必修4三角函数的图像与性质
- 格式:doc
- 大小:1.01 MB
- 文档页数:15
三角函数的图像与性质集体备课一、教材分析《三角函数的图像与性质》是高中《数学》必修④(人民教育出版社)第一章第四节的内容,其主要内容是正弦函数、余弦函数、正切函数的图象与性质。
过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数、余弦函数、正切函数的图象与性质,为以后要学习的函数yAin(w某)的图象的研究打好基础。
因此,本节的学习有着极其重要的地位。
二、知识网络三、教学目标根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目标如下:1、知识与技能目标(1)会用单位圆中的三角函数线画出三角函数图象;(2)掌握正弦函数、余弦函数图象的“五点作图法”;(3)利用图像掌握正弦函数、余弦函数、正切函数的性质2、过程与方法通过问题探究,经历知识产生发展的过程,体验数学发展和创造历程。
培养学生观察、分析、表达能力及数形结合思想,提高学生数学素养。
3、情感态度与价值观通过探究体验知识的发生过程,使学生从中体味成功喜悦。
激发学生积极主动的学习精神和探索勇气。
通过画图及多媒体展示,使学生体验数学之美、体会数学学习的兴趣。
四、教学重点、难点重点:1、用单位圆三角函数线做出三角函数图象2、会用“五点法”作图画出三角函数图象3、利用图像掌握正弦函数、余弦函数、正切函数的性质难点:用单位圆三角函数线画出三角函数的图象五、学情分析高一学生对函数概念的理解本身就是难点,再加上三角的知识,就要求学生有较高的理解和综合的能力。
关于作图方面,在前面函数的章节中,学生已经学习了画函数图像的一些方法,如幂函数、指数函数、对数函数等可以用列表描点法、图像平移翻折等方法作出其图像。
基于上述情况,预测学生对于本节课的内容,会有以下的一些困难:1.概念的引出,把三角与函数两个概念结合起来,正确理解三角函数。
2.利用单位圆的三角函数线作出三角函数在0,2上的图像。
数学必修4——三⾓函数的图像与性质数学必修4——三⾓函数的图像与性质⼀. 教学内容:三⾓函数的图像与性质⼆. 教学⽬标:了解正弦函数、余弦函数、正切函数的图像和性质,会⽤“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A、ω、φ的物理意义。
三. 知识要点:1. 正弦函数、余弦函数、正切函数的图像2. 三⾓函数的单调区间:的递增区间是,递减区间是;的递增区间是,递减区间是的递增区间是,3. 函数最⼤值是,最⼩值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中⼼。
4. 由y=sinx的图象变换出y=sin(ωx+)的图象⼀般有两个途径,只有区别开这两个途径,才能灵活地进⾏图象变换。
利⽤图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现.⽆论哪种变形,请切记每⼀个变换总是对字母x⽽⾔,即图象变换要看“变量”起多⼤变化,⽽不是“⾓变化”多少。
途径⼀:先平移变换再周期变换(伸缩变换)先将y=sinx的图象向左(>0)或向右(<0=平移||个单位,再将图象上各点的横坐标变为原来的倍(ω>0),便得到y=sin(ωx+)的图象。
途径⼆:先周期变换(伸缩变换)再平移变换。
先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x轴向左(>0)或向右(<0,平移个单位,便得到y=sin(ωx+)的图象。
5. 对称轴与对称中⼼:的对称轴为,对称中⼼为;的对称轴为,对称中⼼为;对于和来说,对称中⼼与零点相联系,对称轴与最值点相联系。
6. 五点法作y=Asin(ωx+)的简图:五点法是设X=ωx+,由X取0、、π、、2π来求相应的x值及对应的y值,再描点作图。
【典型例题】例1. 把函数y=cos(x+)的图象向左平移个单位,所得的函数为偶函数,则的最⼩值是()A. B. C. D.解:先写出向左平移4个单位后的解析式,再利⽤偶函数的性质求解。
三角函数的图像和性质课 题 三角函数的图像和性质学情分析三角函数的图象与性质是三角函数的重要内容,学生刚刚刚学到,对好多概念还 不很清楚,理解也不够透彻,需要及时加强巩固。
教学目标与 考点分析 1.掌握三角函数的图象及其性质在图象交换中的应用;2.掌握三角函数的图象及其性质在解决三角函数的求值、求参、求最值、求值域、求单调区间等问题中的应用.教学重点 三角函数图象与性质的应用是本节课的重点。
教学方法导入法、讲授法、归纳总结法1.“五点法”描图(1)y =sin x 的图象在[0,2π]上的五个关键点的坐标为(0,0),)1,2(π,(π,0),)1,23(-π,(2π,0).(2)y =cos x 的图象在[0,2π]上的五个关键点的坐标为(0,1),)0,2(π,(π,-1),)0,23(π,(2π,1).2.三角函数的图象和性质 函数 性质 y =sin x y =cos x y =tan x定义域R R{x |x ≠k π+π2,k ∈Z }图象值域[-1,1][-1,1]R(1)周期性函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π|ω|,y=tan(ωx+φ)的最小正周期为π|ω|.(2)奇偶性三角函数中奇函数一般可化为y=A sin ωx或y=A tan ωx,而偶函数一般可化为y=A cos ωx+b的形式.三种方法求三角函数值域(最值)的方法:(1)利用sin x、cos x的有界性;(2)形式复杂的函数应化为y=A sin(ωx+φ)+k的形式逐步分析ωx+φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x或cos x看作一个整体,可化为求函数在区间上的值域(最值)问题.双基自测1.函数)3cos(π+=x y ,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数D .既是奇函数又是偶函数2.函数)4tan(x y -=π的定义域为( ). A .},4|{Z k k x x ∈-≠ππ B .},42|{Z k k x x ∈-≠ππ C .},4|{Z k k x x ∈+≠ππD .},42|{Z k k x x ∈+≠ππ3.)4sin(π-=x y 的图象的一个对称中心是( ).A .(-π,0)B .)0,43(π-C .)0,23(πD .)0,2(π4.函数f (x )=cos )62(π+x 的最小正周期为________.考向一 三角函数的周期【例1】►求下列函数的周期:(1))23sin(x y ππ-=;(2))63tan(π-=x y考向二 三角函数的定义域与值域(1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);②形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).【例2】►(1)求函数y =lg sin 2x +9-x 2的定义域. (2)求函数y =cos 2x +sin x )4|(|π≤x 的最大值与最小值.【训练2】 (1)求函数y =sin x -cos x 的定义域;(2))1cos 2lg(sin )4tan(--=x xx y π的定义域(3)已知)(x f 的定义域为]1,0[,求)(cos x f 的定义域.考向三 三角函数的单调性求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,若ω为负则要先把ω化为正数. 【例3】►求下列函数的单调递增区间.(1))23cos(x y -=π,(2))324sin(21x y -=π,(3))33tan(π-=x y .【训练3】 函数f (x )=sin )32(π+-x 的单调减区间为______.考向四 三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用. 【例4】►(1)函数y =cos )32(π+x 图象的对称轴方程可能是( ).A .x =-π6B .x =-π12C .x =π6D .x =π12(2)若0<α<π2,)42sin()(απ++=x x g 是偶函数,则α的值为________.【训练4】 (1)函数y =2sin(3x +φ))2|(|πϕ<的一条对称轴为x =π12,则φ=________.(2)函数y =cos(3x +φ)的图象关于原点成中心对称图形.则φ=________.难点突破——利用三角函数的性质求解参数问题含有参数的三角函数问题,一般属于逆向型思维问题,难度相对较大一些.正确利用三角函数的性质解答此类问题,是以熟练掌握三角函数的各条性质为前提的,解答时通常将方程的思想与待定系数法相结合.【示例】► 已知函数f (x )=sin )3(πω+x (ω>0)的单调递增区间为]12,125[ππππ+-k k (k ∈Z ),单调递减区间为]127,12[ππππ++k k (k ∈Z ),则ω的值为________.练一练:1、已知函数)33sin()(π+=x x f(1)判断函数的奇偶性;(2)判断函数的对称性.2、设函数)0)(2sin()(<<-+=ϕπϕx x f 的图象的一条对称轴是直线8π=x ,则=ϕ______.课后练习:三角函数的图象与性质·练习题一、选择题(1)下列各命题中正确的是 [ ](2)下列四个命题中,正确的是 [ ]A.函数y=ctgx在整个定义域内是减函数B.y=sinx和y=cosx在第二象限都是增函数C.函数y=cos(-x)的单调递减区间是(2kπ-π,2kπ)(k∈Z)(3)下列命题中,不正确的是 [ ]D.函数y=sin|x|是周期函数(4)下列函数中,非奇非偶的函数是 [ ](5)给出下列命题:①函数y=-1-4sinx-sin2x的最大值是2②函数f(x)=a+bcosx(a∈R且b∈R-)的最大值是a-b以上命题中正确命题的个数是 [ ]A.1B.2C.3D.4[ ] A.sinα<cosα<tgαB.cosα>tgα>sinαC.sinα>tgα>cosαD.tgα>sinα>cosα(7)设x为第二象限角,则必有 [ ][ ]二、填空题(9)函数y=sinx+sin|x|的值域是______.的值是______.(11)设函数f(x)=arctgx的图象沿x轴正方向平移2个单位,所得到的图象为C,又设图象C1与C关于原点对称,那么C1所对应的函数是______.(12)给出下列命题:①存在实数α,使sinαcosα=1⑤若α,β是第一象限角,α>β则tgα>tgβ其中正确命题的序号是______.三、解答题(14)已知函数y=cos2x+asinx-a2+2a+5有最大值2,试求实数a的值.答案与提示一、(1)B (2)D (3)D (4)B (5)D (6)D (7)A (8)D提示(2)y=ctgx在(kπ,kπ+π)(k∈Z)内是单调递减函数.y=cos(-x)=cosx在[2kπ-π,2kπ](k∈Z)上是增函数,而在[2kπ,2kπ+π]上是减函数.(3)可画出y=sin |x|图象验证它不是周期函数或利用定义证之.(5)①=-y(sinx+2)2+3 sinx=-1时,y max=2②当cosx=-1时,f(x)max=a-b∴cosα<sinα<tgα二、(9)[-2,2] (10)2或3 (11)y=arctg(x+2) (12)③④提示(11)C:y=arctg(x-2),C1:-y=arctg(-x-2),∴y=arctg(x+2)由390°>45°,但tg390°=tg30°<tg45°,故⑤不正确.综上,③④正确.三、。
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
§1.4.1正弦函数、余弦函数的图象学习目标:1.能借助正弦线画出正弦函数的图象,并在此基础上由诱导公式画出余弦函数的图象.2.能熟练运用“五点法”作图.学习重点:运用“五点法”作图学习难点:借助于三角函数线画y=sinx的图象学习过程:一、情境设置遇到一个新的函数,画出它的图象,通过观察图象获得对它的性质的直观认识是研究函数的基本方法,那么,一般采用什么方法画图象?二、探究研究问题1. 在直角坐标系内把单位圆十二等分,分别画出对应角的正弦线.问题2. 在相应坐标系内,在x轴表示12个角(实数表示),把单位圆中12个角的正弦线进行右移. 问题 3. 通过刚才描点(x0,sinx0),把一系列点用光滑曲线连结起来,能得到什么?问题4. 观察所得函数的图象,五个点在确定形状是起关键作用,哪五个点?问题5. 如何作y=sinx,x∈R的图象(即正弦曲线)?问题6. 用诱导公式cosx=________(用正弦式表示),y=cosx的图象(即余弦曲线)怎样得到?问题7. 关键五个点.三、例题精讲例1:用“五点法”画下列函数的简图(1)y=1+sinx ,x∈[]π2,0 (2) y=-cosx, x∈[]π2,0思考:(1)从函数图象变换的角度出发,由y=sinx,x∈[]π2,0的图象怎样得到y=1+sinx ,x∈[]π2,0的图像?由y=cosx,x∈[]π2,0的图象怎样得到y=-cosx,,x∈[]π2,0的图像?四、巩固练习1、在[0,2π]上,满足1sin2x≥的x取值范围是( ).A. 0,6π⎡⎤⎢⎥⎣⎦B.5,66ππ⎡⎤⎢⎥⎣⎦C.2,63ππ⎡⎤⎢⎥⎣⎦D.5,6ππ⎡⎤⎢⎥⎣⎦2、用五点法作) y=1-cosx, x∈[]π2,0的图象.3、结合图象,判断方程xsinx=的实数解的个数.五、课堂小结在区间]2,0[π上正、余弦函数图象上起关键作用的五个点分别是它的最值点及其与坐标轴的交点(平衡点).函数的图象可通过描述、平移、对称等手段得到.六、当堂检测1、观察正弦函数的图象,以下4个命题:(1)关于原点对称(2)关于x轴对称(3)关于y轴对称(4)有无数条对称轴其中正确的是A、(1)、(2)B、(1)、(3)C、(1)、(4)D、(2)、(3)()2、对于下列判断:(1)正弦函数曲线与函数)23cos(x y +=π的图象是同一曲线; (2)向左、右平移π2个单位后,图象都不变的函数一定是正弦函数; (3)直线23π-=x 是正弦函数图象的一条对称轴; (4)点)0,2(π-是余弦函数的一个对称中心.其中不正确的是 A 、(1) B 、(2) C 、(3) D 、(4) ( ) 3、(1)x y sin =的图象与x y sin -=的图象关于 对称; (2)x y cos =的图象与x y cos -=的图象关于 对称.4、(1)把余弦曲线向 平移 个单位就可以得到正弦曲线;(2)把正弦曲线向 平移 个单位就可以得到余弦曲线.5、画出1cos 3+=x y 的简图,并说明它与余弦曲线的区别与联系.七、课后作业教材P46 A 组 第1题)6-x 21cos(2y π=)4x 2x sin(y +-=2π==)617f (1)3f (ππ则§1.4.2 正弦函数、余弦函数的周期性学习目标:1.了解周期函数及最小正周期的概念. 2.会求一些简单三角函数的周期.学习重点:周期函数的定义,最小正周期的求法. 学习难点:周期函数的概念及应用. 学习过程: 一、情境设置自然界存在许多周而复始的现象,如地球自转和公转,物理学中的单摆运动和弹簧振动,圆周运动等.数学中从正弦函数,余弦函数的定义知,角α的终边每转一周又会与原来的终边重合,也具有周而复始的变化规律,为定量描述这种变化规律,引入一个新的数学概念——函数周期性. 二、探究研究问题1:观察下列图表问题1:.如何给周期函数下定义?周期函数的定义问题2:判断下列问题: (1)对于函数y=sinx x ∈R有4sin )24sin(πππ=+成立,能说2π是正弦函数y=sinx 的周期?(2)2)(x x f =是周期函数吗?为什么?(3)若T 为)(x f 的周期,则对于非零整数)(,Z k kT k ∈也是 )(x f 的周期吗?问题3:一个周期函数的周期有多少个?周期函数的图象具有什么特征?问题4:最小正周期的含义;求x x f x x f cos )(,sin )(==的最小正周期?三、例题精讲例1: 求下列函数的最小正周期:(1)x x f 2cos )(=; (2))62sin(2)(π-=xx g变式训练: 1. ⑴求)2cos()(x x f -=⑵)62sin(2)(π--=x x g 的周期问题5:观察以上周期的值与解析式中x 的系数有何关系?结论:函数ωϕω)(()(+=x sin x f A >0)的周期为 四、巩固练习1、求下列函数的周期:(1)函数sinx 3y =的周期是___________________________. (2)函数sinx 3y +=的周期是_________________________. (3)函数y cos2x =的周期是___________________________.(4).函数 的周期是______________________. (5).函数 的周期是________________________. 2.函数y Asin(x )y Acos(x )ωϕωϕ=+=+或的周期与解析式中的____无关,其周期为_____.3. 函数)04x sin x f >+=ωπω)(()(的周期是32π则ω=____________ 4.若函数f(x)是以 为周期的函数,且5.画出函数x sin f (x)=的图像并判断是不是周期函数?若是,则它的周期是多少?五、小结反思对周期函数概念的理解注意以下几个方面:(1))()(x f T x f =+是定义域内的恒等式,即对定义域内的每一个x 值,T x +仍在定义域内且使等式成立. (2)周期T 是常数,且使函数值重复出现的自变量x 的增加值.(3)周期函数并不仅仅局限于三角函数,一般的周期是指它的最小正周期.六、当堂测评:1、设0≠a ,则函数)3sin(+=ax y 的最小正周期为 ( ) A 、a π B 、||a π C 、a π2 D 、||2a π2、函数1)34cos(2)(-+=ππk x f 的周期不大于2,则正整数k 的最小值是( ) A 、13 B 、12 C 、11 D 、10 3、求下列函数的最小正周期:(1)=-=T xy ),23sin(ππ .(2)=+=T x y ),62cos(ππ .4、已知函数)3sin(2πω+=x y 的最小正周期为3π,则=ω .5、求函数的周期:(1)x y cos 21= 周期为: .(2)43sin x y = 周期为: .(3)x y 4cos 2= 周期为: . (4)x y 2sin 43= 周期为: .6、试画出函数y=sin x 的图像,函数y=sin x 是周期函数吗?如果是,则周期是多少?7、已知函数)0(,1)63sin(3≠+--=k x k y π,求最小正整数k ,使函数周期不大于2;七、课后作业教材P46 A 组 第3、10题§1.4.3 正、余弦函数的值域、奇偶性、单调性学习目标:1.掌握正、余弦函数的有关性质并会运用.2.熟记正、余弦函数的单调区间,并利用单调性解题.学习重点:三角函数的值域、奇偶性、单调性.学习难点:求三角函数的单调区间,根据图象求值.学习过程:一、情境设置在已学过的内容中,我们要研究一个函数,往往从哪些方面入手?二、探究研究问题1.观察y=sinx, y=cosx (x∈R)的图象,你能得到一些什么性质?问题2.分别列出y=sinx, y=cosx (x∈R)的图象与性质例1:求下列函数的最大值及取得最大值时x的集合(1)3cosxy= (2)xy2sin2-=练习1:(1)若)3cos(xy-=呢?(2)若|2sin|2xy-=呢?例2:利用三角函数的单调性,比较下列各组数的大小(1))18sinπ-(与)10sinπ-( (2) )523cosπ-(与)517cosπ-(练习2:利用三角函数的单调性,比较下列各组数的大小(1)0250sin与0260sin (2) )523cosπ-(与)517cosπ-((3)0cos515与0cos530(4))754sinπ-(与)863sinπ-(例3:判断下列函数奇偶性(1)f(x)=1-cosx (2)g(x)=x-sinx练习3:判断下列函数的奇偶性:⑴xxxf cos|sin|)(⋅=:;⑵xxxf+=3tan)(:π54sin π45cos -π532sinπ125cos ⑶x x x f cos )(+=: .例4 .求)321sin(π+=x y ,[]ππ2,2x -∈的单调增区间练习4:(1)求)32cos(π+=x y ,[]π2,0x ∈的单调增区间(2)求)32sin(π+-=x y 的单调增区间四、巩固练习1、.函数y=sinx,当12y ≥时自变量x 的集合是_________________.2、.把下列三角函数值从小到大排列起来为:_____________________________, , , 3、.函数x 2sin 2y =的奇偶数性为( ).A.奇函数B.偶函数 C .既奇又偶函数 D. 非奇非偶函数4、下列四个函数中,既是 上的增函数,又是以π为周期的偶函数的是( ). A. sinx y = B. y=x 2sin C.cosx y = D.x 2cos y =5、函数[]π2,0x cosx,32y ∈-=,其增区间为 .减区间为 .五、小结反思:⑴正、余弦函数的定义域、值域、有界性、单调性、奇偶性、周期性等都可以在图象上被充分地反映出来,所以正、余弦函数的图象十分重要.⑵结合图象解题是数学中常用的方法. 六、当堂测评:1、设z k ∈,则三角函数x y 2sin =的定义域是( )A 、πππ+≤≤k x k 22B 、2πππ+≤≤k x k C 、222πππ+≤≤k x k D 、πππ+≤≤k x k2、在],[ππ-上是增函数,又是奇函数的是( )A 、2sinx y = B 、x y 21cos = C 、4sin xy -= D 、x y 2sin = 3、已知函数x y cos 1-=,则其单调增区间是 ; 单调减区间是 。