高中数学高一(上册)复习资料全
- 格式:doc
- 大小:897.50 KB
- 文档页数:13
高一数学上册全单元知识点一、函数与导数1. 函数与映射- 函数的定义与性质- 映射的概念与表示2. 函数的表示与性质- 函数的图像与坐标系- 奇偶函数与周期函数- 函数的单调性与最值3. 函数的运算- 函数的四则运算与复合运算- 函数的反函数与恒等函数- 函数的映射关系与可逆性4. 导数与函数的变化率- 函数的导数定义与几何意义- 导数的性质与计算方法- 函数的单调区间与极值点5. 初等函数与导数- 幂函数与指数函数的导数- 三角函数与反三角函数的导数- 对数函数与常数函数的导数二、二次函数与一元二次方程1. 二次函数的图像特征- 二次函数的标准形式与顶点形式- 二次函数图像的平移与伸缩- 二次函数图像的对称性与特殊情况2. 二次函数与一元二次方程- 二次函数与一元二次方程的关系- 一元二次方程的根与因式分解- 一元二次方程的解的判别式与求解方法3. 二次函数与一元二次不等式- 二次函数与一元二次不等式的关系- 一元二次不等式的解与解集表示- 一元二次不等式的图像与应用三、平面向量与解析几何1. 平面向量的概念与运算- 平面向量的定义与性质- 平面向量的数量积与向量投影- 平面向量的线性运算与共线性判定2. 解析几何的基本概念- 点、直线和平面的坐标表示- 直线和平面的位置关系与垂直判定- 点到直线的距离与角平分线的性质3. 直线与圆的方程- 直线的斜截式、截距式与一般式- 圆的标准方程与一般方程- 直线与圆的位置关系与交点计算4. 空间向量与空间解析几何- 空间向量的概念与坐标表示- 空间向量的数量积与向量投影- 空间点、直线和平面的方程与位置关系四、三角函数与解三角形1. 三角函数的基本概念与性质- 弧度制与角度制的换算- 三角函数的定义与性质- 三角恒等式的推导与应用2. 三角函数的图像与变换- 三角函数图像的周期与轴对称性- 三角函数的平移、挤压与反转变换- 三角函数图像的合成与拆分3. 三角函数的应用- 幅角的求解与解的表示- 三角函数在周期内的性质与应用- 三角函数与三角方程的关系4. 解三角形的基本原理与方法- 根据已知条件解三角形- 利用解三角形求解实际问题- 解三角形的特殊情况与应用五、概率统计与排列组合1. 概率与事件- 概率的基本概念与性质- 事件的概念与运算- 事件的概率计算与应用2. 随机变量与概率分布- 随机变量的概念与分类- 概率分布的概念与性质- 随机变量的数学期望与方差3. 排列与组合的基本概念- 排列与组合的定义与计算公式- 二项式定理的推导与应用- 排列组合在实际问题中的应用4. 统计与抽样调查- 统计数据的搜集与整理- 抽样调查的基本方法与误差分析- 统计图表的制作与分析。
高一上学期数学详细知识点一、代数与函数1. 数与式- 自然数、整数、有理数、实数、复数的概念及性质;- 代数式概念、相等与恒等、同类项与合并、合并与提取公因式。
2. 一次函数与二次函数- 一次函数的定义、图像、性质及其应用;- 二次函数的定义、图像、极值、性质及其应用。
3. 指数与对数函数- 指数函数的定义、图像、性质及其应用;- 对数函数的定义、图像、性质及其应用。
二、平面几何与向量1. 图形的基本概念- 点、线、面的定义及性质;- 直线、射线、线段的定义及性质;- 角的定义、角平分线、垂直角、同位角。
2. 直线与圆- 相交直线的性质、垂直与平行、角平分线; - 圆的定义、圆心角、弧、弦、切线的性质; - 切线定理及其应用。
3. 向量的基本概念- 向量的定义、模、方向及性质;- 向量的表示、共线与平行、运算法则。
三、立体几何1. 空间几何基本概念- 空间图形的种类及其特点;- 空间几何图形的投影及性质。
2. 空间直线与平面- 面的性质、平面的位置关系;- 直线与面的位置关系、直线与平面的交线; - 平面与平面的位置关系及其交线。
3. 空间向量- 空间向量的概念及运算;- 平面向量与空间向量的关系。
四、数列与数学归纳法1. 数列的概念与性质- 数列的定义及基本性质;- 等差数列与等比数列的定义与性质。
2. 数列的求和与通项公式- 数列的求和公式及其应用;- 等差数列与等比数列的通项公式及其应用。
3. 数学归纳法- 数学归纳法的原理及应用。
五、概率与统计1. 概率的基本概念- 随机试验的基本概念及其性质;- 事件、样本空间、概率的定义。
2. 概率计算- 古典概型与几何概型;- 概率计算的方法与公式。
3. 统计图表与统计量- 统计图表的绘制与分析;- 数据的统计量、均值、中位数、众数。
六、三角函数1. 弧度制及三角函数的定义- 弧度制与角度制的转换;- 正弦、余弦、正切函数的定义。
2. 三角函数的性质与图像- 三角函数的性质及其应用;- 三角函数图像的特点及变换。
新人教版高中数学知识点总结 高中数学必修1知识点第一章集合与函数概念(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法表示自然数集,*或表示正整数集,表示整数集,表示有理数集,表示实数集.(3)集合与元素间的关系对象与集合的关系是,或者,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().(6)子集、真子集、集合相等名称记号意义性质示意图子集(或)AB⊇A中的任一元素都属于B(1)A⊆A(2)A∅⊆(3)若BA⊆且B C⊆,则A C⊆(4)若BA⊆且B A⊆,则A B=A(B)或B A N N N+Z QRa M a M∈a M∉x x x∅真子集A ≠⊂B(或B ≠⊃A)B A ⊆,且B中至少有一元素不属于A (1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C≠⊂集合相等A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆A (7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.(8)交集、并集、补集名称记号意义性质示意图交集{|,x x A ∈且}x B ∈(1)A A A= (2)A ∅=∅ (3)A B A ⊆ 并集{|,x x A ∈或}x B ∈(1)A A A= (2)A A ∅= (3)A B A ⊇ 补集(1)∅=⋂A C AU (2)UA C AU =⋃【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x x a <-或}x a >A (1)n n ≥2n 21n -21n -22n -把ax b +看成一个整体,化成||x a <,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法〖〗函数及其表示(1)函数的概念①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法A B f A x B ()f x A B A B f A B :f A B →①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.注意:对于集合与区间,前者可以大于或等于,而后者必须.(3)求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数.②是分式函数时,定义域是使分母不为零的一切实数.③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数大于零且不等于1.⑤中,.⑥零(负)指数幂的底数不能为零.⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.,a b a b <a x b ≤≤x [,]a b a x b <<x (,)a b a x b ≤<a x b <≤x [,)a b (,]a b ,,,x a x a x b x b ≥>≤<x [,),(,),(,],(,)a a b b +∞+∞-∞-∞{|}x a x b <<(,)a b a b a b <()f x ()f x ()f x tan y x =()2x k k Z ππ≠+∈()f x ()f x [,]a b [()]f g x ()a g x b ≤≤(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念()y f x =y x 2()()()0a y x b y x c y ++=()0a y ≠,x y 2()4()()0b y a y c y ∆=-⋅≥①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.〖〗函数的基本性质(1)函数的单调性①定义及判定方法函数的性质定义图象判定方法如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在这个区间上是增函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增)(4)利用复合函数函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在这个区间上是减函数.(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.A B f A B A B A B f A B :f A B →A B ,a A b B ∈∈a b b a a byxo③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.(2)打“√”函数的图象与性质分别在、上为增函数,分别在、上为减函数.(3)最大(小)值定义①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最大值,记作.②一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;(2)存在,使得.那么,我们称是函数的最小值,记作.(4)函数的奇偶性①定义及判定方法函数的性质定义图象判定方法[()]y f g x =()u g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()y f u =()u g x =[()]y f g x =()(0)af x x ax=+>()fx (,-∞)+∞[()y f x =I M x I ∈()f x M ≤0x I ∈0()f x M =M ()f x max ()f x M =()y f x =I m x I ∈()f x m ≥0x I ∈0()f x m =m ()f x max ()f x m =如果对于函数f(x)定义域内任意一个x ,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(-x)=f(x),那么函数f(x)叫做偶函数.(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称)②若函数为奇函数,且在处有定义,则.③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换②伸缩变换③对称变换(2)识图()f x 0x =(0)0f =y y对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图第二章基本初等函数(Ⅰ)〖〗指数函数(1)根式的概念①如果,且,那么叫做的次方根.当是奇数时,的是偶数时,正数的正的次方次方根用符号的次方根是0;负数没有次方根.叫做根指数,叫做被开方数.当为奇数时,为任意实数;当为偶数时,.③根式的性质:;当;当为偶数时,.(2)分数指数幂的概念①正数的正分数指数幂的意义是:且.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:且.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①,,,1n x a a R x R n =∈∈>n N+∈x a n n a n n a n nn a n n a n a n 0a ≥n a =n a =n (0)|| (0) a a a a a ≥⎧==⎨-<⎩0,,,m na a m n N +=>∈1)n >1(0,,,mm n n aa m n N a -+==>∈1)n >(0,,)r s r s a a a a r s R +⋅=>∈②③(4)指数函数〖〗对数函数(1)对数的定义①若,则叫做以为底的对数,记作,其中叫做底数,叫做真数.②负数和零没有对数.③对数式与指数式的互化:.(2)几个重要的对数恒等式,,.()(0,,)r s rs a a a r s R =>∈()(0,0,)r r r ab a b a b r R =>>∈(0,1)x a N a a =>≠且x a N log a x N =a N log (0,1,0)x a x N a N a a N =⇔=>≠>log 10a =log 1a a =log b a a b =(3)常用对数与自然对数常用对数:,即;自然对数:,即(其中…).(4)对数的运算性质如果,那么①加法:②减法:③数乘:④⑤⑥换底公式:(5)对数函数(6)反函数的概念lg N 10log N ln N log e N 2.71828e =0,1,0,0a a M N >≠>>log log log ()a a a M N MN +=log log log a a a MM N N-=log log ()n a a n M M n R =∈log a N a N =log log (0,)b n a a nM M b n R b =≠∈log log (0,1)log b a b N N b b a=>≠且设函数的定义域为,值域为,从式子中解出,得式子.如果对于在中的任何一个值,通过式子,在中都有唯一确定的值和它对应,那么式子表示是的函数,函数叫做函数的反函数,记作,习惯上改写成.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式中反解出;③将改写成,并注明反函数的定义域.(8)反函数的性质①原函数与反函数的图象关于直线对称.②函数的定义域、值域分别是其反函数的值域、定义域.③若在原函数的图象上,则在反函数的图象上.④一般地,函数要有反函数则它必须为单调函数.〖〗幂函数(1)幂函数的定义一般地,函数叫做幂函数,其中为自变量,是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于轴对称);是奇函数时,图象分()y f x =A C ()y f x =x ()x y ϕ=y C ()x y ϕ=x A ()x y ϕ=x y ()x y ϕ=()y f x =1()x f y -=1()y f x -=()y f x =1()x f y -=1()x f y -=1()y f x -=()y f x =1()y f x -=y x =()y f x =1()y f x -=(,)P a b ()y f x ='(,)P b a 1()y f x -=()y f x =y x α=x αy布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在都有定义,并且图象都通过点.③单调性:如果,则幂函数的图象过原点,并且在上为增函数.如果,则幂函数的图象在上为减函数,在第一象限内,图象无限接近轴与轴.④奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函数.当(其中互质,和),若为奇数为奇数时,则是奇函数,若为奇数为偶数时,则是偶函数,若为偶数为奇数时,则是非奇非偶函数.⑤图象特征:幂函数,当时,若,其图象在直线下方,若,其图象在直线上方,当时,若,其图象在直线上方,若,其图象在直线下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:②顶点式:③两根式:(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.(0,)+∞(1,1)0α>[0,)+∞0α<(0,)+∞x y ααqpα=,p q p q Z ∈p q qp y x =p q qp y x =p q q py x =,(0,)y x x α=∈+∞1α>01x <<y x =1x >y x =1α<01x <<y x =1x >y x =2()(0)f x ax bx c a =++≠2()()(0)f x a x h k a =-+≠12()()()(0)f x a x x x x a =--≠③若已知抛物线与轴有两个交点,且横线坐标已知时,选用两根式求更方便.(3)二次函数图象的性质①二次函数的图象是一条抛物线,对称轴方程为顶点坐标是.②当时,抛物线开口向上,函数在上递减,在上递增,当时,;当时,抛物线开口向下,函数在上递增,在上递减,当时,.③二次函数当时,图象与轴有两个交点(4)一元二次方程根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程的两实根为,且.令,从以下四个方面来分析此类问题:①开口方向:②对称轴位置:③判别式:④端点函数值符号.①k<x 1≤x 2x ()f x 2()(0)f x ax bx c a =++≠,2bx a=-24(,24b ac b a a--0a >(,2ba-∞-[,)2b a -+∞2b x a=-2min 4()4ac b f x a -=0a <(,]2ba -∞-[,)2b a -+∞2bx a=-2max 4()4ac b f x a -=2()(0)f x ax bx c a =++≠240b ac ∆=->x 11221212(,0),(,0),||||M x M x MM x x =-20(0)ax bx c a ++=≠20(0)ax bx c a ++=≠12,x x 12x x ≤2()f x ax bx c =++a 2bx a=-∆⇔②x1≤x2<k③x1<k<x2af(k)<0④k1<x1≤x2<k2⑤有且仅有一个根x1(或x2)满足k1<x1(或x2)<k2f(k1)f(k2)0,并同时考虑f(k1)=0或f(k2)=0这两种情况是否也符合⑥k1<x1<k2≤p1<x2<p2此结论可直接由⑤推出.(5)二次函数在闭区间上的最值设在区间上的最大值为,最小值为,令.(Ⅰ)当时(开口向上)①若,则②若,则③若,则x叫做函数))((Dxxfy∈=的零点。
高一上数学知识点全总结一、集合与函数1. 集合的概念与表示方法1.1 集合的定义1.2 集合的元素1.3 集合的表示方法:枚举法、描述法、扩展法2. 集合的运算与关系2.1 并集、交集与差集的定义及性质2.2 子集、真子集与集合相等的概念2.3 集合的运算律和运算性质3. 函数的概念与表示方法3.1 函数的定义3.2 函数的图像与函数的性质3.3 函数关系的表示方法:映射、集合对、秩序对4. 函数的基本性质4.1 定义域、值域和对应变量的概念4.2 奇函数与偶函数的定义与性质4.3 单调性、奇偶性与周期性的判定方法二、数列与等差数列1. 数列的概念与表示方法1.1 数列的定义与性质1.2 数列的通项公式1.3 数列的前n项和2. 等差数列的性质与公式2.1 等差数列的定义与性质2.2 等差数列的通项公式与前n项和公式2.3 特殊的等差数列:等差数列的倒数列、等差数列的相乘列3. 等差数列的应用3.1 等差中数的性质与定理3.2 等差数列求和问题3.3 等差数列在实际问题中的应用:等时速度问题、等温度变化问题三、平面几何图形的性质与计算1. 点、线、面和体的概念1.1 点的概念与性质1.2 线的概念与性质1.3 面的概念与性质1.4 体的概念与性质2. 三角形的性质与计算2.1 三角形的定义与性质2.2 三角形的内角和与外角性质2.3 三角形的周长与面积的计算公式2.4 特殊的三角形:等边三角形、等腰三角形3. 直角三角形与勾股定理3.1 直角三角形的概念与性质3.2 勾股定理的表述与证明3.3 勾股定理的应用:求三角形的边长与判断三角形类型四、直线方程与坐标系1. 直线的方程1.1 斜率与直线的关系1.2 直线的点斜式与斜截式方程1.3 直线的一般式方程与截距式方程2. 坐标系及其应用2.1 直角坐标系与平面直角坐标系2.2 点的坐标与位置关系的判定2.3 两点间的距离与点到直线的距离3. 直线的倾斜角及其性质3.1 直线的倾斜角定义及计算方法3.2 直线平行与垂直的判定方法3.3 直线的夹角、交角以及相关性质五、解析几何与向量1. 向量的概念与表示方法1.1 向量的定义与性质1.2 向量的表示方法:坐标表示、数量表示、矢量表示2. 向量的运算2.1 向量的加法与减法2.2 向量的数量乘法与数量除法2.3 向量的数量积与向量积3. 空间几何与平面几何3.1 平面与直线的关系与性质3.2 平面与平面的关系与性质3.3 三角形、四边形及其它多边形的性质与计算总结:高一上学期的数学知识点包括集合与函数、数列与等差数列、平面几何图形的性质与计算、直线方程与坐标系以及解析几何与向量等内容。
高中数学高一上册知识点一、知识概述《集合》①基本定义:集合就像是把一些东西放在一起组成的一个“大口袋”,这些东西都是确定的、互不相同的。
比如,一个班级里的所有学生可以看作是一个集合。
②重要程度:集合在高中数学里是基础的基础。
很多概念和知识点都会用到集合的思想,是后续学习函数等知识的重要工具。
③前置知识:没什么特别的前置知识,只要有基本的分类意识就好。
④应用价值:在生活中可以用集合来分类东西,像超市里把食品分类摆放。
在数学里,确定函数的定义域、值域等都和集合有关。
二、知识体系①知识图谱:集合在高一数学上册算是开篇的重要知识,很多后面的章节都是建立在集合概念基础上的。
②关联知识:和函数、不等式等知识都有很强的联系。
比如函数的定义域和值域就是集合。
③重难点分析:- 掌握难度:对于刚上高中的学生来说,理解集合的概念和表示方法算是比较容易入门的。
但是,使用描述法表示集合和理解集合间的关系有点难。
- 关键点:要清楚集合元素的确定性、互异性和无序性。
④考点分析:- 在考试中的重要性:非常重要,经常出现在选择题、填空题的开头部分。
- 考查方式:考查集合的表示,集合间的关系(包含、真包含、相等),集合的运算(交集、并集、补集)。
三、详细讲解【理论概念类】①概念辨析:- 集合里的元素必须是确定的,不能模棱两可。
比如说“比较高的人”就不能构成集合,因为多高算高没有确定的标准。
还有元素是互异的,一个集合里不能有两个一模一样的东西。
比如{1, 2, 2}这种就不对,应该写成{1, 2}。
②特征分析:- 确定性:就像门有个明确的开关标准,元素是不是在集合里是明确的。
- 互异性:就像每个人都是独一无二的,集合里的元素不能重复。
- 无序性:集合里的元素没有先后顺序,{1, 2}和{2, 1}是同一个集合。
③分类说明:- 按照元素个数分,有限集像班级学生的集合,元素个数能数得过来;无限集像所有正整数的集合,元素个数是无限的。
按照元素类型分,可以是数集,像{1, 2, 3};也可以是点集,比如{(1,2), (3,4)}在平面直角坐标系里就是两个点组成的集合。
高一数学上册期末复习资料高一数学上册期末复习资料数学是一门既抽象又具体的学科,它是一门帮助我们理解世界的语言。
高一数学上册是我们初步接触高中数学的重要一步,对于我们的学习和发展具有重要的意义。
为了帮助大家更好地复习和掌握高一数学上册的知识,我整理了一些复习资料,希望对大家有所帮助。
一、函数与方程1. 函数的概念与性质函数是数学中一个非常重要的概念,它描述了两个变量之间的关系。
在高一数学上册中,我们学习了函数的定义、定义域、值域、图像等基本概念。
同时,还学习了一次函数、二次函数、指数函数、对数函数等常见函数的性质和图像特征。
在复习过程中,我们可以通过绘制函数图像、解决函数相关的实际问题来加深对函数的理解和掌握。
2. 方程与不等式方程与不等式是数学中常见的问题解决方法。
在高一数学上册中,我们学习了一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等基本类型的方程与不等式。
在复习过程中,我们可以通过解决一些实际问题,加深对方程与不等式的理解和应用能力。
二、数列与数学归纳法1. 等差数列与等比数列数列是由一系列数字按照一定规律排列而成的。
在高一数学上册中,我们学习了等差数列和等比数列的概念、通项公式、前n项和等基本知识。
在复习过程中,我们可以通过求解一些实际问题,加深对数列的理解和应用能力。
2. 数学归纳法数学归纳法是解决数学问题的一种常用方法。
在高一数学上册中,我们学习了数学归纳法的基本原理和应用技巧。
在复习过程中,我们可以通过练习一些数学归纳法相关的题目,加深对数学归纳法的理解和应用能力。
三、几何与三角函数1. 几何基本概念在高一数学上册中,我们学习了点、线、面等几何基本概念,以及相关的性质和定理。
在复习过程中,我们可以通过解决一些几何问题,加深对几何基本概念的理解和应用能力。
2. 三角函数三角函数是数学中一个重要的分支,它描述了角度与边长之间的关系。
在高一数学上册中,我们学习了正弦函数、余弦函数、正切函数等基本三角函数的概念、性质和图像特征。
高一上学期数学重点知识点复习一、函数与方程1.函数的概念与表示方法:自变量、因变量、定义域、值域、图像等。
2.函数的基本性质:奇偶性、周期性、单调性、最值等。
3.常见函数的图像特征:线性函数、二次函数、指数函数、对数函数等。
4.函数的运算:加减乘除、复合函数、反函数等。
5.一次方程与一次不等式的解法。
6.二次方程及其解的求法:配方法、因式分解、公式法等。
7.二次函数与二次方程的关系:顶点坐标、轴对称性等。
二、集合与运算1.集合的表示方法:枚举法、描述法、图示法等。
2.集合的基本运算:并集、交集、差集、补集等。
3.集合的运算规律:交换律、结合律、分配律等。
4.集合的关系:包含关系、相等关系、互不相交关系等。
5.数与集合的基本关系与运算:自然数、整数、有理数、实数等。
三、数列与数列的运算1.数列的概念:顺序数、项数、公差、通项等。
2.常见数列的性质:等差数列、等比数列、斐波那契数列等。
3.数列的运算规律:加法、减法、乘法、除法等。
四、概率与统计1.概率的基本概念:随机试验、样本空间、事件、概率等。
2.事件的运算:包含关系、互不相交关系、并事件、积事件等。
3.概率的计算:古典概率、几何概率、条件概率、独立事件等。
4.统计的概念与方法:频数、频率、分组表、频数分布图等。
五、平面几何1.点、直线、平面及其性质:共线、平行、垂直等。
2.三角形的性质:角的性质、边长关系、面积计算等。
3.四边形的性质:平行四边形、矩形、正方形、菱形等。
4.圆的性质:圆心角、弧长、周长、面积计算等。
5.三角形的相似与全等性质:比例关系、角度关系等。
六、空间几何1.空间图形的基本概念与性质:点、线、面、体等。
2.立体图形的表面积计算:长方体、正方体、棱柱、棱锥等。
3.空间图形的体积计算:长方体、正方体、棱柱、棱锥、球等。
4.空间图形的投影与剖面:平行投影、垂直投影、平面剖面等。
七、导数与微分1.导数的概念与性质:斜率、变化率、图像、导函数等。
数学高一上册知识点归纳一、集合。
1. 集合的概念。
- 集合是由确定的元素组成的总体。
元素具有确定性、互异性、无序性。
例如,集合{1,2,3},其中1、2、3是元素,它们是确定的,互不相同,并且集合中元素的排列顺序不影响集合本身。
- 常用数集:自然数集N(包括0),正整数集N^*或N_+(不包括0),整数集Z,有理数集Q,实数集R。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
如{a,b,c}。
- 描述法:用集合所含元素的共同特征表示集合。
例如{xx > 2,x∈ R},表示所有大于2的实数组成的集合。
- 区间表示法:对于实数集的子集,还可以用区间表示。
如(a,b)={xa < x < b},[a,b]={xa≤slant x≤slant b}等。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
- 真子集:如果A⊆ B,且A≠ B,那么集合A是集合B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
- 空集varnothing是任何集合的子集,是任何非空集合的真子集。
4. 集合的基本运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
例如A = {1,2,3},B={2,3,4},则A∩B={2,3}。
- 并集:A∪ B={xx∈ A或x∈ B}。
对于上述A和B,A∪ B={1,2,3,4}。
- 补集:设U是全集,A⊆ U,则∁_U A={xx∈ U且x∉ A}。
二、函数。
1. 函数的概念。
- 设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数y和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x∈ A。
其中x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{yy = f(x),x∈ A}叫做函数的值域。
高一数学上册知识点归纳一、函数与方程1. 函数的概念- 定义- 函数的表示方法- 函数的图像2. 函数的性质- 单调性- 奇偶性- 周期性3. 特殊函数- 一次函数- 二次函数- 幂函数- 指数函数- 对数函数- 三角函数4. 函数的应用- 实际问题建模- 函数的最值问题5. 方程与不等式- 一元一次方程- 一元二次方程- 不等式及其解集 - 系统方程的解法二、数列与数学归纳法1. 数列的概念- 数列的定义- 常见的数列类型2. 等差数列与等比数列 - 定义与性质- 通项公式- 求和公式3. 数列的极限- 极限的概念- 极限的性质4. 数学归纳法- 原理- 证明方法三、三角函数1. 三角函数的基础- 角度与弧度- 三角函数的定义 - 三角函数的图像2. 三角函数的性质- 单调性- 奇偶性- 周期性3. 三角恒等变换- 基本恒等式- 恒等变换的应用4. 解三角形- 正弦定理- 余弦定理四、平面向量1. 向量的基本概念- 向量的定义- 向量的加法与数乘2. 向量的几何运算- 向量的减法与数量积- 向量的投影3. 向量的应用- 平面向量的坐标表示- 向量在几何问题中的应用五、立体几何1. 空间几何体- 多面体- 旋转体2. 空间直线与平面- 直线与平面的位置关系- 直线与平面的方程3. 空间向量- 空间向量的基本概念- 空间向量的基本运算4. 立体几何的应用- 体积与表面积的计算- 立体图形的构造请将以上内容复制到Word文档中,并根据实际需要进行格式设置和内容补充。
您可以调整字体、段落、列表等,以确保文档的专业性和可读性。
此大纲仅供参考,具体知识点的深入和扩展应依据实际教材和教学大纲进行。
高一数学上册知识点归纳总结# 高一数学上册知识点归纳总结## 第一章:集合与函数### 1.1 集合的概念与运算- 集合的定义- 集合的表示方法- 集合的基本运算:并集、交集、补集、差集### 1.2 函数的概念- 函数的定义- 函数的三要素:定义域、值域、对应法则- 函数的表示方法:解析式、列表法、图象法### 1.3 函数的性质- 单调性- 奇偶性- 有界性- 周期性## 第二章:不等式与不等式解法### 2.1 不等式的基本性质- 不等式的基本性质- 不等式的传递性、对称性、可加性等### 2.2 不等式的解法- 一次不等式的解法- 一元二次不等式的解法- 绝对值不等式的解法### 2.3 基本不等式- 算术平均数与几何平均数不等式- 柯西不等式## 第三章:数列### 3.1 数列的概念- 数列的定义- 有穷数列与无穷数列- 等差数列与等比数列### 3.2 等差数列- 等差数列的定义- 等差数列的通项公式- 等差数列的求和公式### 3.3 等比数列- 等比数列的定义- 等比数列的通项公式- 等比数列的求和公式## 第四章:三角函数### 4.1 三角函数的定义- 正弦、余弦、正切函数的定义- 任意角的三角函数### 4.2 三角函数的基本性质- 周期性- 奇偶性- 单调性### 4.3 三角函数的图像与性质- 正弦函数、余弦函数的图像- 正切函数的图像- 三角函数的对称性## 第五章:解析几何### 5.1 直线的方程- 直线的斜率- 直线的点斜式、斜截式、一般式### 5.2 圆的方程- 圆的标准方程- 圆的一般方程### 5.3 直线与圆的位置关系- 直线与圆的交点问题- 直线与圆的相切问题## 第六章:立体几何### 6.1 空间直线与平面- 空间直线的方程- 平面的方程- 直线与平面的平行与垂直### 6.2 空间几何体- 多面体- 旋转体- 空间几何体的体积与表面积### 6.3 空间向量- 空间向量的定义- 空间向量的加减法- 空间向量的点积与叉积## 第七章:复数### 7.1 复数的概念- 复数的定义- 复数的四则运算### 7.2 复数的几何意义- 复平面- 复数的模与辐角### 7.3 复数的代数形式- 复数的代数表示- 复数的共轭## 第八章:逻辑与推理### 8.1 逻辑基础- 命题逻辑- 逻辑连接词### 8.2 推理方法- 演绎推理- 归纳推理- 类比推理### 8.3 证明方法- 直接证明- 反证法- 归纳法以上是高一数学上册的主要知识点,涵盖了从基础概念到复杂问题的解决技巧,为进一步学习数学打下坚实的基础。
高一上册数学知识点全面总结及详细解析2024版引言高一上册数学是高中数学学习的基础阶段,涵盖了代数、几何、函数等多个方面的知识点。
本文将对这些知识点进行详细总结,帮助学生更好地掌握和应用这些知识。
第一章:集合与函数1. 集合的概念集合的定义与表示方法:集合是指某些确定的、不同的对象的全体。
常用大写字母表示集合,小写字母表示集合中的元素。
集合的表示方法有列举法和描述法。
集合的基本运算(并集、交集、补集):并集是指两个集合中所有元素的集合,交集是指两个集合中共有元素的集合,补集是指全集中不属于某集合的元素的集合。
子集与全集:如果集合A的所有元素都是集合B的元素,则A是B的子集。
全集是指包含所有讨论对象的集合。
2. 函数的概念函数的定义与表示方法:函数是指两个集合之间的一种对应关系,其中每个元素在第一个集合中都有唯一的元素与之对应。
常用符号f(x)表示函数。
函数的性质(单调性、奇偶性、周期性):单调性指函数在某区间内是否保持递增或递减,奇偶性指函数是否关于原点对称或关于y轴对称,周期性指函数是否存在一个周期使得函数值重复出现。
反函数与复合函数:反函数是指将原函数的自变量与因变量互换得到的新函数,复合函数是指两个函数的组合。
第二章:基本初等函数1. 一次函数一次函数的定义与图像:一次函数是指形如y=ax+b的函数,其图像是一条直线。
一次函数的性质与应用:一次函数的斜率a决定了直线的倾斜程度,截距b 决定了直线与y轴的交点。
一次函数广泛应用于实际问题的建模与求解。
2. 二次函数二次函数的定义与图像:二次函数是指形如y=ax^2+bx+c的函数,其图像是一条抛物线。
二次函数的性质(顶点、对称轴、开口方向):二次函数的顶点是抛物线的最高或最低点,对称轴是通过顶点的垂直线,开口方向由系数a的正负决定。
二次函数的应用:二次函数在物理、经济等领域有广泛应用,如抛物运动、利润最大化等问题。
3. 指数函数与对数函数指数函数的定义与性质:指数函数是指形如y=a^x的函数,其图像呈指数增长或衰减。
高一(上)数学课本知识整理
考试内容
1、集合、简易逻辑:(1)集合、子集、补集、交集、并集;(2)逻辑联结词、四种命题、充分条件和必要条件;
2、函数:(1)映射、函数、函数的单调性、奇偶性;(2)反函数、互为反函数的函数图象间的关系;(3)指数函数的扩充、有理指数幂的运算性质、指数函数;(3)对数、对数的运算性质、对数函数;
;
)
)
)
C.或者是等差数列,或者是等比数列
D.既不可能是等差数列,也不可能是等比数列
4.A={x∣x2+5x-6=0 },B={x∣ax+1=0},若B A,则实数a的可能取值是。
5.已知函数y=1-x2(x∈[-1,0]),则它的反函数为。
6.如果等式∣x-2
x-x2∣=
x-2
x-x2
成立,则实数x的取值范围是。
7.log2125·log34·log59= 。
8.函数f(2x)的定义域是[-1,1],则函数f(log2x)的定义域为。
≠
9.等差数列{a n},{b n},若a1+a2+…+a n
b1+b2+…+b n=
7n+2
n+3,则
a5
b5= 。
课本题延伸
例1:已知命题p:方程x2+mx+1=0有两个不等的负实根;命题q:方程4x2+4(m-2)x+1=0无实根,若“p或q”为真,“p且q”为假,求实数m的取值范围。
例2:函数f(x) 的定义域D为[-1,1],任意x,y∈D都有f(x+y)=f(x)+f(y),且x>0时,f(x)<0。
(1)判断函数的奇偶性;(2)判断函数在定义域内的单调性;(3)解不等式f(a-1)+f(a2-1)>0 。
高一数学知识点归纳总结上册一、集合论1. 集合的基本概念- 元素、空集与非空集、集合的相等、包含与不包含关系2. 集合的表示方法- 列举法、描述法、定理法3. 集合间的关系及运算- 并集、交集、差集、补集、集合的运算律4. 集合的特性- 子集关系、相等关系、空集与全集的关系二、不等式与不等式组1. 不等式的解集表示- 区间表示法、解集图2. 一元一次不等式- 不等式的性质、解不等式、解不等式组3. 一元二次不等式- 不等式的性质、解不等式、解不等式组4. 绝对值不等式- 绝对值不等式的性质、解绝对值不等式5. 有理不等式- 有理不等式的性质、解有理不等式三、函数与方程1. 函数基本概念- 自变量与因变量、定义域与值域、函数的表示方式2. 一次函数- 函数方程的形式、函数图像特征、函数性质3. 二次函数- 函数方程的形式、函数图像特征、函数性质4. 反函数与复合函数- 反函数的性质、复合函数的性质5. 一元二次方程与不等式- 解一元二次方程、解一元二次不等式四、数列与数列的应用1. 数列基本概念- 数列的定义、通项公式、前n项和2. 等差数列- 等差数列的定义、通项公式、前n项和、性质与特征3. 等比数列- 等比数列的定义、通项公式、前n项和、性质与特征4. 递推数列- 递推数列的定义、通项公式、前n项和、性质与特征五、平面向量1. 向量的基本概念- 向量的定义、向量的表示、向量的共线与相等关系2. 向量的运算- 向量的加法、数乘、线性运算、模长与单位向量3. 向量的坐标表示- 向量的坐标表示方式、向量的共线与相等关系4. 向量的数量积与投影- 向量的数量积、数量积的性质、向量的投影、向量的垂直关系六、解析几何1. 平面与空间直角坐标系- 平面直角坐标系的定义、平面上的点与坐标、空间直角坐标系的定义、空间中的点与坐标2. 二次曲线- 圆的方程与性质、椭圆的方程与性质、双曲线的方程与性质、抛物线的方程与性质3. 空间中的直线与平面- 直线的方程与性质、平面的方程与性质、直线与平面的位置关系4. 空间中的距离与角度- 点到直线的距离、点到平面的距离、直线与直线的距离、直线与平面的夹角综上所述,高一上学期的数学知识点主要涵盖了集合论、不等式与不等式组、函数与方程、数列与数列的应用、平面向量以及解析几何等内容。
高一上期数学全部知识点高一上学期数学全部知识点一、数与代数1.自然数、整数、有理数、实数、复数的概念及性质2.数轴及坐标系的应用3.整式的加减运算、乘法与因式分解4.分式的加减运算、乘法与除法5.分式方程的解法6.根式的概念及性质7.二次根式的运算8.整式根式的合并9.整式分式的运算10.整式方程的解法11.多项式的概念及运算12.一元一次方程与一元一次不等式13.一元一次方程组与其应用14.二元一次方程组与其几何应用15.二元一次方程组的解法二、函数与方程1.函数的概念及性质2.函数的表示与比较3.函数的运算与初等函数4.一次函数与一次函数方程5.一次函数与一次不等式6.二次函数与二次函数方程7.二次函数与二次不等式8.反比例函数与二次反比例函数方程9.指数函数与指数函数方程10.对数函数及其应用11.幂函数与幂函数方程12.三角函数的概念与性质13.三角函数的图像与单调性14.三角函数的周期性与奇偶性15.解三角方程三、几何1.平面几何的性质与运用2.平面图形的基本性质3.平面图形的相似关系与运用4.平面图形的全等关系与运用5.勾股定理与勾股关系6.中点定理与角平分线定理7.平行线与比例分割定理8.三角形的面积与运用9.多边形的面积与运用10.圆的性质与圆周角定理11.圆的切线定理与切线问题12.三角形的性质与运用13.四边形的性质与运用14.三角形与平行线的应用15.空间几何与立体图形的性质四、解析几何1.坐标平面与直线的位置关系2.直线的斜率与截距3.直线的方程与应用4.曲线的方程与应用5.二次曲线的方程与应用6.参数方程与应用五、数据与统计1.统计调查与数据的收集2.频数分布表与频率分布图3.图表的分析与应用4.统计指标的计算与解读5.概率的概念与计算6.事件的概念与运算7.排列与组合的计算8.事件的概率与计数原理以上为高一上学期数学的全部知识点,这些知识点涵盖了数与代数、函数与方程、几何、解析几何以及数据与统计等各个方面。
高一数学上册全册知识点一、集合与函数1. 集合的基本概念集合的定义、元素、空集、全集、子集、包含关系、并集、交集、差集等基本概念。
2. 集合的表示与运算列举法、描述法、集合的相等、集合的运算法则,包括交、并、差等运算。
3. 函数的概念与性质函数的定义、自变量、因变量、函数图象、函数的相等、函数的值域、函数的奇偶性等性质。
4. 实数集与实数运算有理数与无理数的概念,实数集合的性质、实数运算法则等内容。
二、数列与数列的极限1. 数列的概念与表示数列的定义、数列的通项公式、数列的前n项和等基本概念。
2. 等差数列等差数列的概念、等差数列的通项公式、求等差数列的和等内容。
3. 等比数列等比数列的概念、等比数列的通项公式、求等比数列的和等内容。
4. 数列极限的概念与性质数列极限的定义、数列上极限和下极限的性质、数列极限的判定方法等内容。
三、函数的基本性质1. 函数的单调性与存在性单调函数的定义、单调递增函数和单调递减函数的判定方法,存在性定理等内容。
2. 函数的奇偶性与周期性函数的奇偶性的判断方法,函数的周期性的概念和刻画方法等内容。
3. 函数的反函数反函数的概念、反函数与原函数的关系、反函数的定义域和值域等内容。
四、三角函数与解三角形1. 三角函数的概念与性质三角函数的定义、正弦函数、余弦函数、正切函数等概念和性质。
2. 三角函数的图像与周期正弦函数、余弦函数、正切函数等的图像、周期、定义域等内容。
3. 三角函数的基本关系式正弦函数、余弦函数、正切函数等之间的基本关系式。
4. 解三角形的基本方法利用正弦定理、余弦定理、正切定理等解三角形的基本方法。
五、平面向量与解析几何1. 平面向量的概念与运算平面向量的定义、向量的模、向量的加减、数量积、向量的单位向量等内容。
2. 平面向量的数量积向量的数量积的定义、数量积的性质、数量积的几何意义等内容。
3. 平面几何中的直线与圆直线的一般式与截距式、两直线的关系、圆的方程、切线与法线等内容。
第一章 集合与简易逻辑一、集合: 1. 集合的定义: 集合的表示方法:数集:*,,,,,N N Z Q R C (复数集)集合的特性:2. 元素与集合的关系: 集合与集合的关系:空集是任何集合的__________,是任何非空集合的_______________。
任何一个集合都是他自身的____________。
集合{123,,,,n a a a a L } 的子集个数有____个,真子集有____个,非空真子集有____个。
当A B ⊆时,一般要分A =∅与A ≠∅两种情况。
3. 交集是指A 与B 中公共元素构成的集合,A ∩B={x| }并集是指所有属于集合A 或属于集合B 的元素构成的集合,A ∪B={x| } 一般采用画出数轴来求两个集合的交集或并集。
有关系式:①若A ∩B=A ,则____________;②若A ∪B=A ,则_____________; ③()()U U C A C B =∩__________ 、()()U U C A C B =∪____________。
二、不等式解法:②||(0)ax b m m ax b m ax b m +>>⇔+>+<-或③||||||ax b nn ax b m ax b m +>⎧<+<⇔⎨+<⎩2. 二次不等式:220(0)ax bx c ax bx c ++>++<与二次函数2y ax bx c =++3. 分式不等式:0()()0ax bax b cx d cx d +>⇔++>+()()000ax b cx d ax b cx d cx d ++≤⎧+≤⇔⎨+≠+⎩形如x ac x b+>+类型的可移项0x a c x b +->+化简来解。
4. 简单高次不等式:利用数轴标根法求解集。
5. 指数不等式:()()f x g x a a >⇒01,__________1,___________a a <<>①时②时6. 对数不等式:log ()log ()a a f x g x <可转化为不等式组①当01a <<时,______________________⎧⎨⎩ ;当1a >时,______________________⎧⎨⎩。
高一数学上册全部讲解知识点一、知识概述《集合》①基本定义:集合就像是把一些有共同特征的东西放在一起的一个“大筐”。
比如你们班的同学就可以组成一个集合,这些同学就是这个集合里的元素。
②重要程度:在高一数学中算是入门基础的东西,是理解函数等很多知识的基石。
③前置知识:基本的数的概念,像自然数、整数啥的要有个大概了解。
④应用价值:在生活中安排活动分组时就像划分集合,比如打篮球分组把人分成两组,这两组就是两个集合。
《函数的概念》①基本定义:函数就像一个机器,给它一个输入(自变量),然后就会有确定的输出(因变量)。
例如,一个卖水果的,你输入要的苹果数量(自变量),根据苹果的单价,就会得到要付的钱(因变量)。
②重要程度:函数贯穿整个高中数学,是非常重要的内容。
③前置知识:集合的知识要掌握,因为函数是建立在两个非空数集之间的对应关系。
④应用价值:在经济领域计算成本与利润关系等,通过改变生产量(自变量)得出利润(因变量)的值。
《函数的定义域与值域》①基本定义:定义域就是自变量能取的那些值的范围,值域就是函数值(因变量的值)的范围。
好比做蛋糕,面粉(自变量)的量有个可用的范围(定义域),最后做出蛋糕的大小(函数值)也有个范围(值域)。
②重要程度:这对于准确理解函数很重要。
③前置知识:函数概念要清楚。
④应用价值:在现实中规划产量(定义域)时要考虑最终产出(值域),避免资源浪费或者产量不足。
二、知识体系①知识图谱:集合是基础,函数的定义域、值域等都是函数这个大内容下的细分部分。
②关联知识:集合与函数是层层递进的关系,后续的函数性质等都和定义域值域等相关知识有关。
③重难点分析:- 集合那里难点在于集合元素的性质理解准确。
比如互异性,说实话有时候很容易忽略。
- 函数概念重点在于理解对应关系,难点在于一些复杂的函数关系的理解。
- 定义域值域难点在于准确求出根据不同情况的取值范围。
④考点分析:- 集合在考试中会考查元素的从属关系,集合间的运算(交、并、补)等。
第一章 集合与简易逻辑一、集合: 1. 集合的定义: 集合的表示方法:数集:*,,,,,N N Z Q R C (复数集)集合的特性: 2. 元素与集合的关系: 集合与集合的关系:空集是任何集合的__________,是任何非空集合的_______________。
任何一个集合都是他自身的____________。
集合{123,,,,n a a a a L } 的子集个数有____个,真子集有____个,非空真子集有____个。
当A B ⊆时,一般要分A =∅与A ≠∅两种情况。
3. 交集是指A 与B 中公共元素构成的集合,A ∩B={x| } 并集是指所有属于集合A 或属于集合B 的元素构成的集合,A ∪B={x| } 一般采用画出数轴来求两个集合的交集或并集。
有关系式:①若A ∩B=A ,则____________;②若A ∪B=A ,则_____________;③()()U U C A C B =∩__________ 、()()U U C A C B =∪____________。
二、不等式解法:①||(0)ax b m m m ax b m +<>⇔-<+< ②||(0)ax b m m ax b m ax b m +>>⇔+>+<-或③||||||ax b nn ax b m ax b m +>⎧<+<⇔⎨+<⎩2. 二次不等式:220(0)ax bx c ax bx c ++>++<与二次函数2y ax bx c =++0()()0ax bax b cx d cx d +>⇔++>+()()000ax b cx d ax b cx d cx d ++≤⎧+≤⇔⎨+≠+⎩形如x ac x b+>+类型的可移项0x a c x b +->+化简来解。
4. 简单高次不等式:利用数轴标根法求解集。
5. 指数不等式:()()f x g x a a >⇒01,__________1,___________a a <<>①时②时6. 对数不等式:log ()log ()a a f x g x <可转化为不等式组①当01a <<时,______________________⎧⎨⎩ ;当1a >时,______________________⎧⎨⎩。
解指数不等式,对数不等式时,必须考察函数的单调性问题,特别注意不能忽视了对数的真数必须大于0,不等式的解集必须用集合或区间表示出来。
三、逻辑联结词:或(并集)、且(交集)、非(补集) 1. 命题可分为真命题、假命题,也可以分为简单命题、复合命题。
复合命题形式有“p 或q ”,“p 且q ”,“非p ”三种形式。
① 原命题为真,则其逆命题与否命题不一定为真,而其逆否命题一定为真。
② 互为逆否命题的真假相同,逆命题与否命题的真假相同。
4. 充要条件:①若A B ⇒但B A ,则A 是B 的___________条件。
②若A B 但B A ⇒,则A 是B 的___________条件。
③若A B ⇔,则A 是B 的___________条件。
④若A B 且B A ,则A 是B 的___________条件。
四、恒成立问题:1. 20ax bx c ++>恒成立,可令2()f x ax bx c =++,函数图象恒在x 轴上方。
等价于:000a b c =⎧⎪=⎨⎪>⎩①00a >⎧⎨∆<⎩② 2. 20ax bx c ++<恒成立,等价于:000abc =⎧⎪=⎨⎪<⎩①00a <⎧⎨∆<⎩②例:已知不等式22(1)2(1)30a x a x ----<恒成立(或解集为R ),求a 的取值范围。
第二章 函数一、函数()y f x =及有关性质。
1. 函数定义:()y f x =中,自变量x 的取值范围为函数的定义域。
当x a =时,()y f a =叫函数值。
所有函数值的集合叫做函数的值域。
2. 映射的定义: :f A B →两个允许: 两个不允许: 3. 同一函数:①_______相同。
②_________相同。
③值域相同。
(可由①②得③) 4. 函数定义域求法:使函数有意义的条件。
①整式函数(一次函数、二次函数)定义域为R 。
②分式函数的分母不为0。
③偶次根式函数,被开放数大于或等于0。
()0f x >)④对数函数的底数大于0且不等于1,真数大于0。
有多个限制条件的转化为不等式组求定义域。
5.函数的单调性:①定义: ②逆运用:当()y f x =在区间[m ,n]上为增函数时,若[()][()]f x f g x ϕ>则有:()()()()x g x x n g x m ϕϕ>⎧⎪≤⎨⎪≥⎩当()y f x =在区间[m ,n]上为减函数时,若[()][()]f x f g x ϕ>则有:()()()()x g x x m g x n ϕϕ<⎧⎪≥⎨⎪≤⎩③常用函数的单调性:Ⅰ.一次函数y kx b =+,当0k >时为增函数;当0k <时为减函数。
Ⅱ.二次函数2y ax bx c =++,当0a >时在(,]2b a -∞-为减函数;在[,)2ba-+∞为增函数。
当0a >时在(,]2b a -∞-为增函数;在[,)2ba-+∞为减函数。
与开口方向和对称轴有关。
Ⅲ.反比例函数1y x =在()(),00-∞+∞与,上均为减函数;1y x=-在()(),00-∞+∞与,上均为增函数。
Ⅳ.xy a = ()01a a >≠且,当01a <<时为减函数;当1a >时为增函数。
Ⅴ.log a y x = ()01a a >≠且,01a <<时,在()0,+∞上为减函数;当1a >时,在()0,+∞上为增函数。
6.反函数:求函数()y f x =的反函数的方法: (1) 先根据原函数的定义域求出其值域 (2) 由()y f x =解出()x y ϕ=(3) 将()x y ϕ=中的,x y 互换,即得反函数1()y f x -=标明定义域有关性质:(1) 原函数()y f x =与反函数1()y fx -=的定义域和值域正好互换,原函数过点(),a b ,则反函数过点(),b a 。
(2) 互为反函数的图象关于y x =成轴对称图形。
(3) 原函数与反函数的单调性相同。
7.函数得奇偶性:存在奇偶性得条件时定义域必须关于原点对称,在定义域内,将x x -换成后(1)若()()f x f x -=,则()y f x =为偶函数。
(2)若()()f x f x -=-,则()y f x =为奇函数。
有关性质:(1) 偶函数得图象关于y 轴对称,在对称区间上的单调性相反。
(2) 奇函数得图象关于原点对称,在对称区间上的单调性相同。
8.求函数值域的基本方法(1) 利用函数的单调性求值域:若()y f x =在[],m n 上为增函数则其值域为[](),()f m f n若()y f x =在[],m n 上为减函数则其值域为[](),()f n f m 。
(2)配方法:二次函数2224()24b ac b y ax bx c a x a a-=++=++ ()x R ∈ 当0a >时,有最小值244ac b a -,值域为244ac b a ⎡⎤-+∞⎢⎥⎣⎦,;当0a <时,有最大值244ac b a -,24,4ac b a ⎡⎤--∞⎢⎥⎣⎦。
(3)反表示法:即利用反函数的定义域既为原函数的值域。
例如:求2121x x y +=-的值域。
(4)换原法: 还原注意新元素的范围。
例如:求y x =(5)判别式法:形如:21112a x b x c y ax bx c++=++类型,可转化为关于x 的一元二次方程有解,0∆≥ 求值域。
(6)图象法。
9.周期性:若函数()y f x =对于最小正周期T ,使()()f x T f x +=,则称T 为函数()y f x =的最小正周期。
10.对称性:若()()f t x f t x +=-则称x t =为()y f x =的对称轴 二、指数函数与对数函数 (一) 指数1== pa-= =1pa ⎛⎫⎪⎝⎭运算法则:mna a ⋅= m n a a= ()nm a = ()m ab =ma b ⎛⎫= ⎪⎝⎭n == 2 指数函数的图象和性质:xy a = ()01a a >≠且3 指数方程:(1)()()()()f x g x aa f x g x =⇔= (化成底数相等)(2)2()0x xa ma n ++= 可换元后求解,令xt a = (0)t >4 指数复合函数的单调性:()u x y a=(1)01a <<时,()()u x y a u x =与的单调性相反(2)1a >时,()()u x y au x =与的单调性相同(一致)(二) 对数函数1 对数式与指数式互化:log b a a N N b =⇔=;log 1a = log a a = log na a =2 对数的运算法则:log log a a M N += log log a a M N -=log na M =log a=对数恒等式:log a Na=换底公式:()()log log lg c a bb a==logma b = 11log ab= ()1log a b =3 对数函数log a y x = ()01a a >≠且的图象和性质(1) 当a 与b 都大于1或都小于1时,log 0a b > (2) 当a 与b 一个大于1另一个小于1时,log 0a b <4 对数方程:()()log ()log ()()0()0a a f x g x f x g x f x g x =⎧⎪=⇔>⎨⎪>⎩5 对数函数复合形式的单调性:log ()()0a y u x u x =>在的定义域内 (1)01a <<时,log ()()a y u x u x =与的单调性相反, (2)1a >时,log ()()a y u x u x =与的单调性相同。
三 二次函数2y ax bx c =++ ()0a ≠,判别式24b ac ∆=-1 2y ax bx c =++与x 轴的交点个数:(1)0∆>,有 个交点(2)0∆=,有 个交点,(3)0∆<,无交点。