六年级数学专题讲解:牛吃草问题
- 格式:docx
- 大小:15.25 KB
- 文档页数:2
六年级数学专题讲解:牛吃草问题
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量.
基本特点:原草量和新草生长速度是不变的;
关键问题:确定两个不变的量.
基本公式:
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;
例题解析:
一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天. 如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?
分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少. 原因是因为其一,用的时间少;其二,对应的长出来的草也少. 这个差就是这片草地5天长出来的草. 每天长出来的草可供5头牛吃一天. 如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。
(15×10-25×5)÷(10-5)=(150-125)÷(10-5) =25÷5
=5(头)→可供5头牛吃一天.
150-10×5 =150-50 =100(头)→草地上原有的草可供100头牛吃一天
100÷(10-5) =100÷5 =20(天)
答:若供10头牛吃,可以吃20天。
网络搜集整理,仅供参考