最新六年级上数学易错题难题训练含详细答案

  • 格式:doc
  • 大小:371.50 KB
  • 文档页数:6

下载文档原格式

  / 6
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新六年级上数学易错题难题训练含详细答案

一、培优题易错题

1.观察下列一组图形:它们是按照一定规律排列的,依照此规律,第个图形中共有________个“★”.

【答案】(3n+1)

【解析】【解答】解:①为4个★,②为7个★,③ 为10个★,④为13个★,

通过观察,可得第n个图形为(3n+1)个★.

故答案为:(3n+1)

【分析】观察图形,先写出①②③④的★的个数,通过找规律,写出第n个图形中的★个数。

2.如图,用相同的小正方形按照某种规律进行摆放,则第6个图形中小正方形的个数是________,第n(n为正整数)个图形中小正方形的个数是________(用含n的代数式表

示).

【答案】55;(n+1)2+n

【解析】【解答】第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;

第3个图形共有小正方形的个数为4×4+3;

…;

则第n个图形共有小正方形的个数为(n+1)2+n,

所以第6个图形共有小正方形的个数为:7×7+6=55.

故答案为:55;(n+1)2+n

【分析】观察图形规律,第1个图形共有小正方形的个数为2×2+1;第2个图形共有小正方形的个数为3×3+2;则第n个图形共有小正方形的个数为(n+1)2+n,找出一般规律.

3.规定一种新的运算:a★b=a×b-a-b2+1,例如3★(-4)=3×(-4)-3-(-4)2+1.请计算下列各式的值。

(1)2★5;

(2)(-2)★(-5).

【答案】(1)解:2★5=2×5-2-52+1=-16

(2)解:(-2)★(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12

【解析】【分析】根据新运算定义得到算式,再根据有理数的运算法则计算即可,先算乘方,再算乘除,再算加减,如果有括号先算括号里面的.

4.已知:如图,这是一种数值转换机的运算程序.

(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为;若第1次输入的数为12,则第5次输出的数为________.

(2)若输入的数为5,求第2016次输出的数是多少.

(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.

【答案】(1)4、6

(2)解:5+3=8,8× =4,4× =2,2× =1,1+3=4,

∴若输入的数为5,则每次输出的数分别是8、4、2、1、4、2、1,…,

(2016−1)÷3=2015÷3=671 (2)

∴第2016次输出的数是2

(3)解:当x为奇数时,有 (x+3)+3=x,解得x=9(舍去),

× (x+3)=x,解得x=1,

当x为偶数时,有 × × x=x,解得x=0,

× x+3=x,解得x=4,

×( x+3)=x,解得x=2,

综上所述,x=0或1或2或4

【解析】【解答】解:(1)∵1+3=4,

∴第1次输出的数为1,则第2次输出的数为4.

×12=6,6× =3,3+3=6,6× =3,3+3=6,

∴第1次输入的数为12,则第5次输出的数为6.

【分析】(1)根据运算程序得到第1次输出的数为1,第2次输出的数为3+1,第1次输入的数为12,则第5次输出的数(12÷2÷2+3)÷2+3;(2)根据题意由输入的数为5,每

次输出的数分别是8、4、2、1、4、2、1···,得到3次一循环,求出第2016次输出的数;(3)根据运算程序得到当x为奇数时和为偶数时,求出所有x的值.

5.在平面直角坐标系中,若点P(x,y)的坐标x、y均为整数,则称点P为格点.若一个多边形的面积记为S,其内部的格点数记为N,边界上的格点数记为L.例如图中△ABC 是格点三角形,对应的S=1,N=0,L=4.

(1)写出图中格点四边形DEFG对应的S,N,L.

(2)已知任意格点多边形的面积公式为S=N+aL+b,其中a,b为常数.当某格点多边形对应的N=82,L=38,求S的值.

【答案】(1)解:根据图形可得:S=3,N=1,L=6

(2)解:根据格点三角形ABC及格点四边形DEFG中的S、N、L的值可得,

解得a ,

∴S=N+ L﹣1,

将N=82,L=38代入可得S=82+ ×38﹣1=100

【解析】【分析】(1)按照所给定义在图中输出S,N,L的值即可;(2)先根据(1)中三角形与四边形中的S,N,L的值列出关于a,b的二元一次方程组,解方程组求得a,b的值,从而求得任意格点多边形的面积公式,代入所给N,L的值即可求得相应的S的值.

6.操作探究:已知在纸面上有一数轴(如图所示),

(1)操作一:

折叠纸面,使数字1表示的点与﹣1表示的点重合,则﹣3表示的点与________表示的点重合;

(2)操作二:

折叠纸面,使﹣1表示的点与5表示的点重合,回答以下问题:

①10表示的点与数________表示的点重合;

(3)②若数轴上A、B两点之间距离为15,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?

【答案】(1)3

(2)﹣6

(3)解:由题意可得,A、B两点距离中心点的距离为15÷2=7.5,

∵中心点是表示2的点,

∴A、B两点表示的数分别是﹣5.5,9.5.

【解析】【解答】解:(1)因为折叠纸面,使数字1表示的点与﹣1表示的点重合,可确定中心点是表示0的点,

所以﹣3表示的点与3表示的点重合,

故答案为:3;(2)①因为折叠纸面,使﹣1表示的点与5表示的点重合,可确定中心点是表示2的点,

所以10表示的点与数﹣6表示的点重合,

故答案为:﹣6;

【分析】(1)先求出中心点,再求出对应的数即可;(2)①求出中心点是表示2的点,再根据对称求出即可;②求出中心点是表示2的点,求出A、B到表示2的点的距离是7.5,即可求出答案.

7.某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A地出发到收工时,行走记录如下(单位:km):+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6

(1)收工时,检修小组在A地的哪一边,距A地多远?

(2)若汽车每千米耗油3升,已知汽车出发时油箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?

【答案】(1)解:+15+(-2)+5+(-1)+(-10)+(-3)+(-2)+12+4+(-5)+6 =19(km),答:检修小组在A地东边,距A地19千米

(2)解:(+15+|-2|+5+|-1|+|-10|+|-3|+|-2|+12+4+|-5|+6)×3

=65×3=195(升),∵195>180,

∴收工前需要中途加油,

195-180=15(升),

答:应加15升.

【解析】【分析】(1)先求出这组数的和,如为正则在A的东边,为负则在A的西边,为0则在A处;

(2)先求出这组数的绝对值的和与3的乘积,再与180比较,若大于180就需要中途加油,否则不用.

8.甲、乙两瓶盐水,甲瓶盐水的浓度是乙瓶盐水的倍.将克甲瓶盐水与克乙瓶盐水混合后得到浓度为的新盐水,那么甲瓶盐水的浓度是多少?

【答案】解:设乙瓶盐水的浓度是x,甲瓶水的浓度是3x。