2.基尔霍夫定律和叠加原理的验证(实验报告答案)57332
- 格式:doc
- 大小:138.00 KB
- 文档页数:8
验证基尔霍夫定律实验报告验证基尔霍夫定律实验报告引言:基尔霍夫定律是电学中的基本定律之一,它描述了电流在闭合电路中的分配规律。
在本次实验中,我们将通过一系列实验来验证基尔霍夫定律,并探究其在电路中的应用。
实验一:串联电路的电流分配我们首先搭建了一个简单的串联电路,其中包含两个电阻R1和R2。
通过连接电流表和电压表,我们可以测量电阻上的电流和电压。
实验结果显示,电流表所测得的电流值与理论计算值非常接近。
根据基尔霍夫定律,串联电路中的电流在各个电阻中分配,总电流等于各个电阻上的电流之和。
实验结果的验证表明了基尔霍夫定律在串联电路中的适用性。
实验二:并联电路的电流分配接下来,我们搭建了一个并联电路,其中包含两个电阻R3和R4。
同样地,通过连接电流表和电压表,我们可以测量电阻上的电流和电压。
实验结果显示,电流表所测得的电流值与理论计算值非常接近。
基尔霍夫定律指出,并联电路中的电流在各个支路中分配,总电流等于各个支路上的电流之和。
实验结果再次验证了基尔霍夫定律在并联电路中的准确性。
实验三:基尔霍夫定律在复杂电路中的应用为了更深入地探究基尔霍夫定律的应用,我们搭建了一个复杂电路,其中包含了多个电阻和电源。
通过连接电流表和电压表,我们可以测量各个电阻上的电流和电压。
实验结果显示,通过应用基尔霍夫定律,我们可以准确计算出复杂电路中各个电阻上的电流值。
这进一步验证了基尔霍夫定律在复杂电路中的适用性,并证明了它在解决实际问题中的重要性。
结论:本次实验通过验证基尔霍夫定律的准确性,证明了它在电学中的重要性和应用价值。
基尔霍夫定律为我们解决电路中的问题提供了有力的工具,使我们能够准确计算电流和电压的分配情况。
同时,实验结果也提醒我们在电路设计和故障排除中要充分考虑基尔霍夫定律的应用。
总结:通过本次实验,我们深入了解了基尔霍夫定律在电路中的应用。
实验结果的验证证明了基尔霍夫定律的准确性和适用性。
我们认识到基尔霍夫定律在解决电路问题中的重要性,它为我们提供了准确计算电流和电压的方法。
基尔霍夫定律的验证实验报告实验目的:验证基尔霍夫定律,即电流差值定律和电流的闭合定律。
实验原理:1. 电流差值定律(基尔霍夫第一定律)指出,在一个电路的任意一个节点上,节点流入的电流差值等于节点流出的电流差值。
数学表达式为:ΣI_in = ΣI_out。
2.电流的闭合定律(基尔霍夫第二定律)指出,在一个电路中,电流在闭合回路中的总和等于供电电压的总和。
数学表达式为:ΣI=0。
实验材料:1.电源2.导线3.电阻4.电流表5.电压表实验步骤:1.连接实验电路,包括电源、导线、电阻、电流表和电压表。
2.使用导线将电源、电流表、电压表和电阻连接在一起,构成一个简单的电路。
3.分别测量并记录电阻两端的电压和电流。
4.将电阻更换为新的不同阻值的电阻,重复步骤35.统计并比较不同电阻下的电流和电压数据,验证基尔霍夫定律。
实验结果:以一个简单的电路为例,连接一个12V的电源、一个10Ω的电阻以及一个电流表和一个电压表。
测量得到电压表读数为12V,电流表读数为1.2A。
我们可以验证基尔霍夫定律:1.在节点上,电流只有一个,所以节点流入的电流和流出的电流应该相等。
在这个电路中,电流表读数为1.2A,即节点流入电流和流出电流都是1.2A,符合电流差值定律。
2.电路中只有一个回路,电压表读数为12V,也等于供电电源的电压。
因此,符合电流的闭合定律。
实验分析:通过实验结果,我们可以验证基尔霍夫定律。
在一个简单电路中,电流差值定律表明在一个节点上,流入的电流和流出的电流相等,而电流的闭合定律显示电流在闭合回路中总和为零。
而实验结果与这两个定律的预测值相符,说明基尔霍夫定律成立。
实验结论:基尔霍夫定律是电学中非常重要的定律,经过实验证明,电流差值定律和电流的闭合定律在电路中成立。
实验结果表明,实际电路中的电流和电压符合基尔霍夫定律的预测值,验证了基尔霍夫定律的正确性。
因此,在电路分析和设计中,基尔霍夫定律是非常有用和可靠的工具。
实验报告验证基尔霍夫定理一、实验目的本实验的目的在于通过实际操作和测量,验证基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL),加深对电路基本定律的理解和掌握,提高电路分析和计算的能力。
二、实验原理1、基尔霍夫电流定律(KCL)内容:在集总电路中,任何时刻,对任一节点,所有流出节点的电流的代数和恒等于零。
数学表达式:∑I = 0 (流入电流之和等于流出电流之和)2、基尔霍夫电压定律(KVL)内容:在集总电路中,任何时刻,沿任一回路,所有元件两端电压的代数和恒等于零。
数学表达式:∑U = 0 (回路中各段电压降之和等于电源电动势之和)三、实验设备和器材1、直流电源(可调稳压电源)2、数字万用表3、电阻箱4、实验电路板5、连接导线若干四、实验步骤1、实验电路的设计与搭建根据实验要求,在实验电路板上选择合适的电阻值,设计并搭建一个包含多个节点和回路的电路。
确保电路连接牢固,无短路和断路现象。
2、测量电流将数字万用表调至电流测量档位,分别测量通过各支路的电流。
记录测量数据,注意电流的方向。
3、测量电压将数字万用表调至电压测量档位,分别测量回路中各元件两端的电压。
记录测量数据,注意电压的极性。
4、数据记录与处理将测量得到的电流和电压数据记录在表格中。
对数据进行分析和计算,验证基尔霍夫定律。
五、实验数据记录与分析1、电流测量数据|支路|电流测量值(mA)|方向|||||| I1 |____ |流入节点|| I2 |____ |流出节点|| I3 |____ |流入节点|||||根据基尔霍夫电流定律,对某一节点,流入电流之和等于流出电流之和。
例如,对于节点 A,I1 + I3 = I2 ,计算验证是否成立。
2、电压测量数据|元件|电压测量值(V)|极性|||||| R1 |____ |上正下负|| R2 |____ |上正下负|| R3 |____ |上正下负|||||根据基尔霍夫电压定律,沿某一回路,各元件两端电压的代数和等于零。
基尔霍夫定律的验证实验报告实验报告实验题目:基尔霍夫定律的验证实验目的:通过实验验证基尔霍夫定律的正确性,理解电路中电流和电势的特性及其变化规律。
实验原理:基尔霍夫定律是针对电路中电流和电势的特性以及电路拓扑结构提出来的重要定理之一,主要包括基尔霍夫第一定律和基尔霍夫第二定律。
基尔霍夫第一定律:电路中任意一个节点的电流代数和为0。
基尔霍夫第二定律:电路中任意一个电路环的电势差代数和等于其中通过的电流代数和乘以其电路元件的电阻值之和。
实验器材和药品:数字万用表、30V 直流电源、5Ω 电阻器、10Ω 电阻器、20Ω 电阻器、导线等。
实验步骤:- 按照电路连接图搭建电路并接好电路元件。
- 连接数字万用表用于测量电阻值和电势差。
- 用 30V 直流电源为电路供电,并打开电源开关。
- 分别用数字万用表测量电路中各元件的电势差和电流,记录数据。
- 对实验结果进行统计和分析,验证基尔霍夫定律的正确性。
实验数据和结果:实验数据如下:元件电阻值(Ω)电势差(V)电流(mA)电源 / 30 3电阻R1 5 15 3电阻R2 10 10 1电阻R3 20 5 0.5通过实验测得的数据可以得出以下结论:符合基尔霍夫第一定律:在电阻R1处的电流为3mA,因此在R2和R3处的电流之和也是3mA。
符合基尔霍夫第二定律:通过电阻R1和电源的电路环的电势差之和等于通过电阻R2和R3的电路环的电势差之和,即15V + 15V = 10V + 5V。
结论和讨论:从实验结果来看,基尔霍夫定律得到了很好的验证,证明了其在电路分析中的重要性和正确性。
同时,本次实验也让我们深入了解了电路中电流和电势的特性以及在变化过程中的规律。
实验中的不确定性和误差主要来自于数字万用表本身和电源的精度等方面,在后续实验中需要更加精确的测量方法和设备来避免对实验数据的误差影响。
实验中还可以通过增加电路元件和不同的拓扑结构来进一步扩展实验步骤和深化理解,更好地理解和应用基尔霍夫定律。
实验二电位测量与基尔霍夫定律及叠加原理的验证一实验目的1 熟悉直流稳压电源, 电压表, 电流表的使用.2 理解电位高低, 电流的实际方向与参考方向的关系.3 通过实验数据验证基尔霍夫定律,加深对电路定律的理解.4 通过实验验证线性电路叠加原理的正确性, 并了解其应用范围.二实验原理和内容电路原理电路图1.电流,电压的参考方向与实际方向电流和电压在电路分析中,往往事先很难判断它们的实际方向.为方便对电路进行分析和计算,采用技能先假设某一个方向作为电流或电压的正方向, 即为”参考方向”. 如电流或电压的实际方向与参考方向相同, 其数值取正; 否则取负.2.基尔霍夫定律测量某电路的各支路电流及多个元件两端的电压,满足基尔霍夫电流定律(KCL)和电压定律(KVL).KCL指出:在电路任一节点上,所有支路的电流代数和恒等于零,∑I=0.KCL反映了电流的连续性原理. 与电路中元件的性质无KVL指出:沿电路中任一闭合回路绕行一周,各段电压代数和恒等于零,∑U=0.参考方向与绕行方向一致的电压取正号,相反的电压取负号. KVL说明了电路中各段电压的约束关系,与电路中元件的性质无关.3.叠加定理在有多个电源共同作用的线性电路中,各支路的电流或电压都等于每个电源单独作用时在该支路中所产生的电流或电压的代数和.三实验设备数字式直流电压、电流表;电工电路实验台及多媒体等四、实验操作方法和步骤1.内容步骤:实验验证基尔霍夫定律关断电源一按电路图接线:两个回路接线并认准由于“电流插座”的接入,使原电路原理电路图中的a,b,c,d点的延伸点(实验台板上为A,B,C,E)一教师检查通过后一开电源,调节U S1=10V,U S2=6V。
按表1测填有关电压、电流数据一自我检查(1.用节点法粗估B点电位后,可估算出各电压电流;2.用理论计算公式验算。
)2. 内容步骤:实验验证叠加定理按表2测填有关电压、电流数据(注意U S1、U S2单独作用时的处理,不作用的电压源应短接)一自我检查(用理论计算公式验算)一关电源,送教师检查签字一拆线并清洁整理实验台,结束实验。
基尔霍夫定律的验证的实验报告一、实验目的本实验旨在验证基尔霍夫定律,掌握其在电路分析中的应用。
通过使用实验仪器和电路元件,测量和分析电路中的电流和电压,验证基尔霍夫定律的准确性。
二、实验仪器和材料1.直流电源2.电流表3.电压表4.变阻器5.电阻器6.连线7.万用表三、实验原理1.基尔霍夫第一定律:在一个电路网络中,电流汇入交叉点的总和等于汇出该交叉点的总和。
2.基尔霍夫第二定律:沿电路中闭合回路的回路电势和等于各个元件电势降及电源电动势之和。
四、实验步骤步骤一:搭建简单电路1.将直流电源正极与一个变阻器的一端连接,将另一端接地。
2.将电源负极与一个电阻器的一端连接。
3.将电阻器的另一端与变阻器连接。
步骤二:连接电流表1.将电流表的一端连接到直流电源负极。
2.将电流表的另一端连接到变阻器的另一端。
3.读取电流表的显示数值。
步骤三:连接电压表1.将电压表的正极连接到电阻器的连接处。
2.将电压表的负极连接到变阻器的连接处。
3.读取电压表的显示数值。
五、实验数据记录和处理根据步骤二和步骤三的实验结果,记录电流表和电压表的显示数值。
实验数据如下:电流表显示:0.5A电压表显示:10V根据基尔霍夫定律,可以得到以下两个方程:方程1:I1=I2+I3方程2:U=U1+U2+U3其中I1为从电源流出的电流(0.5A),I2为通过变阻器的电流,I3为通过电阻器的电流。
U为电源的电压(10V),U1为电源电动势,U2为变阻器的电压,U3为电阻器的电压。
六、实验讨论和结论通过实验数据和基尔霍夫定律的运用,可以得到以下结论:1.根据方程1,可以得出I2+I3=0.5A,即变阻器和电阻器的电流之和等于电源电流。
2.根据方程2,可以得出U=U1+U2+U3,即电源电压等于变阻器和电阻器的电压之和。
3.实验数据和计算结果相符,验证了基尔霍夫定律在电路分析中的准确性。
综上所述,通过实验验证了基尔霍夫定律的正确性,并掌握了其在电路分析中的应用。
基尔霍夫定律的验证实验报告基尔霍夫定律是电路分析中的重要定律,它描述了电路中电流和电压的关系。
本实验旨在通过实际测量和数据分析,验证基尔霍夫定律的准确性和可靠性。
实验一,串联电路中的基尔霍夫定律验证。
首先,我们搭建了一个简单的串联电路,包括一个电源、两个电阻和一个电流表。
通过测量电源电压、电阻值和电流表的读数,我们得到了实验数据。
根据基尔霍夫定律,串联电路中各个电阻两端的电压之和应该等于电源的电压。
经过计算和对比,实验数据与基尔霍夫定律的预期结果非常吻合,验证了基尔霍夫定律在串联电路中的准确性。
实验二,并联电路中的基尔霍夫定律验证。
接着,我们搭建了一个并联电路,同样包括一个电源、两个电阻和一个电流表。
通过测量电源电压、电阻值和电流表的读数,我们得到了实验数据。
根据基尔霍夫定律,并联电路中各个支路的电流之和应该等于电源的电流。
经过计算和对比,实验数据也与基尔霍夫定律的预期结果高度吻合,验证了基尔霍夫定律在并联电路中的准确性。
实验三,复杂电路中的基尔霍夫定律验证。
最后,我们搭建了一个复杂的电路,包括串联和并联的组合。
通过测量各个支路的电压和电流,我们得到了实验数据。
根据基尔霍夫定律,复杂电路中各个支路的电压和电流应该满足一系列的方程。
经过计算和对比,实验数据再次与基尔霍夫定律的预期结果完美吻合,验证了基尔霍夫定律在复杂电路中的准确性和适用性。
结论。
通过以上实验,我们验证了基尔霍夫定律在不同类型电路中的准确性和可靠性。
无论是串联电路、并联电路还是复杂电路,实验数据都与基尔霍夫定律的预期结果高度吻合,证明了基尔霍夫定律在电路分析中的重要作用。
因此,我们可以相信基尔霍夫定律是一条普适的规律,能够准确描述电路中电流和电压的关系,为电路分析和设计提供了重要的理论基础。
基尔霍夫定律的验证实验为我们深入理解电路行为和解决实际问题提供了重要的参考依据。
基尔霍夫定律的验证的实验报告实验报告:基尔霍夫定律的验证实验目的:验证基尔霍夫定律,即“电流在节点汇聚时,电流的代数和为零;电压在回路中闭合时,电压的代数和为零”。
实验器材:1.电源2.电阻器3.连线4.摇摆开关5.电流表6.电压表7.多用表实验原理:1. 基尔霍夫第一定律(又称为电流定律):在一个网络中,进入节点的电流等于离开该节点的电流之和。
这个定律的数学公式可以表示为:ΣIin = ΣIout。
2.基尔霍夫第二定律(又称为电压定律):在闭合网络中,电源供给的电压等于电阻器消耗的电压。
这个定律的数学公式可以表示为:ΣV=0。
实验步骤:1.将电源接入电路,并连接电阻器形成一个简单的电路。
2.使用多用表将电压表和电流表选为电压测量模式和电流测量模式。
3.使用摇摆开关控制电路的通断,确保电路处于开启状态。
4.使用电流表测量电路中的电流,并记录下测量值。
5.使用电压表测量电路中的电压值,并记录下测量值。
6.对电路进行分析,应用基尔霍夫定律来验证实验结果。
-验证基尔霍夫第一定律:选择一个节点,将所有进入该节点的电流与所有离开该节点的电流进行比较,如果两者相等,则基尔霍夫第一定律成立。
-验证基尔霍夫第二定律:选择一条回路,在该回路上记录下所有电压值,然后将这些电压值相加,如果结果为零,则基尔霍夫第二定律成立。
7.分别通过计算和实验结果比较,验证基尔霍夫定律的成立与准确性。
实验结果和讨论:在实验中,我们按照以上步骤进行了电流和电压的测量,并记录了测量结果。
然后,我们通过基尔霍夫定律进行验证。
首先,我们验证了基尔霍夫第一定律。
在电路中选取了一个节点,测量了进入和离开该节点的电流。
通过对测量值的比较,我们发现进入和离开节点的电流之和相等,验证了基尔霍夫第一定律的成立。
接着,我们验证了基尔霍夫第二定律。
选择了一个回路,并测量了回路上各个电压值。
通过将这些电压值相加,得出的结果非常接近于零,从而验证了基尔霍夫第二定律的成立。
基尔霍夫定律验证实验报告引言:基尔霍夫定律是电路分析中的重要定律之一,它是由德国物理学家基尔霍夫于19世纪提出的。
基尔霍夫定律是对电流和电压的守恒关系的描述,它为我们理解和分析复杂电路提供了重要的工具。
本实验通过验证基尔霍夫定律来加深对电路中电流和电压分布的理解。
实验目的:本实验的主要目的是通过实验证明基尔霍夫定律的正确性,具体实验内容如下:实验一:串联电路中电流的分布通过搭建简单的串联电路,测量不同位置的电流大小,并验证基尔霍夫定律中的电流守恒原理。
首先,我们需要准备好所需的实验器材,包括电源、电阻器、导线等。
然后,按照实验指导书上的要求,搭建好串联电路,并连接好电流表。
在电路搭建完成后,逐个测量不同位置的电流值,并记录下来。
最后,将测得的电流值进行比较,验证基尔霍夫定律中电流守恒的原理。
实验二:并联电路中电压的分布通过搭建简单的并联电路,测量不同位置的电压大小,并验证基尔霍夫定律中的电压守恒原理。
同样地,我们需要准备好实验所需的器材,并按照实验指导书上的要求搭建好并联电路。
在电路搭建完成后,逐个测量不同位置的电压值,并记录下来。
最后,将测得的电压值进行比较,验证基尔霍夫定律中电压守恒的原理。
实验结果与分析:根据实验测量所得的数据,我们可以得出以下结论:1. 在串联电路中,电路中的电流在各个电阻器中是相等的,符合基尔霍夫定律中的电流守恒原理;2. 在并联电路中,电路中的电压在各个支路中是相等的,符合基尔霍夫定律中的电压守恒原理。
结论:通过本实验的验证,我们成功地验证了基尔霍夫定律的正确性。
基尔霍夫定律对于我们理解和分析电路中的电流和电压分布起到了重要的作用。
在实际应用中,我们可以根据基尔霍夫定律来设计和优化电路,使电路的性能得到提升。
实验的局限性:本实验仅仅是通过搭建简单的电路来验证基尔霍夫定律,对于复杂电路的分析还需要进一步的学习和实践。
此外,实验中使用的电阻器和电流表等仪器也存在一定的误差,可能会对实验结果产生一定的影响。
电路实验指导书叠加定理和基尔霍夫定律的验证电路实验叠加定理和基尔霍夫定律的验证⼀、实验⽬的1.加深对叠加定理和基尔霍夫定律的理解,并通过实验进⾏验证。
2.学会⽤电流插头、插座测量各⽀路电流的⽅法。
3.学会⾼级电⼯电⼦实验台上直流电⼯仪表的正确使⽤⽅法。
⼆、实验原理1.基尔霍夫定律(1)电流、电压的参考⽅向对电路进⾏分析,最基本的要求就是求解电路中各元件上的电流和电压,⽽其参考⽅向的选择与确定是⾸要的问题之⼀。
电流、电压的参考⽅向是⼀种假设⽅向,可以任意选定⼀个⽅向作为参考⽅向,电路中的电流和电压的参考⽅向可能与实际⽅向⼀致或者相反,但不论属于哪⼀种情况,都不会影响电路分析的正确性。
应注意在未标明参考⽅向的前提下,讨论电流或电压的正负值是没有意义的。
当电流、电压参考⽅向⼀致时,称为关联的参考⽅向。
否则为⾮关联参考⽅向。
(2)基尔霍夫电流定律(KCL)基尔霍夫电流定律应⽤于结点,它是⽤来确定连接在同⼀结点上各⽀路电流之间关系的,缩写为KCL。
KCL是电流连续性原理在电路中的体现。
对电路中任何⼀个结点,任⼀瞬时流⼊某⼀结点的电流之和等于流出该结点的电流之和。
KCL也适⽤于任意假想的闭合曲⾯。
(3)基尔霍夫电压定律(KVL)基尔霍夫电压定律应⽤于回路,它描述了回路中各段电压间的相互关系,缩写为KVL。
KVL 是能量守恒定律的体现。
从回路中任⼀点出发,沿回路循⾏⼀周,电位降之和必然等于电位升之和。
KVL也适⽤于电路中的假想回路。
2.叠加定理叠加定理可描述为:在线性电路中,如果有多个独⽴电源同时作⽤时,它们在任意⽀路中产⽣的电流(或电压)等于各个独⽴电源分别单独作⽤时在该⽀路中产⽣电流(或电压)的代数和。
电源单独作⽤是指:电路中某⼀电源起作⽤,⽽其他电源不作⽤。
不作⽤电源的具体处理⽅法如下:理想电压源短路,理想电流源开路。
本实验⽤直流稳压电源来模拟理想电压源(内阻可认为是零),所以去掉某电压源时,直接⽤短路线代替即可。
南昌大学电工学实验报告 学生姓名: 王学瑞 学号 5503211061 专业班级: 本硕111班 实验时间: 16 时 00 分 第 三 周 星期 二 指导老师: 郑朝丹 成绩:
基尔霍夫定律和叠加原理的验证 实验目的: 1.验证基尔霍夫定的正确性,加深对基尔霍夫定律的理解。 2.验证线性电路中叠加原理的正确性及其适用范围,加深对线性电路的叠加性和齐次性的认识和理解。 3.进一步掌握仪器仪表的使用方法。
实验原理: 1.基尔霍夫定律 基尔霍夫定律是电路的基本定律。它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。 (1)基尔霍夫电流定律(KCL) 在电路中,对任一结点,各支路电流的代数和恒等于零,即ΣI=0。 (2)基尔霍夫电压定律(KVL) 在电路中,对任一回路,所有支路电压的代数和恒等于零,即ΣU=0。 基尔霍夫定律表达式中的电流和电压都是代数量,运用时,必须预先任意假定电流和电压的参考方向。当电流和电压的实际方向与参考方向相同时,取值为正;相反时,取值为负。基尔霍夫定律与各支路元件的性质无关,无论是线性的或非线性的电路,还是含源的或无源的电路,它都是普遍适用的。 2.叠加原理 在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个 南昌大学电工学实验报告 学生姓名: 王学瑞 学号 5503211061 专业班级: 本硕111班 实验时间: 16 时 00 分 第 三 周 星期 二 指导老师: 郑朝丹 成绩:
独立电源单独作用时在该支路中所产生的电流或电压的代数和。某独立源单独作用时,其它独立源均需置零。(电压源用短路代替,电流源用开路代替。) 线性电路的齐次性(又称比例性),是指当激励信号(某独立源的值)增加或减小K倍时,电路的响应(即在电路其它各电阻元件上所产生的电流和电压值)也将增加或减小K倍。
实验设备与器件: 1.基尔霍夫定律电路板 1 块; 导线 若干 2.直流稳压电源两路 3.直流数字电压表,电流表 4.万用表
实验内容: 1.基尔霍夫定律实验
(1)实验前,可任意假定三条支路电流的参考方向及三个闭合回路的绕行方 图2-1 基尔霍夫定律实验接线RRII
126v UUmAmA
mA
I
RR
R
5105103305101kA B
C D
E
F 南昌大学电工学实验报告 学生姓名: 王学瑞 学号 5503211061 专业班级: 本硕111班 实验时间: 16 时 00 分 第 三 周 星期 二 指导老师: 郑朝丹 成绩:
向。图2-1中的电流I1、I2、I3的方向已设定,三个闭合回路的绕行方向可设为ADEFA、BADCB和FBCEF。 (2)分别将两路直流稳压电源接入电路,令U1=6V,U2=12V。 (3)将电路实验箱上的直流数字毫安表分别接入三条支路中,测量支路电流, 数据记入表2-1。此时应注意毫安表的极性应与电流的假定方向一致。 (4)用直流数字电压表分别测量两路电源及电阻元件上的电压值,数据记 入表2-1。
表2-1 基尔霍夫定律实验数据 被测量 I1(mA) I2(mA) I3(mA) U1(V) U2(V) UFA(V) UAB(V) UAD(V) UCD(V) UDE(V) 计算值 7.444 1.198 8.642 12.04 6.00 3.797 -1.198 4.407 -0.495 3.797 测量值 6.503 1.491 7.985 10.91 6.166 3.476 -1.566 4.094 -0.506 3.340 相对误差 12.6% 19.7% 7.6% 9.3% 2.7% 8.0% 16.5% 7.6% 2.7% 12.0%
2.叠加原理实验 (1)线性电阻电路 按图2-2接线,此时开关K投向R5(330Ω)侧。
图3.42. 图2-2 叠加原理实验接线图
R2 R1 I2 I1
126v U1 U2 mAmA
mA
I3
R4 R3 510Ω 510Ω 510Ω 1kΩ
A B
C D
E
F R5 330Ω
IN4007 K 南昌大学电工学实验报告 学生姓名: 王学瑞 学号 5503211061 专业班级: 本硕111班 实验时间: 16 时 00 分 第 三 周 星期 二 指导老师: 郑朝丹 成绩:
①分别将两路直流稳压电源接入电路,令U1=12V,U2=6V。 ②令电源U1单独作用, BC短接,用毫安表和电压表分别测量各支路电流 及各电阻元件两端电压,数据记入表2-2。
表2-2 叠加原理实验数据(线性电阻电路) 测量项目 实验内容 U1 (V) U2 (V) I1 (mA) I2 (mA) I3 (mA) UAB (V) UCD (V) UAD (V) UDE (V) UF A
(V)
U1单独作用 12.09 0 7.928 -2.165 5.767 2.221 0.707 2.914 4.381 4.391
U2单独作用 0 6.01
-1.142 3.544 2.403 -3.670 -1.16
0 1.234 -0.591 -0.621
③令U2单独作用,此时FE短接。重复实验步骤②的测量,数据记入表2-2。 ④令U1和U2共同作用,重复上述测量,数据记入表2-2。 ⑤取U2=12V,重复步骤③的测量,数据记入表2-2。 (2)非线性电阻电路 按图2-2接线,此时开关K投向二极管IN4007侧。重复上述步骤①~⑤的测量过程,数据记入表2-3。 南昌大学电工学实验报告 学生姓名: 王学瑞 学号 5503211061 专业班级: 本硕111班 实验时间: 16 时 00 分 第 三 周 星期 二 指导老师: 郑朝丹 成绩: 表 2-3 叠加原理实验数据(非线性电阻电路)
测量项目 实验内容 U1 (V) U2 (V) I1 (mA) I2 (mA) I3 (mA) UAB (V) UCD (V) UAD (V) UDE (V) UF A
(V)
U1单独作用 12.01 0 8.341 -2.364 6.014 2.471 0.639 3.105 4.315 4.394
U2单独作用 0 6.01 0 0 0 0 -6.087 0 0 0
U1、U2共同作用 12.10 6.01 7.686 0 7.669 0 -2.480 3.540 4.202 4.243
注意事项: 1. 实验注意事项 (1)需要测量的电压值,均以电压表测量的读数为准。 U1、U2也需测量,不应取电源本身的显示值。 (2)防止稳压电源两个输出端碰线短路。 (3)用指针式电压表或电流表测量电压或电流时,如果仪表指针反偏,则必须调换仪表极性,重新测量。此时指针正偏,可读得电压或电流值。若用数显电压表或电流表测量,则可直接读出电压或电流值。但应注意:所读得的电压或电流值的正确正、负号应根据设定的电流参考方向来判断。 (4)仪表量程的应及时更换。
思考题: (3)实验电路中,若有一个电阻器改为二极管,试问叠加原理的叠加性与齐次性还成立吗?为什么? 答: 电阻改为二极管后,叠加原理不成立。因为二极管是非线性元件,含有二极管的非线性电路,不符合叠加性和齐次性。 南昌大学电工学实验报告 学生姓名: 王学瑞 学号 5503211061 专业班级: 本硕111班 实验时间: 16 时 00 分 第 三 周 星期 二 指导老师: 郑朝丹 成绩: 数据处理:
1. 根据实验数据,选定实验电路图2.1中的结点A,验证KCL的正确性。 答:依据表2-1中实验测量数据,选定结点A,取流出结点的电流为正。通过计算验证KCL的正确性。 I1 = 6.503 mA I2 = 1.491mA I3 = 7.985mA 即 6.503+1.491-7.985=0.009≈0 结论: I3I1 I2 = 0 , 证明基尔霍夫电流定律是正确的。 2. 根据实验数据,选定实验电路图2.1中任一闭合回路,验证KVL的正确性。 答:依据表2-1中实验测量数据,选定闭合回路ADEFA,取逆时针方向为回路的绕行方向电压降为正。通过计算验证KVL的正确性。 UAD = 4.094 V UDE = 3.340 V UFA= 3.476V U1= 10.98V 10.98-4.094-3.340-3.476=0.07≈0
结论:1DEADAF0UUUU , 证明基尔霍夫电压定律是正确的。 同理,其它结点和闭合回路的电流和电压,也可类似计算验证。电压表和电流表的测量数据有一定的误差,都在可允许的误差范围内。