处于快速制动位时快速制动被触发。快速制动是一种特殊的制动模式。快速制动与紧急制动的制动率相同。快速制动优先使用

CRH5型动车组制动系统故障分析及处理

毕业设计(论文)中文题目:CRH5型动车组制动系统故障分析及处理 学习中心:沈阳铁路局学习中心 专业:机械设计制造及其自动化 姓名:吴远鹏 学号:12621470 指导教师:霍胜贵 2014 年9 月20 日 远程与继续教育学院

毕业设计(论文)承诺书 本人声明:本人所提交的毕业论文《CRH5型动车组制动系统故障分析及处理》是本人在指导教师指导下独立研究、写作的成果。论文中所引用的他人无论以何种方式发布的文字、研究成果,均在论文中明确标注;有关教师、同学及其他人员对本论文的写作、修订提出过且为本人在论文中采纳的意见、建议均已在本人致谢辞中加以说明并深致谢意。本人完全意识到本声明的法律结果由本人承担。 本毕业论文《CRH5型动车组制动系统故障分析及处理》是本人在读期间所完成的学业的组成部分,同意学校将本论文的部分或全部内容编入有关书籍、数据库保存,并向有关学术部门和国家相关教育主管部门呈交复印件、电子文档,允许采用复制、印刷等方式将论文文本提供给读者查阅和借阅。 论文作者:_______吴远鹏________(签字)__2014_年____9__月__20 _日指导教师已阅:__ 霍胜贵________(签字)__2014_年___ __月_ _ __日

毕业设计(论文)成绩评议

毕业设计(论文)任务书 本任务书下达给:12秋级本科机械设计制造及其自动化专业学生吴远鹏设计(论文)题目:CRH5型动车组制动系统故障分析及处理 一、设计(论述)内容 国外对动车组的研究运用比较早,目前已经有很多国家拥有成熟的动车组技术,如德国、法国和日本等国。我国的第六次铁路大提速也通过“引进吸收再创新”的方式增添了动车组,其中CRH5型动车组就是由原铁道部向法国阿尔斯通引进并由我国国产化的高速动车组。列车制动是人为利用制动力使列车减速、停车、阻止其运动或加速的系统,是列车安全运行的保障,也是动车组技术的关键组成部分。 二、基本要求 CRH5型动车组采用空气制动和电制动联合制动的方式,并且优先采用再生制动。电制动与摩擦制动相比,能够减少制动装置的机械磨损,延长装置的寿命,还能将列车的动能返还给电网,做到节能环保,是理想的制动方式。而动车组在制动过程中,电制动和空气制动的分配与制动的控制制动所必需的。 三、重点研究的问题 CRH5型动车组安装有一套成熟、稳定、可靠的制动系统,但在近8年的运营时间里,CRH5型动车组发生了不少制动故障,占发生故障总数的一半以上,应引起足够的重视。发生制动故障不但会造成动车组途中停车晚点,如果处理不得当还会导致动车组救援,严重影响运输秩序。只有准确地对动车组的制动故障进行判断,及时排除故障,才能减少动车组途中停车,避免对运输秩序的干扰。 下达任务日期:2014年7月21日 要求完成日期:2014年9月25日 答辩日期:2014年11月 指导教师:霍胜贵 开题报告

相关主题
文本预览
相关文档 最新文档