当前位置:文档之家› 曲线论(六)

曲线论(六)

曲线论(六)
曲线论(六)

细胞生长曲线的绘制实验报告

细胞生长曲线的绘制实验报告 篇一:实验五微生物生长量的测定及生长曲线的绘制 一、实验目的 学习了解微生物生长量测定的方法 学习了解细菌生长曲线的绘制方法 学习掌握血细胞计数板的使用方法 微生物生长量的测定 计数法重量法生理指标法 1、显微镜直接计数法 利用血细胞计数板计数 涂片计数 2、活菌菌落计数法 3、滤膜法 细菌生长曲线 将单细胞细菌接种到恒定容积的液体培养基中,不补充营养物或移去培养物,细菌以二分裂方式繁殖,以时间为横坐标,细菌数目的对数值为纵坐标,可画出一条反映细菌在整个培养期间菌数变化规律的曲线,称为生长曲线 篇二:细胞生长曲线的测定 细胞生长曲线的测定 一、实验目的

掌握测定细胞生长曲线的方法。 二、实验器具 24孔细胞培养板、微量加样器、eppendorf管、吸头、吸头盒、显微镜、细胞计数板、载玻片、盖玻片、吸管、试管架、普通显微镜、细胞悬液、0.4%台盼蓝。 三、实验方法 1. 培养细胞:首先在24孔细胞培养板内分别接种相同数量的细胞,计数并记录接种的细胞悬液密度,接种时间记为0小时。 2. 计数细胞密度:从接种时间算起,每隔24小时计数3孔的细胞密度,算出平均值。为提高准确率,对每孔细胞可计数2-3次,如此操作至第七天结束。 3. 绘制曲线:以培养时间为横坐标、细胞密度为纵坐标,将全部结果在坐标纸上绘图,即得所培养细胞的生长曲线。 篇三:MTT法绘制生长曲线 实验材料: 1,5%FBS-L-DMEM, 5x104个/ml细胞悬液,5mg/mlMTT溶液,DMSO,0.01M PBS,2, 96孔板共7个,酶标仪,50ml离心管,1.5ml离心管,0.22μm滤膜,锡箔纸,MTT工作液 实验步骤: 1,分别选取生长良好的P1、P3、P5代BMSCs消化后制备成细胞悬液,调整细胞密度为5x104/ml。接种到96孔板,每孔接种200μl 细胞悬液进行培养。

微分几何习题解答 曲线论

第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t )(t e 的形式,其中)(t e 为单位向量函 数,)(t 为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t )(t e ,若)(t r 具有固定方向,则)(t e 为常向量,那么)('t r =)('t e ,所以 r ×'r = ' (e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t )(t e 求微商得'r =' e + 'e ,于是r × 'r =2 (e ×'e )=0 ,则有 = 0 或e ×'e =0 。当)(t = 0时,)(t r =0 可与任意 方向平行;当 0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使)(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向量, 且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r r ,'r ,''r 垂直于同一 非零向量n ,因而共面,即(r r 'r ''r )=0 。 反之, 若(r r 'r ''r )=0,则有r ×'r =0 或r ×'r 0 。若r ×'r =0 ,由上题知) (t r 具有固定方向,自然平行于一固定平面,若r ×' r ,则存在数量函数)(t 、)(t , 使''r = r r + 'r ① 令n =r r ×'r ,则n 0 ,且)(t r ⊥)(t n 。对n =r ×'r 求微商并将①式代入得'n =r ×

大肠杆菌生长曲线实验报告

一、实验方案设计

实验数据原始记录: 随时间的变化大肠杆菌液吸光度的数据(括号内数字表示稀释倍数)

3.5 曲线图时间/h 0 1 3.75 6 7 8 8.5 9 10 OD600 0.073 0.073 0.079 0.282 0.456 1.105 1.168 1.662 2.284 时间/h 11 12 13 14 18.33 20.5 23 24 OD b。 2.564 2.016 3.020 2.605 3.315 2.860 3.024 3.324 时间/h 0 1 3.75 6 7 8 8.5 9 10 11 13 18.33 20.5 0应0 0.073 0.073 0.079 0.282 0.456 1.105 1.168 1.662 2.284 2.564 3.020 3.315 2.86 时间/h 0 1 3.75 6 7 8 8.5 9 10 11 OD6b0 0.073 0.073 0.079 0.282 0.456 1.105 1.168 1.662 2.284 2.564 前小时的大肠杆菌的吸光度数据 六?参考文献 前12小时的大肠杆菌的生长曲线图 [1] .牛天贵?食品微生物学实验技术?第1版?北京:科学出版社,2010. [2] .杨革.微生物学实验教程.第2版.北京:科学出版社,2010. [3] .何国庆,贾英民,丁立孝等.食品微生物学.第2版.北京:中国农业大学出版社,2009. [4] .周德庆,胡宝龙.微生物学实验教程.第2版.北京:高等教育出版社,2006.

七?教师对实验方案设计的意见 签名: 年月日 、实验报告 宴验现象验现象、实验结果的分析及其结论 分随着培养时间的增加,培养基里的液体变得越来越混浊,所散发出来的味道也越来越浓,味道很难闻。实验结果随着培养时间的增加,培养基里的液体变得越来越混浊,所散发出来的味道也越来越浓,味道大肠杆菌难培养基因为大肠杆菌增长迅越来越后来数量达一定数量后此时培养基内的营养物质已被进行营尽,养和空间肠杆菌进行营些大肠杆间的死亡争,最后数量肠杆菌死亡,直最后数量不断减尙,。直至变为0。 ②通过对大肠杆菌生长曲线的测定,了解了细菌生长 的特点,是:刚开始时细菌缓慢增长,后来增 长迅速,呈“ J”型,最后细菌生长缓慢,数量达到顶峰,在一段时间内保持不变。 因实验测量的时间不够合理等各种因素,因此用原始数据绘制出来的大肠杆菌的生长曲线图不够有规律,经修正后生长曲线比较好。 结论: 细菌的生长曲线分为延缓期、生长期、稳定期和衰亡期。体内及自然界细菌的生长繁殖受机体 免疫因素和环境因素的多方面影响,不会出现象培养基中那样典型的生长曲线。掌握细菌生长规律,可有目的地研究控制病原菌的生长,发现和培养对人类有用的细菌。 这4个时期的长短因菌种的遗传性、接种量和培养条件的不同而有所不同。因此通过测定微生物的生长曲线,可了解细菌的生长规律,对于科研和生产都具有重要的指导意义。

知识讲解_微积分基本定理

微积分基本定理 编稿:赵雷 审稿:李霞 【学习目标】1.理解微积分基本定理的含义。 2.能够利用微积分基本定理求解定积分相关问题。 【要点梳理】 要点一、微积分基本定理的引入 我们已学过过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。我们必须寻求计算定积分的新方法,也是比较一般的方法。 (1)导数和定积分的直观关系: 如下图:一个做变速直线运动的物体的运动规律是s=s (t ),由导数的概念可知,它在任意时刻t 的速度v (t )=s '(t )。设这个物体在时间段[a ,b]内的位移为s ,你能分别用 s (t )、v (t )表示s 吗? 一方面,这段路程可以通过位置函数S (t )在[a ,b]上的增量s (b )-s (a )来表达, 即 s=s (b )-s (a )。 另一方面,这段路程还可以通过速度函数v (t )表示为 ()d b a v t t ? , 即 s = ()d b a v t t ? 。 所以有: ()d b a v t t =? s (b )-s (a ) (2)导数和定积分的直观关系的推证: 上述结论可以利用定积分的方法来推证,过程如下: 如右图:用分点a=t 0<t 1<…<t i -1<t i <…<t n =b , 将区间[a ,b]等分成n 个小区间: [t 0,t 1],[t 1,t 2],…,[t i ―1,t i ],…,[t n ―1,t n ], 每个小区间的长度均为

1i i b a t t t n --?=-= 。 当Δt 很小时,在[t i ―1,t i ]上,v (t )的变化很小,可以认为物体近似地以速度v (t i ―1)做匀速运动,物体所做的位移 111()'()'()i i i i i b a s h v t t s t t s t n ----?≈=?=?= 。 ② 从几何意义上看,设曲线s=s (t )上与t i ―1对应的点为P ,PD 是P 点处的切线,由导数的几何意义知,切线PD 的斜率等于s '(t i ―1),于是 1tan '()i i i s h DPC t s t t -?≈=∠??=??。 结合图,可得物体总位移 111 1 1 1 ()'()n n n n i i i i i i i i s s h v t t s t t --=====?≈=?=?∑∑∑∑。 显然,n 越大,即Δt 越小,区间[a ,b]的分划就越细,1 11 1 ()'()n n i i i i v t t s t t --==?=?∑∑与s 的近似程度就越好。由定积分的定义有 11lim ()n i n i b a s v t n -→∞=-=∑11 lim '()n i n i b a s t n -→∞=-=∑()d '()d b b a a v t t s t t ==??。 结合①有 ()d '()d ()()b b a a s v t t s t t s b s a ===-??。 上式表明,如果做变速直线运动的物体的运动规律是s=s (t ),那么v (t )=s '(t )在 区间[a ,b]上的定积分就是物体的位移s (b )―s (a )。 一般地,如果()f x 是区间[a ,b]上的连续函数,并且'()()F x f x =,那么 ()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理。 要点二、微积分基本定理的概念 微积分基本定理: 一般地,如果'()()F x f x =,且()f x 在[a ,b]上可积,则()d ()()b a f x x F b F a =-? 。 这个结论叫做微积分基本定理,又叫做牛顿-莱布尼兹公式。 其中,()F x 叫做()f x 的一个原函数。为了方便,我们常把()()F b F a -记作()b a F x ,即 ()d ()()()b b a a f x x F x F b F a ==-? 。

细菌生长曲线的测定实验报告

竭诚为您提供优质文档/双击可除细菌生长曲线的测定实验报告 篇一:细菌生长曲线 实验九测定细菌生长曲线 [实验目的]1.了解细菌生长曲线特征:2.学习液体培养基的配制以及注意事项。3.学习液体种子和固体种子的不同接种方法和注意事项。4.利用细菌悬液浑浊度间接测定细菌生长。 [仪器和材料] 1.实验材料 (1)大肠杆曲,枯草杆曲培养液及大肠杆菌平板。 (2)牛肉膏蛋门胨葡萄糖培养基(150ml/250ml三角瓶x4瓶/大组),配方:牛肉膏5g,蛋白胨10g,nacl5g,葡萄糖10g,加水至1000ml,ph7.5。 2.实验仪器 取液器(5000μl,1000μl,200tμl各一支);培养箱.摇床,722s分光光度汁;1000μl无菌吸头100个;5000μl 无菌吸头2(:细菌生长曲线的测定实验报告)个;1ml或4ml

玻璃或塑料比色皿4个,共用参比杯一个。 [实验原理] 将一定量的细菌接种在液体培养基内.在一定的条件下培养,可观察到细菌的生长繁殖有一定规律性,如以细菌活菌数的对数作纵坐标,以培养时间作横坐标,可绘成一条曲线,称为生长曲线(图91)。 单细胞微生物发酵具有4个阶段,即调整(迟滞期)、对数期(生长旺盛期)、平衡期(稳定期)、死亡期(衰亡期)。 生长曲线可表示细菌从开始生长到死亡的全过程动态。不同微生物有不同的生长曲线,同一种微生物在不同的培养条件下,其生长曲线也不一样。因此,测定微生物的生长曲线对于了解和掌握微生物的生长规律是很有帮助的.测定微生物生长曲线的方法很多,有血细胞计数法,平板菌落计数法,称重法和比浊法等。本实验采用比浊法测定,由于细菌悬液的浓度与浑浊度成正比,因此,可以利用分光光度计测定菌悬液的光密度来推知菌液的浓度。将所测得的光密度值(测oD550或oD620或oD600或oD420,可任选一波长)与对应的培养时间作图,即可绘出该菌在一定条件下的生长曲线。注意,由于光密度表示的是培养液中的总菌数,包括活菌与死菌,因此所测生长曲线的衰亡期不明显。 从生长曲线我们可以算出细胞每分裂一次所需要的时间,即代时,以g表示。其计算公式为;

微分学的基本定理

微分学的基本定理 【费马(Fermat)定理】 若(i)函数)(x f 在0x 点得某一邻域),(0δx O 内有定义,并且在此邻域内恒有 )(x f )(0x f ≤, 或者)(x f )(0x f ≥; (ii)函数)(x f 在0x 点可导, 则有 0)(0='x f 证明我们对)(x f 的情形给出假设证明.由于假设)(0x f '存在,按定义,也就是 +'f (0x )=-'f (0x )=f '(0x ), 另一方面,由于)(x f )(0x f ≤,所以对(δ+00,x x )内的各点x ,有 ≤--0 0)()(x f x f 0;而对(00,x x δ-)内的各点x ,有 0)()(0 0≥--x f x f .再由极限性质得 )(0x f '=+'f (0x )=lim 0+→o x x ≤--00)()(x x x f x f 0,)(0x f '=-'f (0x )=lim 0 -→o x x 0)()(00≥--x x x f x f .而)(0x f '是一个定数,因此它必须等于零,即)(0x f '=0. 对于)(x f )(0x f ≥的情形,也可相仿证明. 这个定理的几何意义是:如果曲线)(x f y =在0x 点具有极大值(也就是函数)(x f 在0x 点的值不小于)(x f 在0x 点近旁的其他点上的值)或者曲线)(x f y =在0x 点具有极小值(也就是函数)(x f 在0x 点的值不大于)(x f 在0x 点近旁的其他点上的值),并且曲线

)(x f y =在0x 点具有切线l ,那么,费马定理就表明了切线l 必为水平线. 【拉格朗日(Lagrange)中值定理】 这个定理也称为微分学的中值定理,它是微分学中的一个很重要的定理. 若函数)(x f 满足 (i) 在[]b a ,连续;(ii)在(b a ,)可导, 则在(b a ,)内至少存在一点ξ,使 )(ξf '=a b a f b f --)()(.这个定理从几何图形上看是很明显的.画出[]b a ,上的一条曲线)(x f y =,连接A,B 两点,作弦AB,它的斜率是 = ?tan a b a f b f --)()(.下面对此定理给以证明. 证明不妨假设)(x f 在[]b a ,上不恒为常数.因为如果)(x f 恒为常数,则0)(='x f 在(b a ,)上处处成立,这时定理的结论是明显的. 由于)(x f 在[]b a ,连续,由闭区间连续函数的性质,)(x f 必在[]b a ,上达到其最大值M 和最小值m,我们分两种情形来证明. (1)考虑特殊情形,)()(b f a f =.由于)(x f 不恒为常数,所以此时必有M >m,且M 和m 中至少有一个不等式.这时根据闭区间上连续函数的性质,在(b a ,)内至少有一点ξ,使得))(()(m f M f ==ξξ或者,于是对(b a ,)内任一点x ,必有 )) ()()(()(ξξf x f f x f ≥≤或于是由费马定理,即得 0)(='ξf . 而此时0)()(=-a f b f ,这就证明了定理成立. 对于这样特殊情况的中值定理,也叫【罗尔(Rolle)定理】. (2)考虑一般情形,)()(b f a f ≠.此时,作辅助函数[] 1

实验项目二住骨髓间充质干细胞的倍增时间与生长曲线的测定资料

PMSCs生长曲线和倍增时间的测定 【1】来自猪脂肪间充质干细胞的分离培养及其成脂分化: 取生长状况良好的P1、P3、P5、P9代细胞,用0.25%胰酶消化液,在37℃消化1-3min,制成单细胞悬液,然后以5x104个/ml密度接种到30个直径为35mm培养皿中,随机分成10组,每组3皿,每天检测一组中每皿的细胞总数,取3个皿的均值,如此至第10组结束,细胞技术如下(2004,司徒镇强)即一天消化3个组,共消化10天。 P1,P3,P5,P9均如此,每代30个皿,共计120个皿。 细胞群体倍增时间(PDT)=(t-t0)lg2/(lgN t-lgN0) t0培养起始时间,t,培养终止时间; N0培养初始细胞数,N t培养终止细胞数。 【2】增强型绿色荧光蛋白转染猪骨髓间充质干细胞特性观察 用0.25%胰酶将转染后的细胞克隆消化为单个细胞,用PBS洗2遍,1x105个细胞加入75μl破膜剂,振荡10s,加入PI染料700μl,室温避光30min,上机检测;选同期培养的为转染细胞为对照组,比较EGFP转染对细胞增殖的影响,分别计算出静止期G0/G1,增殖期S%,和G2/M 【3】两种方法分离小型猪骨髓间充质干细胞的比较 分别取两组0,1,3代细胞,制成1x103的细胞悬液,接种到96孔板,每孔细胞悬液200微升,置37℃、5%CO2饱和湿度孵箱内孵育,各组每24小时分别取出4孔,每孔加入MTT (2mg/ml)20微升37℃孵育,4h后吸弃孔内培养液,每孔加入150微升分析纯的二甲基亚砜,移至酶联免疫检测仪上振荡10min,用分光光度计在492nm波长处测定每孔的吸光度值(OD492),以OD(492)值为纵坐标,时间为横坐标绘制生长曲线。 【4】人骨髓间充质干细胞体外培养及其生物学特性研究 取不同代数细胞,调整细胞浓度为2x104/ml后,接种于96孔培养板,置37℃,5%CO2,饱和湿度培养箱培养后,用胰酶-EDTA进行消化,用台盼蓝拒染法计数活细胞,每天取12复孔,共7天;根据计数结果绘制细胞生长曲线。记录测得的结果,即培养潜伏期持续多长时间(12-24h),多长时间进入对数生长期(3天后),对数增殖期持续时间(3-5天),铺满皿底所需时间(5-7天),细胞进入平台期多长时间及持续多长时间,停止生长时间。

实验三微生物生长曲线的测定

实验三微生物生长曲线 的测定 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

实验三微生物生长曲线的测定 一、实验目的目的 1、了解细菌生长曲线特点及测定原理 2、学习用比浊法测定细菌的生长曲线? 二、实验原理 将少量细菌接种到一定体积的、适合的新鲜培养基中,在适宜的条件下进行培养,定时测定培养液中的菌量,以菌量的对数作纵坐标,生长时间作横坐标,绘制的曲线叫生长曲线。它反映了单细胞微生物在一定环境条件下于液体培养时所表现出的群体生长规律。依据其生长速率的不同,一般可把生长曲线分为延缓期、对数期、稳定期和衰亡期。这四个时期的长短因菌种的遗传性、接种量和培养条件的不同而有所改变。因此通过测定微生物的生长曲线,可了解各菌的生长规律,对于科研和生产都具有重要的指导意义。 测定微生物的数量有多种不同的方法,可根据要求和实验室条件选用。本实验采用比浊法测定,由于细菌悬液的浓度与光密度(OD值)成正比,因此可利用分光光度计测定菌悬液的光密度来推知菌液的浓度,并将所测的OD值与其对应的培养时间作图,即可绘出该菌在一定条件下的生长曲线,此法快捷、简便。 三、实验材料

1、菌种 2、培养基:肉膏蛋白胨培养基 3、仪器和器具 721分光光度计,比色杯,恒温摇床,无菌吸管,试管,三角瓶。 4、流程 种子液→标记→接种→培养→测定 四、实验步骤 1、种子液制备 取细菌菌种1支,以无菌操作挑取1环菌液,接入肉膏蛋白胨培养液中,培养18h作种子培养液。 2、标记编号 取盛有30mL无菌肉膏蛋白胨培养液的三角瓶6个,分别编号为0、4、8、12、16、20。 3、接种培养

微分几何习题解答(曲线论)

微分几何主要习题解答 第一章 曲线论 §2 向量函数 5. 向量函数)(t r 具有固定方向的充要条件是)(t r × )('t r = 0 。 分析:一个向量函数)(t r 一般可以写成)(t r =)(t λ)(t e 的形式,其中)(t e 为单位向 量函数,)(t λ为数量函数,那么)(t r 具有固定方向的充要条件是)(t e 具有固定方向,即)(t e 为常向量,(因为)(t e 的长度固定)。 证 对于向量函数)(t r ,设)(t e 为其单位向量,则)(t r =)(t λ)(t e ,若)(t r 具有固 定方向,则)(t e 为常向量,那么)('t r =)('t λe ,所以 r ×'r =λ'λ(e ×e )=0 。 反之,若r ×'r =0 ,对)(t r =)(t λ)(t e 求微商得'r ='λe +λ'e ,于是r × 'r =2 λ(e ×'e )=0 ,则有 λ = 0 或e ×'e =0 。当)(t λ= 0时,)(t r =0 可与任意方向平行;当λ ≠ 0时,有e ×'e =0 ,而(e ×'e 2)=22'e e -(e ·'e 2)=2 'e ,(因为e 具有固定长, e ·'e = 0) ,所以 'e =0 ,即e 为常向量。所以,)(t r 具有固定方向。 6.向量函数)(t r 平行于固定平面的充要条件是(r 'r ''r )=0 。 分析:向量函数)(t r 平行于固定平面的充要条件是存在一个定向向量)(t n ,使 )(t r ·n = 0 ,所以我们要寻求这个向量n 及n 与'r ,''r 的关系。 证 若)(t r 平行于一固定平面π,设n 是平面π的一个单位法向量,则n 为常向 量,且)(t r ·n = 0 。两次求微商得'r ·n = 0 ,''r ·n = 0 ,即向量r ,'r ,''r 垂直 于同一非零向量n ,因而共面,即(r 'r ''r )=0 。 反之, 若(r 'r ''r )=0,则有r ×'r =0 或r ×'r ≠0 。若r ×'r =0 ,由上题知 )(t r 具有固定方向,自然平行于一固定平面,若r ×' r ≠ ,则存在数量函数)(t λ、 )(t μ,使''r = r λ +μ'r ①

生长曲线的测定

实验日期:2017.11.1 实验班级:生物技术指导教师:张建丽 姓名:高熹学号:1120152430 测定细菌生长曲线 一.实验目的 1.通过对大肠杆菌生长曲线的测定,了解细菌生长的特点,综合训练微生物实验的基本实验技能。 2.巩固培养基的配制、灭菌、仪器的包扎、倒平板。 3.掌握用比浊法测定细菌的生长曲线。 二.实验原理 将少量细菌接种到一定体积的、适合的新鲜培养基中,在适宜的条件下进行培养,一定时间测定培养液中的菌量,以菌量的数量作纵坐标,生长时间作横坐标,绘制的曲线叫生长曲线。它反映了单细胞微生物在一定环境条件下于液体培养时所表现出的群体生长规律。依据其生长速率的不同,一般可把生长曲线分为延缓期、生长期、稳定期和衰亡期。将每一种一定量的细菌转入新鲜液体培养基中,在适宜的条件下培养细胞要经历延迟期、对数生长期、稳定期和衰亡期四个阶段。 延迟期:又叫调整期。细菌接种至培养基后,对新环境有一个短暂适应过程(不适应者可因转种而死亡)。此期曲线平坦稳定,因为细菌繁殖极少延迟期长短因素种、接种菌量、菌龄以及营养物质等不同而异,一般为1~4小时。此期中细菌体积增大,代谢活跃,为细菌的分裂增殖合成、储备充足的酶、能量及中间代谢产物。 对数生长期:又称指数期。此期生长曲线上活菌数直线上升。细菌以稳定的几何级数极快增长,可持续几小时至几天不等(视培养条件及细菌代时而异)。此期细菌形态、染色、生物活性都很典型,对外界环境因素的作用敏感,因此研究细菌性状以此期细菌最好。抗生素作用,对该时期的细菌效果最佳。 稳定期:该期的生长菌群总数处于平坦阶段,但细菌群体活力变化较大细菌浓度达到最大即环境最大容纳量。由于培养基中营养物质消耗、毒性产物(有机酸、过氧化物等)积累PH下降等不利因素的影响,细菌繁殖速度渐趋下降,相对细菌死亡数开始逐渐增加,此期细菌增殖数与死亡数渐趋平衡。细菌形态、染色、生物活性可出现改变,并产生相应的代谢产物如外毒素、内毒素、抗生素、以及芽孢等。 衰亡期:随着稳定期发展,细菌繁殖越来越慢,死亡菌数明显增多。活菌数与培养时间呈反比关系,此期细菌变长肿胀或畸形衰变,甚至菌体自溶,难以辩认其形。生理代谢活动趋于停滞。故陈旧培养物上难以鉴别细菌。 体内及自然界细菌的生长繁殖受机体免疫因素和环境因素的多方面影响,不会出现象培养基中那样典型的生长曲线。掌握细菌生长规律,可有目的地研究控制病原菌的生长,发现和培养对人类有用的细菌。 这4个时期的长短因菌种的遗传性、接种量和培养条件的不同而有所不同。因此通过测定微生物的生长曲线,可了解个菌的生长规律,对于科研和生产都具有重要的指导意义。 测定微生物的数量有多种不同的方法,可根据要求和实验室条件选用。本实

曲线论(三)

§3曲线的概念 曲线是微分几何所研究的主要对象,因此先弄清曲线的概念。 一 曲线的概念 1 有关映射的知识 映射:给出两个集合E ,E '。若对每个x E x E ''∈∈,有与x 对应, 则称给定了从E 到E '的一个映射,记作f 。x '称为x 的像,x 称为x '的原像。也记为x '=f(x). 单射:若1212x x E x x ∈≠ ≠12,,时有f(x )f(x ), 则称 f 是单射。 满射:若对每个,(),(),x E x E x f x f E E ''''∈∈==都存在使或则称f 是到上的映射,也叫满射。 一一映射:单且满的映射叫做一一映射。 连续映射: 设E ,E '为欧氏空间的两个集合,0,x E ∈若对任意小 的0((),())d f x f x εδδε?<0>0,>0使当d(x ,x)<时有,则称f 在0x 连续。 对于E 中每一点x ,f 在x 连续,则称映射f 是连续的。 逆映射:若f 是E 到E '的一一映射,则这个映射也确定了一个 从E '到E 的一个一一映射x E ''∈-1 f : 使对对任意的,如果x '=f(x), x E ∈,则'-1-1 f (x )=x,映射f 叫做f 的逆映射。 拓扑映射或同胚:一一的、双方连续(即f, -1 f 都连续)的映 射称为同胚或拓扑映射。 2 简单曲线段 ① 定义 称开线段到三维空间中的拓扑映射的像为简单曲线段。 注:有的教材中把自身不相交的曲线称为简单曲线段。

例 开线段弯成开圆弧,从开线段到开圆弧有一个拓扑映射,因 此圆弧是简单曲线段。 在一张长方形的纸上画一条斜的 直线,把这张纸卷成圆柱面,则直线 成为圆柱螺线。从直线到圆柱螺线的 映射是拓扑映射,因此螺线是简单曲 线段。 说明:对任何曲线“小范围”的研究总可以作为简单曲线段来研究。因此,以后讨论曲线时都指简单曲线段。 ② 曲线的方程 在直线上引入坐标t(a

实验三 微生物生长曲线的测定

实验三微生物生长曲线的测定 一、实验目的目的 1、了解细菌生长曲线特点及测定原理 2、学习用比浊法测定细菌的生长曲线 二、实验原理 将少量细菌接种到一定体积的、适合的新鲜培养基中,在适宜的条件下进行培养,定时测定培养液中的菌量,以菌量的对数作纵坐标,生长时间作横坐标,绘制的曲线叫生长曲线。它反映了单细胞微生物在一定环境条件下于液体培养时所表现出的群体生长规律。依据其生长速率的不同,一般可把生长曲线分为延缓期、对数期、稳定期和衰亡期。这四个时期的长短因菌种的遗传性、接种量和培养条件的不同而有所改变。因此通过测定微生物的生长曲线,可了解各菌的生长规律,对于科研和生产都具有重要的指导意义。 测定微生物的数量有多种不同的方法,可根据要求和实验室条件选用。本实验采用比浊法测定,由于细菌悬液的浓度与光密度(OD值)成正比,因此可利用分光光度计测定菌悬液的光密度来推知菌液的浓度,并将所测的OD值与其对应的培养时间作图,即可绘出该菌在一定条件下的生长曲线,此法快捷、简便。 三、实验材料 1、菌种 2、培养基:肉膏蛋白胨培养基 3、仪器和器具 721分光光度计,比色杯,恒温摇床,无菌吸管,试管,三角瓶。 4、流程 种子液→标记→接种→培养→测定 四、实验步骤 1、种子液制备 取细菌菌种1支,以无菌操作挑取1环菌液,接入肉膏蛋白胨培养液中,培养18h作种子培养液。 2、标记编号 取盛有30mL无菌肉膏蛋白胨培养液的三角瓶6个,分别编号为0、4、8、12、16、2 0。 3、接种培养 用2mL无菌吸管分别准确吸取1mL种子液加入已编号的6个三角瓶中,于37℃下振

荡培养。然后分别按对应时间将三角瓶取出测定OD值。 4、生长量测定 将未接种的肉膏蛋白胨培养基倾倒入比色杯中,选用600nm波长分光光度计上调节零点,作为空白对照,并对不同时间培养液从0h起依次进行测定,对浓度大的菌悬液用未接种的牛肉膏蛋白胨液体培养基适当稀释后测定,使其OD值在0.10.~0.65以内,经稀释后测得的OD值要乘以稀释倍数,才是培养液实际的OD值。 五、实验结果与分析 以上述表格中的时间为横坐标,OD600 值为纵坐标,绘制细菌的生长曲线。

§2 曲面论基本定理

第五章曲面论基本定理 §2曲面论基本定理 关于曲面如何依赖于其第一和第二基本形式,本节将要做出回答.一方面,关于唯一性,需要确定具有相同的第一和第二基本形式的曲面是否合同;另一方面,关于存在性,需要确定什么样的函数组能够成为正则曲面第一和第二基本形式的系数函数组.利用自然标架场的运动公式,以下的理论证明建立在相应的微分方程组的解的存在唯一性定理——Darboux 定理的基础之上. 曲面论基本定理给定 (u1, u2) 平面上的单连通区域U.给定U上 C2函数?g ij和 C1函数?Ωij,使?g= (?g ij)2?2正定、?Ω= (?Ωij)2?2对称,并且?g 和?Ω满足Gauss-Codazzi方程.则在E3中 ①存在正则曲面S: r=r(u1, u2) , (u1, u2)∈U,使其第一和第二基本形式的系数函数组g ij=?g ij,Ωij=?Ωij; ②上述曲面S在合同意义下是唯一的. 一.相关方程及其解的性质 首先建立并考察一阶齐次线性偏微分方程组 (2.1)?r ?u i =r i , ?r i ?u j =?Γi k j r k+?Ωij n ,?n ?u i =-?Ωil?g lk r k ; 其中 (?g ij)2?2=?g-1,?Γi k j=1 2 [(?g lj)i+ (?g li)j- (?g ij)l]?g lk,i, j, k, l= 1, 2 . 任意取定一点 (u01, u02)∈U,任意取定右手标架 {r0; (r1)0, (r2)0, n0} ,考虑微分方程组 (2.1) 在初始条件 (2.2)r(u01, u02) =r0 , r i(u01, u02) = (r i)0 , n(u01, u02) =n0 , i= 1, 2 之下的解,并且满足适定条件

细菌生长曲线的测定(精)

细菌生长曲线的测定 1 目的 1.1 了解细菌生长曲线特点及测定原理 1.2 学习用比浊法测定细菌的生长曲线 2 原理 将少量细菌接种到一定体积的、适合的新鲜培养基中,在适宜的条件下进行培养,定时测定培养液中的菌量,以菌量的对数作纵坐标,生长时间作横坐标,绘制的曲线叫生长曲线。它反映了单细胞微生物在一定环境条件下于液体培养时所表现出的群体生长规律。依据其生长速率的不同,一般可把生长曲线分为延缓期、对数期、稳定期和衰亡期。这四个时期的长短因菌种的遗传性、接种量和培养条件的不同而有所改变。因此通过测定微生物的生长曲线,可了解各菌的生长规律,对于科研和生产都具有重要的指导意义。 测定微生物的数量有多种不同的方法,可根据要求和实验室条件选用。本实验采用比浊法测定,由于细菌悬液的浓度与光密度(OD值)成正比,因此可利用分光光度计测定菌悬液的光密度来推知菌液的浓度,并将所测的OD值与其对应的培养时间作图,即可绘出该菌在一定条件下的生长曲线,此法快捷、简便。 3 材料 3.1菌种 大肠杆菌 3.2培养基 肉膏蛋白胨培养基 3.3 仪器和器具 721分光光度计,比色杯,恒温摇床,无菌吸管,试管,三角瓶。 4 流程 种子液→标记→接种→培养→测定 5 方法 5.1种子液制备 取大肠杆菌斜面菌种1支,以无菌操作挑取1环菌苔,接入肉膏蛋白胨培养液中,静止培养18h作种子培养液。 5.2标记编号 取盛有50mL无菌肉膏蛋白胨培养液的250mL三角瓶11个,分别编号为0、1.5、3、4、6、8、10、12、14、16、20h。

5.3接种培养 用2mL无菌吸管分别准确吸取2mL种子液加入已编号的11个三角瓶中,于37℃下振荡培养。然后分别按对应时间将三角瓶取出,立即放冰箱中贮存,待培养结束时一同测定OD 值。 5.4生长量测定 将未接种的肉膏蛋白胨培养基倾倒入比色杯中,选用600nm波长分光光度计上调节零点,作为空白对照,并对不同时间培养液从0h起依次进行测定,对浓度大的菌悬液用未接种的牛肉膏蛋白胨液体培养基适当稀释后测定,使其OD值在0.10.~0.65以内,经稀释后测得的OD值要乘以稀释倍数,才是培养液实际的OD值。 6 结果 6.1 将测定的OD值填入下表: 时间(h) 对照 0 1.5 3 4 6 8 10 12 14 16 20 光密度值(OD600) 6.2 以上述表格中的时间为横坐标,OD600 值为纵坐标,绘制大肠杆菌的生长曲线。

细胞生长曲线的绘制实验报告范文

2020 细胞生长曲线的绘制实验报告范 文 Contract Template

细胞生长曲线的绘制实验报告范文 前言语料:温馨提醒,报告一般是指适用于下级向上级机关汇报工作,反映情况,答复上级机关的询问。按性质的不同,报告可划分为:综合报告和专题报告;按行文的直接目的不同,可将报告划分为:呈报性报告和呈转性报告。体会指的是接触一件事、一篇文章、或者其他什么东西之后,对你接触的事物产生的一些内心的想法和自己的理解 本文内容如下:【下载该文档后使用Word打开】 篇一:实验五微生物生长量的测定及生长曲线的绘制 一、实验目的 学习了解微生物生长量测定的方法 学习了解细菌生长曲线的绘制方法 学习掌握血细胞计数板的使用方法 (一)微生物生长量的测定 计数法重量法生理指标法 1、显微镜直接计数法 (1)利用血细胞计数板计数 (2)涂片计数 2、活菌菌落计数法 3、滤膜法

(二)细菌生长曲线 将单细胞细菌接种到恒定容积的液体培养基中,不补充营养物或移去培养物,细菌以二分裂方式繁殖,以时间为横坐标,细菌数目的对数值为纵坐标,可画出一条反映细菌在整个培养期间菌数变化规律的曲线,称为生长曲线(growthcurve) 篇二:细胞生长曲线的测定 细胞生长曲线的测定 一、实验目的 掌握测定细胞生长曲线的方法。 二、实验器具 24孔细胞培养板、微量加样器、eppendorf管、吸头、吸头盒、显微镜、细胞计数板、载玻片、盖玻片、吸管、试管架、普通显微镜、细胞悬液、0.4%台盼蓝。 三、实验方法 1.培养细胞:首先在24孔细胞培养板内分别接种相同数量的细胞,计数并记录接种的细胞悬液密度,接种时间记为0小时。 2.计数细胞密度:从接种时间算起,每隔24小时计数3孔的细胞密度,算出平均值。为提高准确率,对每孔细胞可计数2-3次,如此操作至第七天结束。 3.绘制曲线:以培养时间为横坐标、细胞密度为纵坐标,将全部结果在坐标纸上绘图,即得所培养细胞的生长曲线。 篇三:MTT法绘制生长曲线 实验材料:

细胞生长曲线的绘制实验报告通用范本

内部编号:AN-QP-HT616 版本/ 修改状态:01 / 00 In Order T o Standardize The Management, Let All Personnel Enhance The Executive Power, Avoid Self- Development And Collective Work Planning Violation, According To The Fixed Mode To Form Daily Report To Hand In, Finally Realize The Effect Of Timely Update Progress, Quickly Grasp The Required Situation. 编辑:__________________ 审核:__________________ 单位:__________________ 细胞生长曲线的绘制实验报告通用范 本

细胞生长曲线的绘制实验报告通用范本 使用指引:本报告文件可用于为规范管理,让所有人员增强自身的执行力,避免自身发展与集体的工作规划相违背,按固定模式形成日常报告进行上交最终实现及时更新进度,快速掌握所需了解情况的效果。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 篇一:实验五微生物生长量的测定及生长曲线的绘制 一、实验目的 学习了解微生物生长量测定的方法 学习了解细菌生长曲线的绘制方法 学习掌握血细胞计数板的使用方法 (一)微生物生长量的测定 计数法重量法生理指标法 1、显微镜直接计数法 (1)利用血细胞计数板计数 (2)涂片计数 2、活菌菌落计数法

曲线论的基本公式

§1.4曲线论的基本公式—Frenet公式 1.4.1Frenet公式 由§1.2我们已经知道,在曲线C:r=r(s)上任一点P(s)处,有三个两两互相垂直的单位矢量α(s),β(s),γ(s),它们组成曲线的基本三棱形,或称Frenet标架,记为{P(s);α(s),β(s),γ(s)}. 因为α,β,γ是三个线性无关的向量,所以P(s)点处的任意一个向量都可以写成它们的线性组合,特别基本向量α,β,γ关于弧长的导矢量˙α,˙β,˙γ也可以用它们线性表示.由曲率和挠率的定义,我们已经知道 ˙α=kβ,˙γ=?τβ, 其中k和τ是曲线在P点处的曲率和挠率. 现在对式β=γ×α两边关于弧长s求导,并利用上面两式便得 ˙β=?kα+τγ, 于是我们得到下述公式 ˙α=kβ, ˙β=?kα+τγ,˙γ=?τβ, 这组公式是由法国数学家Frenet于1847年发现的,通常称为Frenet公式,同一组公式也被法国数学家Serret于1851年所独立发现,所以也有Frenet-Serret公式的说法.随着时间的推移,人们越来越认识到这组公式是曲线论的灵魂,它是研究曲线的几何性质的强有力的工具. 1.4.2Frenet公式的初步应用 【例1】已知曲线C:r=r(t)(t为一般参数)的副法矢量 γ= 1 √ 2 {?sin t,cos t,1}, 求它的切矢量α和主法矢量β,并求它的曲率和挠率之比. 25

【解】设曲线C的曲率和挠率分别为k和τ,s为弧长参数,首先求γ关于s的导矢 量,结合Frenet公式得 ?τβ= 1 √ 2 {?cos t,?sin t,0} dt ds , 显然τ=0,否则,dt ds =0,不合理,故β与矢量{cos t,sin t,0}平行,但后者为单位矢量,于是 β=±{cos t,sin t,0}, α=β×γ=± 1 √ 2 {sin t,?cos t,1}, τ=± 1 √ 2 dt ds , 为求曲率和挠率之比,注意到, ˙α=± 1 √ 2 {cos t,sin t,0} dt ds , 而˙α=kβ,比较两式得 k= 1 √ 2 dt ds , 因此,k τ =±1. 【例2】证明:如果曲率处处不为零的曲线的所有密切平面都经过一定点,则此曲线为平面曲线. 【证明Ⅰ】设曲线的一般参数方程为r=r(t),并设密切平面上流动点的径矢为R,则密切平面方程为 (R?r(t),r (t),r (t))=0. 利用密切平面过定点的条件,不失一般性设定点为坐标原点,则 (r(t),r (t),r (t))=0,(1)上式两边关于参数t求导,得 (r(t),r (t),r (t))=0,(2)若存在某个参数值t0,使得τ(t0)=0,则由τ的连续性,必存在某个开区间(t0?ε,t0+ε),在这个开区间上有τ(t)=0,或(r (t),r (t),r (t))=0,由题设,曲率处处不为0,即r (t),r (t)线性无关,这时由(1)式,r(t)可有如下线性表示 r(t)=λ(t)r (t)+μ(t)r (t), 26

§6 曲线论基本定理

第二章曲线的局部微分几何 §6曲线论基本定理 从前面所讨论的内容已经知道,弧长和曲率、挠率是刻划曲线的重要的几何量;同时,按照局部规范形式 (5.3) 式来看,可以感觉到它们能够在很大程度上确定曲线的局部几何性质.本节的中心,就是要证明它们通常能够构成曲线的完全的几何不变量系统并且在合同意义下确定曲线本身. 一.一般结果 曲线论基本定理给定区间I= (a, b) 上的连续可微函数?κ(s) > 0 和连续函数?τ(s) ,则在E3中 ①存在弧长s参数化曲线C: r=r(s) ,使其曲率函数κ(s) =?κ(s) ,并且其挠率函数τ(s) =?τ(s) ; ②上述曲线C在合同意义下是唯一的. 曲线论基本定理的考虑对象实际上是无逗留点的正则曲线;其含义明显分为存在性和唯一性两个方面;其证明将分成若干步骤进行.考虑到曲率、挠率和弧长微元与位置向量微分运算的关系,并注意到Frenet公式(4.5) 式,可以看到,曲线论基本定理证明的过程中在本质上需要用到适当的微分方程组求解的存在唯一性结果.因此,下面将不加证明地引用关于齐次线性常微分方程组的解的存在唯一性定理. 围绕着存在性,首先建立并考察联立的两个齐次线性常微分方程组 (6.1)d r d s=e1; (6.2) d d s? ? ? ? ?e1 e2 e3 = ? ? ? ? ? 0 ?κ 0 -?κ 0 ?τ 0 -?τ 0? ? ? ? ?e1 e2 e3 . 联立方程组中所包含的未知向量函数组{r(s); e1(s), e2(s), e3(s)} 可以理解成由12个普通未知函数而构成.联立方程组在给定的初值条件下有满足初始条件的唯一解(且在整个区间上延拓有定义). 引理1给定单位正交右手标架{r0; T0, N0, B0} ,在曲线论基本定理条件下任取一点s0∈I,则联立方程组 (6.1)-(6.2) 的满足初始条件

相关主题
文本预览
相关文档 最新文档