613平方根--广东省肇庆市高要区金利镇朝阳实验学校人教版七年级数学下册教案
- 格式:doc
- 大小:61.50 KB
- 文档页数:5
七年级数学下册6.1.1 算术平方根教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册6.1.1 算术平方根教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册6.1.1 算术平方根教案(新版)新人教版的全部内容。
6。
1。
1 平方根教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性。
2。
了解开方与乘方互为逆运算,会用平方运算求某些非负数的算术平方根。
.重点、难点重点: 算术平方根的概念,会求一个非负数的算术平方根.难点: 根据算术平方根的概念正确求出非负数的算术平方根教学过程一、 复习旧知在括号里填上适当的正数:(1) ( )2 =4/9 ; (2)( )2 =144 ; (3) ( )2 =100 ;(4) ( )2=0.64; (5)( )2 =49 (6) ( )2 =49/81你发现了什么?二、 情景导入1、元旦前,学校将举行美术作品比赛.小鸥很高兴,他想裁出一块面积为25dm 2的正方形画布,画上自己的得意之作参加比赛,这块画布的边长应取多少?2、试着完成下表:上面2个问题你能指出它们的共同特点吗?都是已知一个正数的平方,求这个正数的问题.设计意图:这两个问题很好直接回答,既复习了关于乘方的知识,又为今天要学习的知识作了铺垫,而且通过实例让学生从生活中去发现、探究、认识算术平方根.探究新知通过观察 ,引导学生得出算术平方根的概念。
2,那么这个正数x叫做a的算术平方根的概念:一般地,如果一个正数的平方等于a,即axa算术平方根,a的算术平方根记作:,读作“根号a”,a叫做被开方数.规定:0的算术数平方根是0.设计意图:口头回答,让学生熟悉算术平方根的概念,体会算术平方根的意义.例1 求下列各数的算术平方根:(1)100 (2)49/64 (3)0。
人教版数学七年级下册《6-1平方根第2课时》教学设计一. 教材分析人教版数学七年级下册《6-1平方根》第2课时,主要内容是平方根的概念和性质。
这部分内容是初中数学的基础,对于学生理解代数和几何中的许多概念具有重要意义。
本节课的主要内容有:平方根的定义、平方根的性质、平方根的运算等。
二. 学情分析七年级的学生已经学习了有理数的乘方,对幂的概念有一定的理解。
但是,平方根的概念和性质较为抽象,需要通过实例和活动让学生加深理解。
此外,学生的数学基础和学习习惯参差不齐,需要在教学过程中充分考虑这一点。
三. 教学目标1.理解平方根的概念,掌握平方根的性质。
2.能够进行平方根的运算。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.平方根的概念和性质。
2.平方根的运算。
五. 教学方法采用问题驱动法、实例分析法、小组合作法等多种教学方法,引导学生主动探究,合作交流,培养学生的数学思维能力。
六. 教学准备1.教材、教案、PPT等教学资料。
2.相关实例和练习题。
3.投影仪、电脑等教学设备。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实例,如物体的高度、温度等,引导学生回顾有理数的乘方,为新课的学习做好铺垫。
2.呈现(15分钟)通过PPT呈现平方根的定义和性质,让学生初步了解平方根的概念。
同时,引导学生发现平方根与有理数乘方的联系和区别。
3.操练(20分钟)让学生分组讨论,运用平方根的性质解决一些实际问题。
如:计算某个数的平方根,判断一个数是否为另一个数的平方根等。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)针对学生的讨论结果,进行讲解和总结,强化学生对平方根概念和性质的理解。
然后,让学生完成一些相关的练习题,巩固所学知识。
5.拓展(10分钟)引导学生思考:平方根在实际生活中的应用有哪些?让学生举例说明,进一步培养学生的数学应用能力。
6.小结(5分钟)对本节课的主要内容进行总结,强调平方根的概念和性质,提醒学生注意平方根的运算方法。
优质资料---欢迎下载6.1.1平方根一、教学目标1.了解算术平方根的概念2.会用根号表示数的算术平方根3.会求算术平方根并能比较两数的大小二、课时安排:1课时三、教学重点:了解算术平方根的概念,会用根号表示一个正数的算术平方根.四、教学难点:根据算术平方根的概念正确求出非负数的算术平方根。
五、教学过程(一)导入新课为了趣味接力比赛,要在运动场上圈出一个面积为100平方米的正方形场地,这个正方形场地的边长为多少?计算正方形的面积必须要知道正方形的边长,根据边长求面积是乘方运算,而根据面积求边长又是什么运算呢?这节课我们就来探讨这个问题。
(二)讲授新课1.自主学习学校要举行美术作品比赛,小鸥很高兴.他想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米?(一)说这块正方形画布的边长应取多少分米?你是怎么算出来的?答:因为52=25,所以这个正方形画布的边长应取5分米。
填写下表:正方形的面积9163614 25边长2.合作探究正数3的平方等于9,我们把正数3叫做9的算术平方根.正数4的平方等于16,我们把正数4叫做16的_______.算数平方根的定义:(1)一般地,如果一个正数x 的平方等于a ,即_______,那么这个正数x 就叫做a 的_____________________,记为_______ ,读作______________,a 叫做_______。
(2)规定0的算术平方根是_______,即_______。
温馨提示:关键词语 “正数”,例如:=239,实际上_______的平方也等于9,但是只有_______才叫做9的算术平方根。
算术平方根的表示方法:0.25的算术平方根表示为____;0的算术平方根表示为____;a(a≥0) 的算术平方根表示为______ .例 1 求下列各数的算术平方根:(1)10000; (2)2581; (3)0.01 解:观察上式我们发现:被开方数越_______,算术平方根也越_______。
一、情境导入 填空:(1)3的平方等于9,那么9的算术平方根就是________; (2)25的平方等于425,那么425的算术平方根就是________; (3)展厅的地面为正方形,其面积49平方米,则边长为________米. 还有平方等于9,425,49的其他数吗? 二、合作探究 探究点1:平方根的定义及性质 填一填: (1)4的平方等于16,那么16的算术平方根就是________; (2)25的平方等于425,那么425的算术平方根就是_______; (3)展厅地面为正方形,其面积是49 m 2,则其边长为______m.. (4)写出左圈和右圈中的“?”表示的数: 问题1: 平方等于9的数有几个?是哪些数? 问题2: 如果a 是一个正数,平方等于a 的数有几个?怎样把它们表示出来?它们有什么关系? 问题3: 平方等于0的数有几个?有平方是负数的数吗? 问题4: 平方根与算术平方根有什么区别与联系? 要点归纳: 1.平方根的性质: (1)正数有两个平方根,两个平方根互为相反数. (2)0的平方根还是0. (3)负数没有平方根. 2.平方根与算术平方根的联系与区别:
联系:
(1)包含关系:平方根包含算术平方根,算术平方根是平方根的一种.
(2)只有非负数才有平方根和算术平方根.
(3)0的平方根是0,算术平方根也是0.
区别:
(1)个数不同:一个正数有两个平方根,但只有一个算术平方根.
a,而算术平方根表示为
一个正数的两个平方根分别是2a+1和
因为一个正数的平方根有两个,且它们互为相反数,
互为相反数,根据互为相反数的两个数的和为。
平方根人教版数学七年级下册教案平方根人教版数学七班级下册教案1教学目标学问技能1.了解算术平方根的概念,会求正数的算术平方根并会用符号表示2.会用计算器求算术平方根3.了解无限不循环小数的特点数学思索1.通过学习算术平方根,建立初步的数感和符号感,进展抽象思维2.通过探究的大小,培育同学估算意识,了解两个方向无限靠近的数学思想解决问题1.通过拼大正方形的活动,表达解决问题方法的多样性,进展形象思维2.在探究活动中,学会与人合作,并能与他人沟通思维的过程和探究的结果情感看法1.通过学习算术平方根,熟悉数学与人类生活的亲密联系2.通过探究活动,熬炼克服困难的意志,建立自信念,提高学习热忱教学重点、难点重点:算术平方根的概念,感受无理数难点:探究的大小的过程教学过程与流程设计活动1创设情景,引入算术平方根20xx年10月16日,我国进行首次载人航天飞行取得圆满胜利。
中华民族探究太空的千年幻想实现了。
宇宙在脱离地球轨道进入正常运行轨道的速度要满意一个条件,即介于第一宇宙速度与其次宇宙速度之间,第一宇宙速度和其次宇宙速度分别满意:第一宇宙速度v1〔米/秒〕:,其次宇宙速度v2〔米/秒〕:小欧同学预备参与学校进行的美术作品竞赛。
他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参与竞赛,请你帮他计算一下这块正方形画布的边长应取多少?小欧还要预备一些面积如下的正方形画布,请你帮他把这些正方形的边长都算出来:面积191636边长1346上面的问题,事实上是已知一个正数的平方,求这个正数的问题一般地,假如一个正数x的平方等于a,即,那么这个正数x 叫做a的算术平方根,a的算术平方根记为,读作“根号a”,a叫做“被开方数”。
规定:0的算术平方根是0。
活动2通过一些简洁例题,进一步了解算术平方根1、你能求出以下各数的算术平方根吗?2、请同学们同桌之间合作,一位同学说一个正数,另一位同学说出这个正数的算术平方根。
七年级数学下册 6.1.2 平方根教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级数学下册 6.1.2 平方根教案(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级数学下册6.1.2平方根教案(新版)新人教版的全部内容。
6.1。
2 平方根教学目标1、会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.2、能用夹值法求一个数的算术平方根的近似值.3、通过求一个数的算术平方根的近似值,初步了解开方开不尽的数的无限不循环性,理解用近似值表示无限不循环小数的实际意义。
重点、难点重点:会比较两个数的算术平方根的大小。
难点: 会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识教学过程一、情景导入1.什么是算术平方根?2.判断下列各数有没有算术平方根?如果有,请求出它们的算术平方根.—36 ,0.09 ,,0 , .设计意图:复习算术平方根的知识,为今天要学习的知识作了铺垫,而且通过复习让学生从中去发现、探究、进一步认识算术平方根。
二、探究新知1、请大家四个人为一组,拿出自己准备好的两个边长为1的正方形纸片和剪刀,按虚线剪开拼成一个大的正方形.可还有其他方法,鼓励学生探究。
问题:这个大正方形的边长应该是多少呢?大正方形的边长是2,表示2的算术平方根,它到底是个多大的数?你能求出它的值吗?建议学生观察图形感受2的大小.小正方形的对角线的长是多少呢?让学生思考讨论并估计大概有多大.由直观可知道大于1而小于2,那么2是1点几呢?(接下来由试验可得到平方数最接近2的1位小数是1.4,而平方数大于2且最接近的1位小数是1。
算术平方根一、学生起点分析学生的知识技能基础:学生刚学完《勾股定理》,通过本章第一节的学习,已具备了对无理数的认识,知道只有有理数是不够的.学生还具备了乘方运算的基础,并且有计算正方形等几何图形面积的技能.学生活动经验基础:在前面的学习过程中,学生已经经历了很多合作学习的过程,具备了一定的合作学习的经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是义务教育课程标准实验教科书人教版七年级(下)第六章《实数》的第一节《平方根》.本节内容计3个课时,本节课是第1课时,主要是算术平方根的概念和性质的教学.课程标准要求,对于数学概念的教学,要关注概念的实际背景与形成过程,力求从学生实际出发,以他们熟悉的问题情景引入学习主题,在关注现实生活的同时,更加关注数学知识内部的挑战性,因此确定本节的教学目标如下:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.三、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的问题情境 初步探究 反馈练习 学习小结 作业布置深入探究实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒). 即铁球到达地面需要2秒. 说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的. 内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1. 三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3四、教学设计反思1.细讲概念、强化训练要想让学生正确、牢固地树立起算术平方根的概念,需要由浅入深、不断深化的过程.概念是由具体到抽象、由特殊到一般,经过分析、综合去掉非本质特征,保持本质属性而形成的.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有必要的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.“讲清概念”就是通过具体实例揭露算术平方根的本质特征.算术平方根的本质特征就是定义中指出的:“如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,”的“正数x ”,即被开方数是正的,由平方的意义,a 也是正数,因此算术平方根也必须是正的.当然零的算术平方根是零.“加强训练”不但指要加强求算术平方根的基本训练,使练习题达到一定的质和量,也包括书写格式的训练,如在求正数的算术平方根时,不是直接写出算术平方根,而是通过平方运算来求算术平方根,非平方数的算术平方根只能用根号来表示.“逐步深化”是指利用算术平方根的概念和性质的题目按不同的“梯度”组成题组,在教学的不同阶段按由浅入深的原则加以使用.2.发展思维、适度拓展在教学中,根据学生的实际情况,在学有余力的情况下,可以对a的双重非负性的知识进行适当的拓展.。
6.3.1实数(第1课时)教学设计一、教材分析1、地位作用:本章内容相当于旧教材《数的开方》一章,但编排顺序有所差别,旧教材先学习平方根,再将算术平方根作为其中的一种特例进行学习,而本套教材先联系实际学习认识算术平方根后,再进一步认识平方根。
这样可以引发学生的疑惑,激发学生学习兴趣,从而使学生积极主动地投入到数学活动中去。
本节篇幅不长,内容也不多,但知识比较抽象,而且与学生以前接触的数学知识差异较大,根据以前的教学经验,我感觉学生学习起来不会很顺手,而且它又是以后学习二次根式、一元二次方程的基础,需要老师在教学中精心构思,认真落实。
2、教学目标:知识与技能1、了解无理数和实数的概念。
2、会对实数按照一定的标准进行分类,培养分类能力。
3、了解分类的标准与分类结果的相关性,进一步了解体会“集合”的义。
4、了解实数范围内相反数和绝对值的意义。
过程与方法1、通过无理数的引入,使学生对数的认识由有理数扩充到实数。
2、经历对实数进行分类,发展学生的分类意识。
3、经历观察与动手作图实践,让学生知道实数和数轴上的点是一一对应的。
4、通过类比使学生明白实数范围内的绝对值、相反数、倒数等含义与有理数范围内的一样。
情感、态度与价值观1、了解到人类对数的认识是不断发展的。
2、体会数系扩充对人类发展的作用。
3、学生在对实数的分类中感受数学的严谨性。
4、培养学生的合作交流能力与学习数学的兴趣。
5、培养学生敢于面对数学活动中的困难,并能有意识地运用已有知识解决新的知识。
3、教学重、难点重点:正确理解实数的概念在交流中学会与人合作,并能与他人交流自己思维的过程和结果。
难点:理解实数的概念二、教学准备:多媒体课件、导学案三、教学过程及一些含有。
执教者:授课班级:701/702 上课时间:第七周4月2日
课时总时数:62
课题: 6.1平方根
第三课时:平方根
教学目标:
(一)知识与技能:
1.掌握平方根的概念,明确平方根与算术平方根之间的联系与区别。
2.能用符号正确的表示一个数的平方根,理解开方运算和乘方运算之间的互逆关系.
(二)过程与方法:通过探索平方根与算术平方根的区别与联系,学会利用算术平方根解决平方根的问题.
(三)情感态度与价值观:通过对平方根的学习,培养学生从多方面,多角度分析问题,解决问题的习惯.
教学重点:平方根的概念和求数的平方根.
教学难点:平方根与算术平方根的区别与联系.
教学方法:研讨点拨法
教具准备:多媒体课件
教学时数:1课时
教学过程:
一、情境导入,初步认识
1.什么是算术平方根?
2.判断下列各数有没有算术平方根?如果有,请求出它们的算术平方根. 100 , 1 ,12125 , 0 , 0.0025 , (-3)² -25
二、自主学习
(1)3²= (-3)²= ( 32)²= ⎪⎭
⎫ ⎝⎛-32²= 思考:反过来,如果已知一个数的平方,怎样求这
个数?
【设计意图】引起学生对本节课知识的好奇心,进而认真听课.
三、合作探究
1、探究平方根的定义及性质
问题 :如果一个数的平方等于9,这个数是多少?
由于()3±²=9,所以这个数是3或-3.想一想:3和-3有什么特征?
3和-3互为相反数,会不会是巧合呢?
根据上面的研究过程填表:
平方根的定义:根据上述问题,即要找出一个数,使它的平方等于给定的数.由此我们抽象出下述概念:如果有一个数x ,使。