中考数学选择题、填空题压轴题总结

  • 格式:doc
  • 大小:418.48 KB
  • 文档页数:9

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学选择填空压轴

中考的选择、填空主要题型:

1.因式分解

因式分解的几种方法:

2.整式的加减乘除、乘方、开方等运算

3.一次函数恒过象限的问题

4.二次函数的最值问题

5.几何的折叠问题

6.三角形的三边关系、勾股定理及其逆定理

7.非负数的性质

8.方差问题

9.工程问题

10.几何证明,相似三角形

11.动点问题

12.找规律问题

一、几何中的动点问题

1. 如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D、E两

点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB 上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是( A)

2.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段

AB 最短时,

点B 的坐标为 (C)

(A )(0,0) (B )(22

,2

2

) (C )(-2

1,-2

1) (D )(-

2

2,-

2

2)

3.如图,点G 、D 、C 在直线a 上,点E 、F 、A 、B 在直线b 上,若

a b Rt GEF ∥,△从如图所示的位置出发,沿直线

b 向右匀速运动,直

到EG 与BC 重合.运动过程中GEF △与矩形ABCD 重合部分....的面积(S )随时间(t )变化的图象大致是( B )

y

x

O

B

A

(第2题图)

G

D

C

E

F

A

B

b

a

(第3题图)

s

t

O

A .

s

t

O

B .

C .

s t

O

D .

s

t

O

4.矩形ABCD 中,8cm 6cm AD AB ==,.动点E 从点C 开始沿边CB 向点B 以2cm/s 的速度运动,动点F 从点C 同时出发沿边CD 向点D 以1cm/s 的速度运动至点D 停止.如图可得到矩形CFHE ,设运动时间为

x (单位:s ),此时矩形ABCD 去掉矩形CFHE 后剩余部分的面积为y (单

位:2cm ),则y 与x 之间的函数关系用图象表示

大致是下图中的( A )

5.在Rt △ABC 中,︒=∠90C ,4,3==BC AC ,D 是AB 上一动点

(不与A 、B 重合),AC DE ⊥于点E ,BC DF ⊥于点F ,点D 由A 向

B 移动时,矩形DECF 的周长变化情况是( B )

A .逐渐增大

B .逐渐减小

C .先增大后减小

D .先减小后增大

6.在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B A C →→的方向运动.设运动时间为t ,那么当t = 15 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.

A

D F C

E

H

B (第4题图)

O

y (cm 2)

x (s)

48 16

4 6 A .

O

y (cm 2)

x (s)

48 16 4 6

B .

O

y (cm 2)

x (s)

48 16 4 6

C .

O

y (cm 2)

x (s)

48 16

4 6 D .

(第5题图)

二、几何中常利用相似三角形、折叠的问题 1. 如图,在

ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,

交DC 的延长线于点F ,BG⊥AE,垂足为G ,BG=24,则ΔCEF 的周长为( A )

(A )8 (B )9.5 (C )10 (D )11.5

2、如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为(C ) A .1 B .3

4 C .2

3 D .2 解:先利用相似三角形

联立方程组可求得

相似4

'''=+=∆∆BG G A G A AD

BG BD BG A ABD 3.如图,在等腰梯形ABCD 中,AD BC ∥,对角线AC BD ⊥于点O ,

AE BC DF BC ⊥⊥,,垂足分别为

E 、

F ,设AD =a ,BC =b ,则四边形AEFD

的周长是( A )

A .3a b +

B .2()a b +

C .2b a +

D .4a b +

A ′

G D

B C

A

图 D

C A

B

E F

O

(第3题图)

4.已知⊙O 是ABC △的外接圆,若AB =AC =5,BC =6,则⊙O 的半径为( C )

A .4

B .3.25

C .3.125

D .2.25

5.如图,等边ABC △的边长为3,P 为BC 上一点,

且1BP =,D 为AC 上一点,若60APD ∠=°,则

CD 的长为( D )

A .3

2 B .2

3 C .12 D .34

6.如图,在梯形ABCD 中,AB//DC ,∠D=90o ,AD=DC=4,AB=1,F 为 AD 的中点,则点F 到BC 的距离是(A) A.2 B.4 C.8 D.1

7.如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二

次方程2

230x x +-=的根,则ABCD 的周长为( A )

A .422+

B .1262+

C .222+

D .221262++或

8.如图,在Rt ABC △中,9042C AC BC ===∠°,,,分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为 42

3

-π .(结果保留π)

C A

B

8图

A

D C

P

B

(第5题图)

60°

A D

C

E B