M--测量系统分析案例

  • 格式:pptx
  • 大小:5.84 MB
  • 文档页数:73

下载文档原格式

  / 73
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目的:掌握多X因子变化对Y的影响(大概);
-> 材料和时间 存在交互作用;
(5)Multi-vari Chart(多变因图)Sinter.MTW
目的:掌握多X因子变化对Y的影响(); <统计-方差分析-主效果图、交互效果图:>
倾斜越大,主效果越大
无交互效果 -> 平行; 有交互效果 -> 交叉;
(5)Multi-vari Chart(多变因图)Sinter.MTW
目的:掌握多X因子变化对Y的影响(交互作用细节); <统计-方差分ห้องสมุดไป่ตู้-双因子:>
材料、交互的P < 0.05 ->有意;
A—假设测定-决定标本大小: (1):1-sample Z(已知u)
<统计-功效和样本数量- 1-sample Z: >
背景:Ha~N(30,100/25) H0~ N(25,100/n )-为测定分布差异的标本大小
背景:3名测定者对30部品反复2次TEST
检查者1需要再教育; 检查者3需要追加训练; (反复性)
个人与标准的一致性 (再现性?)
两数据不能相差较大, 否则说明检查者一致的 判定与标准有一定差异
M--测量系统分析: 离散型案例(顺序型):散文.Mtw 背景:3名测定者对30部品反复2次TEST
张四 需要再教育; 张一、张五需要追加训练; (反复性)
<统计-功效和样本数量- 1 Proportion : >
背景:H0:P= 0.9
Ha:P < 0.9 测定数据P1=0.8 、 P2=0.9
有意水平 α = 0.05
查出力 1-β = 0.9
P1=0.8 功效值(查出力): 1-β =0.9 P2=0.9
母比率0.8 实际上是否0.9以下,需要样本102个
有意水平 α = 0.05
查出力 1-β = 0.8
差值:u0-ua =25-30=-5
功效值(查出力): 1-β =0.8 标准差:sigma=10
A—假设测定-决定标本大小:
(2):1-sample T(未知u)
<统计-功效和样本数量- 1-sample t: >
背景:Ha~N(30,100/25) H0~ N(25,100/n )-为测定分布差异的标本大小
两数据不能相差较大, 否则说明检查者一致的判定 与标准有一定差异
M--正态性测定: (测定工序能力的前提) 案例: 背景:3名测定者对10部品反复2次TEST
P-value > 0.05 -> 正态分布(P越大越好) 本例:P= 0.022 ,数据不服从正态分布。 原因:1、Data分层混杂;
2、群间变动大;
无历史均值: -> 考虑偏移-> Zlt (Bench)
* Zshift = Zlt (Bench) - Zlt (Bench) =12.13-1.82=0.31
工序能力分析:案例:Camshaft.MTW 另:capability sixpack工具
M--工序能力分析(离散型):案例:bpcapa.MTW (1):二项分布的Zst
通过形态确认: -正规分布有无; -异常点有无;
(2) Plot(散点图)-X、Y双变量
通过形态确认: -相关关系; -确认严重脱离倾向的点;
(3)Matrix Plot(行列散点图-矩阵图)-多变量 (4)Box Plot(行列散点图-矩阵图)-多变量
(5)Multi-vari Chart(多变因图)Sinter.MTW
假设P:H0的P值(0.9)
母比率0.8 实际上是否小于0.9,需要样本217个
A—假设测定:案例:Camshaft.MTW (1): 1-sample t(单样本)
背景:对零件尺寸测定100次,数据能否说明与目标值(600)一致 (α = 0.05 )
P-Value > 0.05 → Ho(信赖区间内目标值存在) →可以说平均值为600
M--工序能力分析(连续型):案例:Camshaft.MTW ① 工程能力统计:
短期 工序能力
长期 工序能力
X平均=目标值 -> Cp=Cpm
X平均≠目标值 -> Cp > Cpm
② 求解Zst(输入历史均值):
历史均值:表示强行将它拉到中心位置 ->不考虑偏移-> Zst (Bench)
③ 求解Zlt(无历史均值):
有意水平 α = 0.05
查出力 1-β = 0.8
差值:u0-ua =25-30=-5
功效值(查出力): 1-β =0.8 标准差(推定值):sigma=10
样本数量27 >已知u的1-sample Z的样本数量 ->t 分布假定母标准偏差未制定分析;
A—假设测定-决定标本大小:
(3):1 Proportion(单样本)
A—假设测定-决定标本大小:
(3):2 Proportion(单样本)
<统计-功效和样本数量- 1 Proportion : >
背景:H0:P1=P2
Ha:P1 < P2 有意水平 α = 0.05 查出力 1-β = 0.9
P的备择值:实际要测定的比例? --母比率;
功效值(查出力): 1-β =0.9
缺陷率: 不良率是否 受样本大小 影响?
-平均(预想)PPM=226427 -Zlt=0.75 =>Zst=Zlt+1.5=2.25
M--工序能力分析(离散型):案例:bpcapa.MTW (2):Poisson分布的Zst
A—Graph(坐标图):案例:Pulse.MTW
(1) Histograpm(直方图)-单变量
M--测量系统分析案例:
连续型案例: gageaiag.Mtw 背景:3名测定者对10部品反复2次TEST
所有点落在管理界限内 ->良好
大部分点落在管理界限外 ->主变动原因:部品变动
->良好
->测量值随部品的变动 ->测量值随OP的变动
->对于部品10,OP有较大分歧;
M--测量系统分析: 离散型案例(名目型):gage名目.Mtw
A—假设测定:案例:2sample-t.MTW (2): 2-sample t(单样本)
① 正态性验证:
<统计-基本统计- 正态性检验 : >
背景:判断两个母集团Data的平均, 统计上是否相等(有差异)
步骤①:分别测定2组data是否正规分布; ②:测定分散的同质性; ③:t-test;
P-Value > 0.05 → 正态分布