(整理)固体物理课后习题与答案.
- 格式:doc
- 大小:2.60 MB
- 文档页数:18
一.本章习题P272习题1.试证理想六方密堆结构中c/a=.一. 说明:C 是上下底面距离,a 是六边形边长。
二. 分析:首先看是怎样密堆的。
如图(书图(a),P8),六方密堆结构每个格点有12个近邻。
(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。
中间层的三个球相切,又分别与上下底面的各七个球相切。
球心之间距离为a 。
所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。
三. 证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'a AB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=οοο633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a ρρρ,,互相垂直,试求晶面族(hkl )的面间距。
一、分析:我们想到倒格矢与面间距的关系G d ρπ2=。
倒格矢与晶面族 (hkl )的关系321b l b k b h G ρρρρ++=写出)(321b b b ρρρ与正格子基矢 )(c b a ρρρ的关系。
即可得与晶面族(hkl ) 垂直的倒格矢G ρ。
进而求得此面间距d 。
二、解:c b a ρρρΘ,,互相垂直,可令k c c j b b i a a ρρρρρρ===,,晶胞体积abc c b a v =⨯⋅=)(ρρρ倒格子基矢:kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b ρρρρρρρρρρρρρρρρρρπππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππρρρρρρρρ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h G d ++=++==πππρ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子?1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。
《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(13)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2)体心立方:8(3)面心立方:6(4)六方密堆积:6(5)金刚石:。
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/ 6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。
证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。
注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。
根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。
证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。
解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。
因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。
1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。
若立方边长为a ,写出最近邻和次近邻的原子间距。
答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
11级第一次(作业)请充分利用网络、本校及外校图书馆的相关资料,同时联系相关专业的老师,调查关于固体物理的简史、发展趋势以及当代的热门前沿课题(针对自己感兴趣的某个方面),形成一份报告,阐述自己的看法,要求2000字以上。
(已经在第一次课布置,11月1日前后上交)11级固体物理第2次习题和思考题1.在结晶学中,我们课堂上讲的单胞,也叫元胞,或者叫结晶学原胞,也叫晶胞,试回忆一下晶胞是按晶体的什么特性选取的?答:在结晶学中,晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性。
2.解释Bravais 点阵并画出氯化钠晶体的结点所构成的Bravais 点阵。
答:晶体的部结构可以概括为由一些相同的结点构成的基元在空间有规则的作周期性的无限分布,这些结点构成点阵,如果基元只由一个结点构成,这种点阵称为Bravais 点阵。
氯化钠晶体的Bravais 点阵可参照书p8的图1-13,点阵的结点由钠离子和氯离子组成。
3.说明金刚石结构是复式点阵的原因。
答:金刚石结构可这样描述:面心立方的体心向顶角引8条对角线,在互不相邻的四条对角线中点,各有一个原子。
以金刚石为例,顶角和面心处的原子周围情况和对角线上的原子周围情况不相同,因而金刚石结构是复式晶格,可看作两套面心立方子晶格沿体对角线移开1/4体对角线长度而成。
Bravais 点阵包含两个原子。
4.体心立方点阵和面心立方点阵互为正、倒格子,试证明之。
答:面心立方的三个基矢为:⎪⎪⎪⎩⎪⎪⎪⎨⎧+=+=+=)(2)(2)(2321i k a a k j a a j i a a ρρρρρρρρρ其体积为43a ,根据倒格矢的定义得:⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=⨯⋅⨯=++-=⨯⋅⨯=+-=⨯⋅⨯=)(2)(2)(2)(2)(2)(2321213321132321321k j i a a a a a a b k j i a a a a a a b k j i a a a a a a b ρρρρρρρρρρρρρρρρρρρρρρρρρρρππππππ 可见,除了系数不同之外,方向正好是体心立方的晶格基矢。
第一章、晶体的结构习题1.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,6π; (2)体心立方, ;83π(3)面心立方,;62π(4)六角密积,;62π(5)金刚石结构,;163π[解答]设想晶体是由刚性原子球堆积而成,一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度,设n为一个晶胞中的刚性原子球数,r表示刚性原子球半径,V表示晶胞体积,则致密度ρ=Vrn334π(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚性球堆积,如图1.2所示,中心在1,2,3,4处的原子球将依次相切,因为,,433aVra==面1.2 简立方晶胞晶胞内包含1个原子,所以ρ=6)(33234ππ=aa(2)对体心立方晶体,任一个原子有8个最近邻,若原子刚性球堆积,如图1.3所示,体心位置O的原子8个角顶位置的原子球相切,因为晶胞空间对角线的长度为,,433aVra==晶胞内包含2个原子,所以ρ=ππ83)(*2334334=aa图1.3 体心立方晶胞(3)对面心立方晶体,任一个原子有12个最近邻,若原子以刚性球堆积,如图 1.4所示,中心位于角顶的原子与相邻的3个面心原子球相切,因为3,42a V r a ==,1个晶胞内包含4个原子,所以ρ=62)(*4334234ππ=a a .(4)对六角密积结构,任一个原子有12个最近邻,若原子以刚性球堆积,如图1。
5所示,中心在1的原子与中心在2,3,4的原子相切,中心在5的原子与中心在6,7,8的原子相切,图 1.5 六角晶胞 图 1.6 正四面体晶胞内的原子O 与中心在1,3,4,5,7,8处的原子相切,即O 点与中心在5,7,8处的原子分布在正四面体的四个顶上,因为四面体的高h =223232c r a == 晶胞体积 V = 222360sin ca ca =, 一个晶胞内包含两个原子,所以ρ=ππ62)(*22233234=ca a .(5)对金刚石结构,任一个原子有4个最近邻,若原子以刚性球堆积,如图1.7所示,中心在空间对角线四分之一处的O原子与中心在1,2,3,4处的原子相切,因为,8 3r a=晶胞体积3aV=,一个晶胞内包含8个原子,所以ρ=163)83(*83334ππ=aa.2.在立方晶胞中,画出(102),(021),(122-),和(201-)晶面。
固体物理学课后题答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x(4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。
在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。
在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。
也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。
2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。
晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。
3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。
除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。
4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。
价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。
在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。
由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。
这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。
电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。
所以价电子的浓度越大,价电子的平均动能就越大。
5. 两块同种金属,温度不同,接触后,温度未达到相等前,是否存在电势差?为什么?[解答] 两块同种金属,温度分别为1T 和2T ,且21T T >。
在这种情况下,温度为1T 的金属高于费米能oF E 的电子数目,多于温度为2T 的金属高于费米能oF E 的电子数目。
两块同种金属接触后,系统的能量要取最小值,温度为1T 的金属高于oF E 的部分电子将流向温度为2T 的金属。
温度未达到相等前,这种流动一直持续,期间,温度为1T 的金属失去电子,带正电;温度为2T 的金属得到电子,带负电,两者出现电势差。
6. 为什么价电子的浓度越高,电导率越大?[解答] 电导σ是金属通流能力的量度。
通流能力取决于单位时间内通过截面积的电子数。
但并不是所有价电子对导电都有贡献,对导电有贡献的是费米面附近的电子。
费米球越大,对导电有贡献的电子数目就越多。
费米球的大小取决于费米半径3/12)3(πn k F =。
可见电子浓度n 越高,费米球越大,对导电有贡献的电子数目就越多,该金属的电导率就越高。
7. 一金属体积为V ,价电子总数为N ,以自由电子气模型,(1)在绝热条件下导出电子气体的压强为: V U P 320=,其中电子气体的基态能量0053F NE U = (2)证明电子气体的体积弹性模量 VU P V p V K 91035)/(0==∂∂-=。
[解答](1) 在绝热近似条件下,外场力对电子气作的功W 等于系统内能的增加dU ,即PdV W dU -== 式中P 是电子气的压强。
由上式可得 VUP ∂∂-= 在常温条件下,忽略掉温度对内能的影响,则由3/22200)3(25353πVN m N NE U U F ===由此可得到VU V N m N V U P 32)(32)3(25303/53/2220=∙=∂∂-=-π (2) 体积弹性模量K 与压强P和体积V 的关系为VKV P -=∂∂ ,将203/83/222910)(3532)3(253V U V N m N V P -=∙-=∂∂-π 代入体积弹性模量K 与压强P 和体积V 的关系式,得到 VU K 9100=8. 每个原子占据的体积为 3a ,绝对零度时价电子的费米半径为 ak F3/120)6(π=,计算每个原子的价电子数目。
[解答] 在绝对零度时导电电子的费米半径 3/120)3(πn k F =。
现已知一金属导电电子的费米半径 3/120)6(ak F π=,所以,该金属中导电电子的密度32an =。
3a 是一个原子占据的体积,由此可知,该金属的原子具有两个价电子。
第二章 晶体的结构习题及答案1.晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,0A ,0B 和0C 分别与基矢1a ,2a 和3a 重合,除0点外,0A ,0B ,和0C 上是否有格点?若ABC 面的指数为(234),情况又如何?[解答] 晶面家族(123)截1a ,2a ,和3a 分别为1,2,3等份,ABC 面是离原点0最近的晶面,0A 的长度等于1a 长度,0B 的长度等于2a 的长度的1/2 ,0C 的长度等于3a 的长度的1/3 ,所以只有A 点是格点。
若ABC 面的指数为(234)的晶面族,则A 、B 、和C 都不是格点。
2.在结晶学中,晶胞是按晶体的什么特性选取的?[解答] 在结晶学中,晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性。
3. 在晶体衍射中,为什么不能用可见光?[解答] 晶体中原子间距的数量级为1010-米,要使原子晶格成为光波的衍射光栅,光波的波长应小于1010-米。
但可见光的波长为7.6 — 7100.4-⨯米,是晶体中原子间距的1000倍。
因此,在晶体衍射中,不能用可见光。
4.温度升高时,衍射角如何变化?X 光波长变化时,衍射角如何变化?[解答] 温度升高时,由于热膨胀,面间距h k l d 逐渐变大,由布拉格反射公式λθn d hkl =sin 2可知,对应同一级衍射,当X 光波长不变时,面间距hkl d 逐渐变大,衍射角θ逐渐变小。
所以温度升高,衍射角变小。
当温度不变,X 光波长变大时,对于同一晶面族,衍射角θ随之变大。
7. 六角晶胞的基矢 j a ai a 223+=, j a ai b 223+-=,ck c =。
求其倒格基矢。
[解答] 晶胞体积为 c a ck j a ai j a ai c b a 223)]()223[()223(][=⨯+-∙+=⨯∙=Ω。
其倒格矢为)33(232)]()223[(2][22*j i a c a ck j a ai c b a +=⨯⨯+-=Ω⨯=πππ。
)33(232)]223()[(2][22*j i a c a j a ai ck a c b +-=⨯+⨯=Ω⨯=πππ。
k c ca j a ai j a aib ac πππ232)]223()223[(2][22*=⨯+-⨯+=Ω⨯=。
8. 证明以下结构晶面族的面间距:(1)立方晶系:2/1222][-++=l k h a d hkl ;(2)正交晶系:2/1222])()()[(-++=cl bk ahd hkl ;[解答](1)设沿立方晶系晶轴c b a ,,的单位矢量分别为i ,j ,k ,则正格子基矢为ai a =, aj b =, ak c =,倒格子基矢为 i a a π2*=, j a b π2*=, k ac π2*=。
与晶面族(hkl )正交的倒格矢 ***lc kb ha K hkl ++=。
由晶面间距hkl d 与倒格矢hkl K 的关系式 hklhkl K d π2=得 222lk h a d hkl ++=。
(2)对于正交晶系,晶胞基矢a ,b ,c 相互垂直,但晶格常数c b a ≠≠,设沿晶轴a ,b ,c 的单位矢量分别为i ,j ,k ,则正格子基矢为 ai a =, bj b =, ck c =,图2.6 立方晶胞倒格子基矢为 i a a π2*=, j b b π2*=, k cc π2*=。
与晶面族(hkl )正交的倒格矢 ***lc kb ha K hkl ++=。
由晶面间距hkl d 与倒格矢hkl K 的关系式 hklhkl K d π2=得 2/1222])()()[(-++=cl bk ah d hkl 。
9.求晶格常数为a 的面心立方和体心立方晶体晶面族)(321h h h 的面间距。
[解答] 面心立方正格子的原胞基矢为)(21k j a a +=, )(22i k a a +=, )(23j i aa += 由 Ω⨯=][2321a a b π , Ω⨯=][2132a a b π , Ω⨯=][2213a a b π ,可得其倒格子基矢为 )(21k j i a b ++-=π , )(22k j i a b +-=π , )(23k j i ab -+=π , 倒格矢 332211b h b h b h K h ++=根据式 hh h h K d π2321=,得面心立方晶体晶面族)(321h h h 的面间距 2/1232123212321])()()[(2321h h h h h h h h h aK d h h h h -+++-+++-==π。
体心立方正格子原胞基矢可取为 )(21k j i a a ++-=, )(22k j i a a +-= , )(3k j i aaa -+= 。
其倒格子基矢为 )(21k j ab +=π , )(22i k a b +=π , )(23j i ab +=π。
则晶面族)(321h h h 的面间距为2/1221213232])()()[(2321h h h h h h aK d h h h h +++++==π。
10. 试证三角晶系的倒格子也属于三角晶系。
[解答] 对于三角晶系,其三个基矢量的大小相等,且它们相互间的夹角也相等,即a a c ab a a ======321, θγβα===。
利用正倒格子的关系,得 b a a a b =Ω=Ω⨯=θππsin 2][22321,b a a a b =Ω=Ω⨯=θππsin 2][22132b a a a b =Ω=Ω⨯=θππsin 2][22213。
(1)设1b 与2b 的交角为12θ ,2b 与3b 的交角为23θ , 3b 与1b 的交角为31θ ,则有)cos (cos 4])())([(4])[(4)]()[(4cos 224222132312233212213322212221θθππππθ-Ω=∙-∙∙Ω=⨯⨯∙Ω=⨯∙⨯Ω==∙a a a a a a a a a a a a a a a a b b b (2)由(1)和(2)式得 θθθθθθθθθcos 1cos cos 1)cos 1(cos sin cos cos cos 22212+-=---=-=。