当前位置:文档之家› 何时将梁设为铰接

何时将梁设为铰接

何时将梁设为铰接

铰接其实只是一种理想的连接方式,在没有计算机的年代,大家算次梁和主梁连接的地方时,若准确计算那里的弯矩的话工作量太大,就按铰接处理,这时可以理解为次梁梁端可以出现裂缝。后来有了计算机,又有了PKPM,那么就可以让电脑解决了。但是在手算年代留下的习惯还在有些地方延续,主要是因为手算过的工程师现在都做了总工,说得算,呵呵。

其实是否按铰接取决于设计者的意图。你允许这里出现裂缝,那就设铰接,否则不设。比如有的连梁抗剪不够,怎么调整模型都不够,那就把它搞成两端铰接,即为地震时,此梁两端立刻裂掉,对整体结构刚度没有丝毫贡献,即不考虑其刚度。

是否设为铰接其实各有利弊。不设的话计算比较准确,梁端会有弯矩。但一旦梁端出现裂缝(有可能是人为因素,比如野蛮装修),跨中立刻吃紧,会有安全隐患,则还要加大跨中钢筋,造成不必要浪费。而设了铰接,按实际的主梁抗扭刚度来说,次梁梁端就会有裂缝出现,可能会有业主投诉。

我的做法是不设铰接,一半是嫌麻烦(呵呵),一半是怕出裂缝,然后再把跨中加大5%配筋。

你的问题应该是问梁和墙垂直相连吧,我认为和主梁相连是一样的,因为墙的平面外刚度也不大。

ABAQUS中Cohesive单元建模方法

复合材料模型建模与分析 1. Cohesive单元建模方法 几何模型 使用内聚力模型(cohesive zone)模拟裂纹的产生和扩展,需要在预计产生裂纹的区域加入cohesive层。建立cohesive层的方法主要有: 方法一、建立完整的结构(如图1(a)所示),然后在上面切割出一个薄层来模拟cohesive 单元,用这种方法建立的cohesive单元与其他单元公用节点,并以此传递力和位移。 方法二、分别建立cohesive层和其他结构部件的实体模型,通过“tie”绑定约束,使得cohesive单元两侧的单元位移和应力协调,如图1(b)所示。 (a)cohesive单元与其他单元公用节点(b)独立的网格通过“tie”绑定 图1.建模方法 上述两种方法都可以用来模拟复合材料的分层失效,第一种方法划分网格比较复杂;第二种方法赋材料属性简单,划分网格也方便,但是装配及“tie”很繁琐;因此在实际建模中我们应根据实际结构选取较简单的方法。 材料属性 应用cohesive单元模拟复合材料失效,包括两种模型:一种是基于traction-separation描述;另一种是基于连续体描述。其中基于traction-separation描述的方法应用更加广泛。 而在基于traction-separation描述的方法中,最常用的本构模型为图2所示的双线性本构模型。它给出了材料达到强度极限前的线弹性段和材料达到强度极限后的刚度线性降低软化阶段。注意图中纵坐标为应力,而横坐标为位移,因此线弹性段的斜率代表的实际是cohesive单元的刚度。曲线下的面积即为材料断裂时的能量释放率。因此在定义cohesive

柱脚刚接与铰接的区别

刚性连接与铰性连接 钢结构中,梁与柱的连接通常采用3种形式,柔性连接(也称铰接)、半刚性连接和刚性连接。在工程实践中,如何判别一个节点属于刚性、半刚性或铰接连接主要是看其转动刚度,刚性连接应不会产生明显的连接夹角变形,即连接夹角变形对结构抗力的减低应不超过5%。 半刚性连接则介于二者之间。 梁柱的半刚性连接可以采用在梁端焊上端板,用高强螺栓连接,或是用连于翼缘的上、下角钢和高强螺栓。其设计要求如下: (1)端板连接在端板连接节点中力的传递可将梁端弯矩简化为一对力偶,拉力经受受拉翼缘传递。受拉螺栓对受拉翼缘对称布置。压力可以通过端板或柱翼缘承压传递,压力区螺栓可少量设置,并和受拉螺栓一起传递剪力。 (2)上下角钢连接用上下角钢连接的节点中,受拉一侧的连接角钢在弯矩作用下,不仅竖肢变形,水平肢也变形。因此,角钢连接的刚度比端板者稍低。 连接性质的划分应由下列三项指标来表征:抗弯刚度,转动刚度,延性(转动能力)。 &&& 抗弯承载力是连接强度的主要项目,此外还有抗剪强度。刚性连接从理论上来说,承受弯矩和剪力的能力应该不低于梁的承载能力,亦即不低于梁的塑性铰弯矩和腹板全塑性剪力。地震区的框架应该要求更高,体现“强连接-弱构件”的原则。对于柔性连接则只要求其抗剪能力。半刚性连接介于刚性和柔性连接之间,必须具有一定的抗弯能力。 && 连接的转动刚度由弯矩-转角曲线的斜率来体现,它不是常量,转动刚度对框架变形和承载力都有影响。对变形的影响需要结合正常使用极限状态进行分析。为此,应考察连接的初始刚度或标准荷载作用下的割线刚度。刚性连接的刚度,理论上需要达到无限大,但实际上只要达到一定的限值就可以看作是刚性连接,问题在于如何从数量上做出界定。 &&& 转动能力属于延性指标,塑性设计的框架要求塑性铰部位有一定转动能力,以便后续的内力重分布能够出现。 &&& 1.刚性连接这种构造假定梁柱连接有足够的刚性,梁柱间无相对转动,连接能承受弯矩。铰支连接这种构造假定结构承受重力荷载时,主梁和柱之间只传递垂直剪力,不传递弯矩。这种连接可以不受约束的转动。 2.在钢结构框架的传统分析与设计中,为简化分析设计过程,梁柱连接被认作理想的铰接连接或完全的刚性连接,并且认为:连接对转动约束达到理想刚接的90%以上,可视为刚接;在外力作用下,柱梁轴线夹角的改变量达到理想铰接的80%以上的连接视为铰接。采用理想铰接的假定,将意味着梁与柱之间没有弯矩的传递,就转动而论,用铰连在一起的梁和柱将相互独立地转动. 能抵抗弯矩作用的柱脚称为刚接柱脚,相反不能抵抗弯矩作用的柱脚称为铰接柱脚,刚接与铰接的区别在于是否能传递弯矩,从实际上看,如果锚栓在翼缘的外侧,就是刚接,而且一般不少于四个,如果在翼缘内侧,就是铰接,一般为两个或四个。 这两种柱脚很明显的区别就是对侧移控制,如果结构对侧移控制较严,则采用刚接柱脚,例如有吊车荷载的情况,吊车荷载是动力荷载,对侧移比较敏感,而且侧移过大会造成吊车卡轨现象,此时应把柱脚设计成刚接柱脚。 *“如果是铰接柱脚需要加设抗剪键,地脚螺栓不能承受剪力的”本人的这句话说得有点不严谨,应该说“如果是铰接柱脚一般需要加设抗剪键”。因为钢结构铰接柱脚的柱脚轴力比较小,底板和基础砼表现的摩擦力很少能满足要求,所以多数柱脚都需要设置抗剪键 刚接与铰接的区别: 1.刚接能传递弯矩合剪力,铰接则只能传递剪力. 2.二者在构造上也有区别:刚接如为H型钢则其上下翼缘和腹板均需有连接构造;铰接如为H

钢结构节点刚铰接问题

在钢结构工程中,什么叫刚接什么叫铰接二者分别适用那。 上面的回答不正确哦。要是群栓那也是刚接的。所谓刚接,就是节点部分的各构件是固定死的,不能相对活动。铰接就是节点通过销轴, 单个螺栓,球形节点,等可以活动的东西连接的。连接之后,连接的各部件之间是可以活动的。刚接:焊接,铰接:用螺丝,最简单的回答。详细的也想不起来。原材料商情 钢结构里怎样区分刚接和铰接详细? 在工程实践中,如何判别一个节点属于刚性、半刚性或铰接连接主要是看其转动刚度, 刚性连接应不会产生明显的连接夹角变形,即连接夹角变形对结构抗力的减低应不超过5%。半刚性连接则介于二者之间。梁柱的半刚性连接可以采用在梁端焊上端板,用高强螺栓连接,或是用连于翼缘的上、下角钢和高强螺栓。其设计要求如下: (1)端板连接在端板连接节点中力的传递可将梁端弯矩简化为一对力偶,拉力经受受拉翼缘传递。受拉螺栓对受拉翼缘对称布置。压力可以通过端板或柱翼缘承压传递,压力区螺栓可少量设置,并和受拉螺栓一起传递剪力。 (2)上下角钢连接用上下角钢连接的节点中,受拉一侧的连接角钢在弯矩作用下,不仅竖。 高手指点一下:钢结构主梁与次梁应该是交接还是刚接啊。 钢结构主次梁通常用铰接的,也就是连接腹板即可。如果要刚接,最简单的方法是次梁直接搁置在主梁上面,再用加劲板加强一下,缺点是梁高叠加了,建筑师多半不能容忍。至于如混凝土梁一样保持梁面同高的前提下做刚接,那是很麻烦的,质量也难以保证。关于你说的和原混凝土结构的连接。钢梁和原混凝土柱做刚接非常困难,你打算怎么做节点才能保证弯矩的传递呢我能想到的只有用钢板做一个套箍整个把这个节点部位的混凝土柱箍住,这个套箍延伸出一小段钢梁,这延伸段再和你的钢梁连接,翼缘用外贴加劲板,腹板螺栓拴住。最好全部采用铰接,可以省事很多。钢梁与原混凝土柱的铰接节点很好处理:在原柱子上做个钢牛腿。tumblr?都可以,还是看你自己的设计思路和设计方法!我个人趋向于铰接! 铰接多啊实际工程中无处不在啊对于施工很便捷的 建筑钢结构中,关于刚接和铰接的详细定义是什么 - 已解决。 最佳答案1:刚接就是把两跟杆件死死的焊在一起,刚接可以传替力矩。铰接就是用一个可以转动的螺丝把两个刚体连接起来,铰接不可以传替力矩。最佳答案2:如果仅从力学角度分析,刚接是能限制节点的移动和转动,并且保证变形后相连的杆件相互之间的角度不变,而铰接是相连的构件能产生一定的转角,不限制转动,只限制移动 两跨钢构中间钢柱与钢梁定义为铰接还是刚接 - 已解决 - 搜。

常用几种钢结构构件的拼接

构件的拼接 一、等截面拉、压杆拼接 1、工厂拼接 ①拉杆:可以采用直接对焊(图a)或拼接板加角焊缝(图b)。直接对焊时焊缝质量必须达到一、二级质量标准,否则要采用拼接板加角焊缝。 ②压杆:可以采用直接对焊(图a)或拼接板加角焊缝(图b)。 采用拼接板加角焊缝时,构件的翼缘和腹板都应有各自的拼接板和焊缝,使传力尽量直接、均匀,避免应力过分集中。确定腹板拼接板宽度时,要留够施焊纵焊缝时操作焊条所需的空间。

2、工地拼接 ①拉杆:可以用拼接板加高强螺栓(图c)或端板加高强螺栓(图d)。 ②压杆:可以采用焊接(图e、f)或上、下段接触面刨平顶紧直接承压传力(图g、 h)。用焊接时,上段构件要事先在工厂做好坡口,下段(或上、下两段)带有定 位零件(槽钢或角钢),保证施焊时位置正确。上、下段接触面刨平顶紧直接承 压传力时应辅以少量焊缝和螺栓,使不能错动。拉压杆的拼接宜按等强度原则 来计算,亦即拼接材料和连接件都能传递断开截面的最大内力。 二、变截面柱的拼接(略) 三、梁的拼接 梁的拼接施工条件的不同分为车间(工厂)拼接和工地拼接两种。 1、工厂拼接 1)翼缘和腹板的工厂拼接位置最好错开,以避免焊缝集中。 2)翼缘和腹板的拼接焊缝一般采用对接焊缝。 3)对于满足1、2级焊缝质量检验级别的焊缝不需要进行验算。

4) 对于满足3级焊缝质量检验级别的焊缝需要进行验算.当焊缝强度不足时可 采用斜焊缝。当θ满足tgθ≤1.5时,可以不必验算。 2、工地拼接的构造 1)工地拼接一般应使翼缘和腹板在同一截面处断开,以便于分段运输(图a)。为了使翼缘板在焊接过程中有一定地伸缩余地,以减少焊接残余应力,可在工 厂预留约500mm长度不焊。 2)图b将翼缘和腹板的拼接位置适当错开的方式,可以避免焊缝集中在同一截面,但运输有一定困难。 3)对于铆接梁和较重要的或受动力荷载作用的焊接大型梁,其工地拼接常采用高强螺栓连接。 主次梁的连接 一.次梁为简支梁 1、叠接 构造:在主梁上的相应位置应设置支承加劲肋,以免主梁腹板承受过大的局部 压力。 特点:构造简单,次梁安装方便,但主、次梁体系所占的净空大。 计算:一般不用计算,螺栓只是起到安装固定作用。

钢结构里怎样区分刚接和铰接

钢结构里怎样区分刚接和铰接 技术资料2010-11-30 17:52:46 阅读185 评论0 字号:大中小订阅 刚性连接与铰性连接 钢结构中,梁与柱的连接通常采用3种形式,柔性连接(也称铰接)、半刚性连接和刚性连接。在工程实践中,如何判别一个节点属于刚性、半刚性或铰接连接主要是看其转动刚度,刚性连接应不会产生明显的连接夹角变形,即连接夹角变形对结构抗力的减低应不超过5%。 半刚性连接则介于二者之间。 梁柱的半刚性连接可以采用在梁端焊上端板,用高强螺栓连接,或是用连于翼缘的上、下角钢和高强螺栓。其设计要求如下: (1)端板连接在端板连接节点中力的传递可将梁端弯矩简化为一对力偶,拉力经受受拉翼缘传递。受拉螺栓对受拉翼缘对称布置。压力可以通过端板或柱翼缘承压传递,压力区螺栓可少量设置,并和受拉 螺栓一起传递剪力。 (2)上下角钢连接用上下角钢连接的节点中,受拉一侧的连接角钢在弯矩作用下,不仅竖肢变形,水平肢也变形。因此,角钢连接的刚 度比端板者稍低。 连接性质的划分应由下列三项指标来表征:抗弯刚度,转动刚度,延 性(转动能力)。 抗弯承载力是连接强度的主要项目,此外还有抗剪强度。刚性连接从理论上来说,承受弯矩和剪力的能力应该不低于梁的承载能力,亦即不低于梁的塑性铰弯矩和腹板全塑性剪力。地震区的框架应该要

求更高,体现“强连接-弱构件”的原则。对于柔性连接则只要求其抗剪能力。半刚性连接介于刚性和柔性连接之间,必须具有一定的抗弯能 力。 连接的转动刚度由弯矩-转角曲线的斜率来体现,它不是常量,转动刚度对框架变形和承载力都有影响。对变形的影响需要结合正常使用极限状态进行分析。为此,应考察连接的初始刚度或标准荷载作用下的割线刚度。刚性连接的刚度,理论上需要达到无限大,但实际上只要达到一定的限值就可以看作是刚性连接,问题在于如何从数量上 做出界定。 转动能力属于延性指标,塑性设计的框架要求塑性铰部位有一定转动能力,以便后续的内力重分布能够出现。 1.刚性连接这种构造假定梁柱连接有足够的刚性,梁柱间无相对转动,连接能承受弯矩。铰支连接这种构造假定结构承受重力荷载时,主梁和柱之间只传递垂直剪力,不传递弯矩。这种连接可以不受约束 的转动。 2.在钢结构框架的传统分析与设计中,为简化分析设计过程,梁柱连接被认作理想的铰接连接或完全的刚性连接,并且认为:连接对转动约束达到理想刚接的90%以上,可视为刚接;在外力作用下,柱梁轴线夹角的改变量达到理想铰接的80%以上的连接视为铰接。采用理想铰接的假定,将意味着梁与柱之间没有弯矩的传递,就转动而论,用铰连在一起的梁和柱将相互独立地转动.

结构设计中梁端铰接的问题

结构设计中梁端铰接的问题 摘要:结构设计中经常会遇到梁端铰接还是固结的问题,这时常困惑着结构设计人员,本文就结构设计中如何确定铰接梁的问题就个人观点做以阐述 关键词:结构设计铰接刚接 1.引言 好的结构设计既要传力明确,又要跟实际相符,其中梁端固结还是铰接直接影响着结构的受力状态,本文就结构设计中铰接梁的问题做如下探讨。 2.刚接与铰接的概念 梁间连接的方式通常有刚接和铰接两种形式。刚接是指能传递竖向力和水平力,又能传递弯矩的构件相互连接方式,而铰接是指能传递竖向力和水平力而不能传递弯矩的构件相互连接方式。然而现实中梁的连接方式通常是介于两者之间的,一般情况下,能承受弯矩大的连接方式就称为刚性,而受力过程中承受较小弯矩时就偏向于形成铰接。 3.当前存在的设铰接梁的几种情况及探讨 3.1剪力墙的厚度或主梁宽度不能满足梁负弯矩筋的锚固要求,则梁与构件的连接可以认为属于铰接,在PKPM结构设计时可以点铰。 3.2.当梁为多夸连续布置时,连续梁的端支座处理办法同3.2.1,其中间支座负弯矩筋连续通过剪力墙,不存在锚固长度的问题,可以认为是刚接。 上面两种情况,可概括为梁端锚固长度不够。铰接和固接是通过构造措施保证的。作为梁端铰接,就是要保证梁端有一定的转动能力,允许此梁在两端形成朔性铰而产生裂缝,但是不会破坏,实际上没有完全的铰接也没有完全的固接,我们所能做的就是使我们的构造措施能满足工程的需要。我们认为假定梁端为铰接的结构,实际上梁端仍然有一定的弯矩,因此《混凝土规范》9.2.6条对此作出了规定要求上部配置构造钢筋,就是这个道理。但要注意,按铰接设计的梁端负筋一定不能过大,满足构造要求即可;否则塑性铰很难形成,不能形成塑性铰则次梁弯矩对主梁造成的协调扭矩依然存在,但计算又未考虑该协调扭矩,有可能造成主梁抗扭不足。 3.3虽然主梁的宽度可以满足次梁负弯矩筋的锚固要求,但因主梁的线刚度比次梁的线刚度大很多,此时线刚度大的主梁可视作线刚度小的次梁系的不动铰支座,则次梁与主梁连接处可以认为是铰接 3.4由于主梁对次梁的约束作用, 当次梁靠近主梁支座时,会在其梁梁端产生

abaqus 中梁板壳单元的弯曲问题beamplateshell

ABAQUS中梁板壳单元的弯曲问题 曲哲 2007-4-3 一、Euler-Bernoulli梁与Timoshenko梁 在ABAQUS的单元库中,所有三次插值的梁单元(如B23,B33等),均为Euler-Bernoulli梁,而所 有线性和二次插值的梁单元(如B21,B22,B31,B32等),均为Timoshenko梁。 (1)细长梁与深梁 B23为2结点三次插值的Euler-Bernoulli梁。由于在形成单元刚度矩阵时等效载荷项的被积函数至少 是3次的,所以至少需要2个积分点才能达到完全的高斯积分。而在ABAQUS中,B23有3个积分点, 这意味着被积函数可以达到5次。总之B23是完全积分的单元。而B21和B22分别为2结点线性插值和3 结点二次插值的Timoshenko梁,并且默认的采用减缩积分来避免剪切锁死。B22只有2个积分点,B21 只有1个积分点,它们都只能达到1次的插值精度。 表1:集中力作用下悬臂梁的自由端挠度(mm) 细长梁(l/h=10)深梁(l/h=3) 材力解 1 2 4 材力解 4 2 单元个数 1 0.1080 0.1080 4.000 4.000 4.000 0.10800.1080 B23(E-B梁) 4.000 B21(Timoshenko梁) 3.734 3.955 4.010 4.000 0.10860.1145 0.1160 0.1080 B22(Timoshenko梁) 4.028 4.028 4.028 4.000 0.11650.1165 0.1165 0.1080 表1比较了上述三种梁单元在应用于细长梁和深梁受弯时的表现。问题描述如图1所示,为端部受集 中载荷的悬臂梁。E-B梁B23完全忠实于材料力解的解答,不考虑剪切应变的影响,并且只用1个B23单 元就可以得到与材力解一致的结果。B21和B22考虑了梁的剪切变形,其分析得到的挠度略大于材力解。 同时可以看出,B21和B22用于细长梁时并没有发生剪切自锁。 图1:悬臂梁的构型图与截面图 图2:网格划分(2个单元)

浅析钢结构柱脚设计要点

浅析钢结构柱脚设计要点 柱脚的构造使柱身的内力可靠的传给基础,并和基础有牢固的连接。柱脚的连接形式有铰接和刚接两种形式,铰接柱脚不承受弯矩,只承受轴向压力和水平剪力,剪力通常由底板和基础表面的摩擦力传递,当此摩擦力不足以承受水平剪力时,应在柱脚底板下设置抗剪键,抗剪键可用方钢、短T 字钢和H 型钢做成。刚接柱脚承受弯矩,轴向压力和水平剪力。本文简述柱脚底板区格划分及计算,阐述其施工时需要注意的问题和施工控制重点,并对柱脚施工时出现的问题,提出具体处理方法。 1 柱脚计算 1.1柱脚底板面积计算 底板截面尺寸决定于基础材料的抗压能力,柱脚底板和基础接触面为作用力与反作用力,基础对底板的压应力可近似认为是均匀的,柱脚底板所需净面积 A n (柱脚底板长乘宽,减去锚栓孔面积)为: A n ≥ N 为柱承受轴向压力;c f 为基础混凝土的抗压强度设计值;c β为混凝土局 部承压时的强度提高系数,c f 、c β均按设计规范取值。 1.2 柱脚底板厚度计算 底板的厚度由板的抗弯强度决定,底板可视为一个支撑在靴梁、隔板和柱端的平板,承受基础传来的均匀反力,靴梁、隔板和柱端面均可视为底板的支撑边,并将底板分割成不同的区格,其中有四边支撑、三边支撑、两相邻边支撑和一边支撑等区格。在均匀分布的基础反力作用下,各区格板单位宽度上的最大弯矩为: 1.2.1 四边支撑区格板:2qa M α= q 为作用于底板单位面积上的压应力,q=N/ A n ;a 为四边支撑短边长度;α为系数,根据长边b 与短边a 之比按表一取值 表1 α值 1.2.2 .三边支撑区格和两相邻边支撑区格:M=βqa 12 a 1为三边支撑区格自由长度,两相邻边支撑区格为对角线长度;β为系数, b/a 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 3.0 ≥4.0 α 0.048 0.055 0.063 0.069 0.075 0.081 0.086 0.091 0.095 0.099 0.101 0.119 0.125 C C f N β

桥梁工程习题-习题2[1].2梁桥设计计算-2

习题2.2(2梁桥—2、梁桥设计计算) 1、上承式简支梁桥的上部结构主要设计计算包括哪几个部分? 2、按结构受力简化图式不同,行车道板是如何分类的(常见的行车道板简化计算模型有哪些)?各的特点? 3、行车道板上的车轮荷载作用面是由有哪三条假定进行分布的? 4、什么叫板的荷载有效分布宽度?怎样确定? 5、多跨连续单向板(行车道板)的内力计算方法?计算图式?板的计算跨径? 6、单向板求支点剪力时为何在板端轮压下会出现三角形荷载? 7、悬臂板(行车道板)的内力计算方法?计算图式?板的计算跨径? 8、铰接悬臂板(行车道板)的内力计算方法?计算图式?板的计算跨径? 9、公式推导:用结构力学的基本理论,推导单向板、铰接悬臂板、悬臂板在汽车荷载作用下的弯矩与剪力公式。 10、某桥面板为单向板。其T梁梁肋间距2.2m,梁肋厚18cm,高110cm;T梁翼板根部厚20cm,端部厚14cm(ρ =25kN/m3)。沥青面层厚3cm(ρ=21kN/m3),水泥混凝土基层厚8cm(ρ=23kN/m3)。 1)求其在恒载、汽车荷载分别作用下桥面板跨中、根部产生的弯矩与剪力? 2)在承载能力极限状态下桥面板跨中、根部的设计荷载效应? 11、有一整体浇筑的 T形梁桥(由五片梁组成),行车道板厚18cm,梁肋高度为82cm,厚度为20cm,梁肋间距 为200cm,桥面铺装厚度为11cm,荷载为公路I级,求此连续单向板在车辆荷载作用下的最大剪力。 12、什么叫荷载横向分布影响线?什么叫荷载横向分布系数? 13、计算装配式钢筋混凝土简支梁桥荷载横向分布系数的方法有哪些?分别说明各计算方法的名称及适用范围。 14、试述杠杆法计算荷载横向分布系数的基本假设与基本原理?适用范围? 15、试述偏心压力法计算荷载横向分布系数的基本假定、原理、适用范围?为什么还要提出修正的偏心压力法? 16、两种偏心压力法对边梁或中梁计算的荷载横向分布系数值,在定性上有何异同? 17、试述铰接板/梁法计算荷载横向分布系数的基本假设与基本思路?适用范围? 18、试述钢接板/梁法计算荷载横向分布系数的基本假设与基本思路?适用范围? 19、比拟正交异性板法(G—M法)的基本思路是什么?适用范围?计算步骤? 20、比拟正交异性板法(G—M法)中,梁桥与平板的换算关系如何? 21、荷载横向分布系数的求解步骤。 22、荷载在顺桥跨不同位置时主梁荷载横向分布系数有何不同?如何取值?在设计中如何处理和简化? 23、求解主梁受力时,荷载加载原则有哪些? 24、某双车道公路桥由6片截面完全相同的T形梁组成,计算跨径19.5m,设计荷载为公路—I级。行车道宽度 为 7.0m,人行道2×1.5m,梁肋中心距1.6m,中间设3道横隔板,冲击系数1+μ =1.19. 1)用杠杆原理法绘出1、2、3号梁荷载横向分 布影响线;并计算汽车荷载与人群荷载的荷载横 向分布系数? 2)用偏心受压法绘出1、2、3号梁荷载横向分 布影响线;并计算汽车荷载与人群荷载的荷载横 向分布系数? 3)若主梁梁高h=1.5m,梁肋厚b=20cm,翼板 平均厚度为t=16cm,铺装层平均厚度为H=8cm,试用铰接板法绘出1、2、3号梁荷载横向分布影响线;并计算汽车荷载与人群荷载的荷载横向分布系数? 4)画出顺桥跨方向m 的变化图。

ABAQUS应用梁单元计算简支梁

ABAQUS应用梁单元计算简支梁 对于梁的分析可以使用梁单元、壳单元或是固体单元。Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。 注意: 因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。 简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。F=10kN,不计重力。计算中点挠度,两端转角。理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。 文件与路径: 顶部下拉菜单File, Save As ExpAbq00。 一部件 1 创建部件:Module,Part,Create Part, 命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。 2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。 3 退出:Done。 二性质 1 创建截面几何形状:Module,Property,Create Profile, 命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。 2 定义梁方向:Module,Property,Assign Beam Orientation, 选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。 3 定义截面力学性质:Module,Property,Create Section, 命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109 N/m2), G=82.03e9,ν=0.28,关闭。

钢结构的“刚接”和“铰接”

钢结构中,梁与柱的连接通常采用3种形式,柔性连接(也称铰接)、半刚性连接和刚性连接。在工程实践中,如何判别一个节点属于刚性、半刚性或铰接连接主要是看其转动刚度刚 性连接应不会产生明显的连接夹角变形,即连接夹角变形对结构抗力的减低应不超过5%。 半刚性连接则介于二者之间。 梁柱的半刚性连接可以采用在梁端焊上端板,用高强螺栓连接,或是用连于翼缘的上、下角 钢和高强螺栓。其设计要求如下: (1)端板连接在端板连接节点中力的传递可将梁端弯矩简化为一对力偶,拉力经受受拉翼 缘传递。受拉螺栓对受拉翼缘对称布置。压力可以通过端板或柱翼缘承压传递,压力区螺栓 可少量设置,并和受拉螺栓一起传递剪力。 (2)上下角钢连接用上下角钢连接的节点中,受拉一侧的连接角钢在弯矩作用下,不仅竖 肢变形,水平肢也变形。因此,角钢连接的刚度比端板者稍低。 连接性质的划分应由下列三项指标来表征:抗弯刚度,转动刚度,延性(转动能力)。 抗弯承载力是连接强度的主要项目,此外还有抗剪强度。刚性连接从理论上来说,承受弯矩 和剪力的能力应该不低于梁的承载能力,亦即不低于梁的塑性铰弯矩和腹板全塑性剪力。地 震区的框架应该要求更高,体现“强连接-弱构件”的原则。对于柔性连接则只要求其抗剪能力。半刚性连接介于刚性和柔性连接之间,必须具有一定的抗弯能力。 连接的转动刚度由弯矩-转角曲线的斜率来体现,它不是常量,转动刚度对框架变形和承载力都有影响。对变形的影响需要结合正常使用极限状态进行分析。为此,应考察连接的初始刚 度或标准荷载作用下的割线刚度。刚性连接的刚度,理论上需要达到无限大,但实际上只要 达到一定的限值就可以看作是刚性连接,问题在于如何从数量上做出界定。 转动能力属于延性指标,塑性设计的框架要求塑性铰部位有一定转动能力,以便后续的内力 重分布能够出现。 1.刚性连接这种构造假定梁柱连接有足够的刚性,梁柱间无相对转动,连接能承受弯矩。铰 支连接这种构造假定结构承受重力荷载时,主梁和柱之间只传递垂直剪力,不传递弯矩。这 种连接可以不受约束的转动。 2.在钢结构框架的传统分析与设计中,为简化分析设计过程,梁柱连接被认作理想的铰接连 接或完全的刚性连接,并且认为:连接对转动约束达到理想刚接的90%以上,可视为刚接;在外力作用下,柱梁轴线夹角的改变量达到理想铰接的80%以上的连接视为铰接。采用理 想铰接的假定,将意味着梁与柱之间没有弯矩的传递,就转动而论,用铰连在一起的梁和柱 将相互独立地转动. 能抵抗弯矩作用的柱脚称为刚接柱脚,相反不能抵抗弯矩作用的柱脚称为铰接柱脚,刚接与 铰接的区别在于是否能传递弯矩,从实际上看,如果锚栓在翼缘的外侧,就是刚接,而且一 般不少于四个,如果在翼缘内侧,就是铰接,一般为两个或四个。 这两种柱脚很明显的区别就是对侧移控制,如果结构对侧移控制较严,则采用刚接柱脚,例 如有吊车荷载的情况,吊车荷载是动力荷载,对侧移比较敏感,而且侧移过大会造成吊车卡 轨现象,此时应把柱脚设计成刚接柱脚。 “如果是铰接柱脚需要加设抗剪键,地脚螺栓不能承受剪力的”本人的这句话说得有点不严谨,应该说“如果是铰接柱脚一般需要加设抗剪键”。因为钢结构铰接柱脚的柱脚轴力比较小,底 板和基础砼表现的摩擦力很少能满足要求,所以多数柱脚都需要设置抗剪键

钢结构柱脚设计(优.选)

第八章基础设计 第一节基础设计的特点 由于结构型式、荷载取值、支座条件等方面的不同,传至基础顶面内力是不同的,轻钢结构与传统的砼结构相比,最大差别就是在柱脚处存在较小的竖向力和较大的水平力,对于固接柱脚,还存在较大的弯矩,在风荷载起控制作用的情况下,还存在较大的上拔力。柱底水平力会使基础产生倾覆和滑移,基础受上拔力作用,在覆土较浅的情况下,会使基础向上拔起,有关这方面的问题,后面再作详述。由于轻钢结构的这些受力特点,导致其基础设计与其它结构存在很大的不同,主要表现在以下几个方面: ⒈基础形式 基础型式选择应根据建筑物所在地工程地质情况和建筑物上部结构型式综合考虑,对于砼结构基础,常见的基础型式有独立基础、条形基础、片筏基础、箱形基础、桩基等等,而对于轻钢结构而言,由于柱网尺寸较大,上部结构传至柱脚的内力较小,一般以独立基础为主,若地质条件较差,可考虑采用条形基础,遇到暗浜等不良地质情况,可考虑采用桩基础,一般情况下不采用片筏基础和箱形基础。

轴向力N和水平力V之外,还存在一定的弯矩M,从而使刚接柱脚的基础大于铰接柱脚。 ⒊基础破坏形式 要正确进行基础设计,首先要知道基础破坏形式,对其工作原理有所了解。 对于砼结构,通常柱网尺寸较小,故柱底水平力相对较小,基础一般不会产生滑移现象,又由于上部结构自重很大,足以抵抗风荷载作用下产生的上拔力,故基础也不会产生上拔的可能,对于这种结构,基础主要发生冲切、剪切破坏;而轻钢结构则不同,基础除

发生冲切、剪切破坏之外,由于存在较大的水平力,对于固接柱脚,还存在较大的弯矩作用,从而导致基础产生倾覆和滑移破坏,另外,在风荷载较大的情况下,特别对于一些敞开或半敞开的结构,由于轻钢结构自重很轻,有可能不足于抵抗风荷载产生的上拔力,导致基础上拔破坏。为防止这些破坏的发生,最经济有效的方法是增加基础埋深,即增加基础上覆土的厚度,但增加了土方开挖和回填工程量。另外对于轻钢结构基础,还须预埋锚栓(也称地脚螺栓),用于上部结构和基础的连接,若锚栓离砼基础边缘太近,会产生基础劈裂破坏,所以我国钢结构设计规范规定了锚栓离砼基础边缘的距离不得小于150mm;若锚栓长度过短,会使锚栓从基础中拔出,导致破坏,所以规范也规定了锚栓埋入长度。 ⒋基础设计内容 基础设计一般包括基础底面积确定、基础高度确定和配筋计算,还应符合有关构造措施。基础底面积可根据地基承载力确定,同时还应考虑软弱下卧层存在;基础高度由冲切验算确定;在基础底面积和高度确定的情况下计算基础配筋,这里须注意伸缩缝双柱基础处理,双柱为基础提供了两个支点,在地基反力作用下,有可能出现负弯矩,即基础上部受拉的情况,

各类梁的弯矩剪力计算汇总表

表1 简单载荷下基本梁的剪力图与弯矩图 梁的简图 剪力Fs 图 弯矩M 图 1 l a F s F F l a F l a l -+ - F l a l a ) (-+ M 2 l e M s F l M e + M e M + 3 l a e M s F l M e + M e M l a l -e M l a + - 4 l q s F + -2 ql 2 ql M 8 2ql + 2 l 5 l q a s F + -l a l qa 2) 2(-l qa 22 M 2 228)2(l a l qa -+ l a l qa 2) (2 -l a l a 2)2(- 6 l q s F + -3 0l q 6 0l q M 3 92 0l q + 3 )33(l - 7 a F l s F F + Fa -M 8 a l e M s F + e M M

9 l q s F ql + M 2 2ql - 10 l q s F 2 l q + M 6 20l q - 注:外伸梁 = 悬臂梁 + 端部作用集中力偶的简支梁 表2 各种载荷下剪力图与弯矩图的特征 某一段梁上的外力情况 剪力图的特征 弯矩图的特征 无载荷 水平直线 斜直线 或 集中力 F 突变 F 转折 或 或 集中力偶 e M 无变化 突变 e M 均布载荷 q 斜直线 抛物线 或 零点 极值 表3 各种约束类型对应的边界条件 约束类型 位移边界条件 力边界条件 (约束端无集中载荷) 固定端 0=w ,0=θ — 简支端 0=w 0=M 自由端 — 0=M ,0=S F 注:力边界条件即剪力图、弯矩图在该约束处的特征。

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS简支梁受力和弯矩的相关分析 (梁单元和实体单元) 对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。另 外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。 对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae,odb,inp文件。不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。可以到小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件下载。 对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm,b=300mm,l=1600mm,F=300000N。现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。材料采用45#钢,弹性模量 E=2.1e6MPa,泊松比v=0.28。 图1 简支梁结构简图 1.梁单元分析 ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。 在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割 接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。 图3 创建梁截面形状 接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。在Load加载中,在固支处剪力边界条件,约束x,y,z,及绕x和y轴的转动,如图5所示,同理,在固支另一处约束y,z,及绕x和y轴的转动。在梁的两端添加集中力,集中力的大小为300000N。最后对实体部件进行分网,采用B32梁单元,网格尺寸为10。完成

怎么区分刚接和铰接

如何区分钢结构中的铰接和刚接 钢结构中,梁与柱的连接通常采用3种形式,柔性连接(也称铰接)半刚性连接和刚性连接。工程实践中,如何判别一个节点属于刚性、半刚性或铰接连接主要是看其转动刚度,刚性连接应不会产生明显的连接夹角变形,即连接夹角变形对结构抗力的减低应不超过5%。 半刚性连接则介于二者之间。 梁柱的半刚性连接可以采用在梁端焊上端板,用高强螺栓连接,或是用连于翼缘的上、下角钢和高强螺栓。其设计要求如下: 1.端板连接端板连接节点中力的传送可将梁端弯矩简化为一对力偶,拉力经受受拉翼缘传递。受拉螺栓对受拉翼缘对称布置。压力可以通过端板或柱翼缘承压传递,压力区螺栓可少量设置,并和受拉螺栓一起传送剪力。 2.上下角钢连接用上下角钢连接的节点中,受拉一侧的连接角钢在弯矩作用下,不只竖肢变形,水平肢也变形。因此,角钢连接的刚度比端板者稍低。 连接性质的划分应由下列三项指标来表征:抗弯刚度,转动刚度,延性(转动能力)。 抗弯承载力是连接强度的主要项目,此外还有抗剪强度。刚性连接从理论上来说,接受弯矩和剪力的能力应该不低于梁的承载能力,亦即不低于梁的塑性铰弯矩和腹板全塑性剪力。地震区的框架应该要求更高,体现强连接-弱构件原则。对于柔性连接则只要求其抗剪能力。半刚性

连接介于刚性和柔性连接之间,必需具有一定的抗弯能力。 连接的转动刚度由弯矩-转角曲线的斜率来体现,不是常量,转动刚度对框架变形和承载力都有影响。对变形的影响需要结合正常使用极限状态进行分析。为此,应考察连接的初始刚度或规范荷载作用下的割线刚度。刚性连接的刚度,理论上需要达到无限大,但实际上只要达到一定的限值就可以看作是刚性连接,问题在于如何从数量上做出界定。 转动能力属于延性指标,塑性设计的框架要求塑性铰部位有一定转动能力,以便后续的内力重分布能够呈现。 1.刚性连接这种构造假定梁柱连接有足够的刚性,梁柱间无相对转动,连接能承受弯矩。铰支连接这种构造假定结构接受重力荷载时,主梁和柱之间只传送垂直剪力,不传递弯矩。这种连接可以不受约束的转动。 2.钢结构框架的激进分析与设计中,为简化分析设计过程,梁柱连接被认作理想的铰接连接或完全的刚性连接,并且认为:连接对转动约束达到理想刚接的90%以上,可视为刚接;外力作用下,柱梁轴线夹角的改变量达到理想铰接的80%以上的连接视为铰接。采用理想铰接的假定,将意味着梁与柱之间没有弯矩的传送,就转动而论,用铰连在一起的梁和柱将相互独立地转动。 钢结构里怎样区分刚接和铰接 刚性连接与铰性连接 钢结构中,梁与柱的连接通常采用3种形式,柔性连接(也称铰接)、半刚性连接和刚性连接。在工程实践中,如何判别一个节点属于刚性、半

第9讲节点1铰接柱脚与刚接柱脚在传力机理和节点构造设计地区别

第9讲节点 1、铰接柱脚与刚接柱脚在传力机理和节点构造设计的区别有哪些? 答: 铰接柱脚传递柱脚位置的剪力和轴力;刚接柱脚除了传递剪力和轴力之外,还通过锚栓传递柱脚位置的弯矩。 铰接柱脚中由于锚栓不传力,所以锚栓布置在中和轴附近;刚接柱脚中由于锚栓传递弯矩,所以锚栓布置在远离中和轴的位置。详见下图所示。 2、刚接柱脚锚栓截面如何计算? 答: (1)柱脚锚栓应采用Q235或Q345钢材制作。锚固长度不宜小于25d(d为锚栓直径),锚栓端部按规定设置弯钩或锚板。 (2)刚接柱脚锚栓直径一般在30~76mm的围选用,但不宜小于30mm。锚栓的数目在(a)一对锚栓的铰接柱脚(b)两对锚栓的铰接柱脚(c)带加劲肋的刚接柱脚(d)带靴梁的刚接柱脚 门式刚架柱脚型式

垂直于弯矩作用平面的每侧不应小于2个。 (3)埋设锚栓时,一般宜采用锚栓固定支架,以保证锚栓位置的准确。 3、 柱脚底板在什么情况下应设置抗剪键,其作用是什么?如何计算? 答: 在柱脚中,锚栓不宜用于承受柱脚底部的水平剪力,此水平剪力fb V 可由柱脚底板与其 下部的混凝土或水泥砂浆之间的摩擦力来抵抗,此时,摩擦力V fb 应符合下式要求: 0.4fb V N V =≥ 当不能满足上式的要求时,当摩擦力不能抵抗柱脚的水平剪力时,应按下错误!未找到引用源。所示的形式设置抗剪键。 4、 钢柱与底板的连接焊缝有哪几种形式?如何通过计算来保证其安全可靠? 答: (1)当采用铰接柱脚时 a )当H 形截面柱与底板采用周边角焊缝时(如下图a 所示),焊缝强度应按下列公式计算: w Nc f f ew N f A σβ=≤ 抗剪键 (a )立面图 (b )模型图 抗剪键示意图 膨胀细石混凝土 抗剪键 基础

钢结构里怎样区分刚接和铰接

钢结构里怎样区分刚接和铰接 钢结构中,梁与柱的连接通常采用3种形式,柔性连接(也称铰接)、半刚性连接和刚性连接。在工程实践中,如何判别一个节点属于刚性、半刚性或铰接连接主要是看其转动刚度,刚性连接应不会产生明显的连接夹角变形,即连接夹角变形对结构抗力的减低应不超过5%。 半刚性连接则介于二者之间。 梁柱的半刚性连接可以采用在梁端焊上端板,用高强螺栓连接,或是用连于翼缘的上、下角钢和高强螺栓。其设计要求如下: (1)端板连接在端板连接节点中力的传递可将梁端弯矩简化为一对力偶,拉力经受受拉翼缘传递。受拉螺栓对受拉翼缘对称布置。压力可以通过端板或柱翼缘承压传递,压力区螺栓可少量设置,并和受拉螺栓一起传递剪力。 (2)上下角钢连接用上下角钢连接的节点中,受拉一侧的连接角钢在弯矩作用下,不仅竖肢变形,水平肢也变形。因此,角钢连接的刚度比端板者稍低。 连接性质的划分应由下列三项指标来表征:抗弯刚度,转动刚度,延性(转动能力)。 抗弯承载力是连接强度的主要项目,此外还有抗剪强度。刚性连接从理论上来说,承受弯矩和剪力的能力应该不低于梁的承载能力,亦即不低于梁的塑性铰弯矩和腹板全塑性剪力。地震区的框架应该要求更高,体现“强连接-弱构件”的原则。对于柔性连接则只要求其抗剪能力。

半刚性连接介于刚性和柔性连接之间,必须具有一定的抗弯能力。 连接的转动刚度由弯矩-转角曲线的斜率来体现,它不是常量,转动刚度对框架变形和承载力都有影响。对变形的影响需要结合正常使用极限状态进行分析。为此,应考察连接的初始刚度或标准荷载作用下的割线刚度。刚性连接的刚度,理论上需要达到无限大,但实际上只要达到一定的限值就可以看作是刚性连接,问题在于如何从数量上做出界定。 转动能力属于延性指标,塑性设计的框架要求塑性铰部位有一定转动能力,以便后续的内力重分布能够出现。 1.刚性连接这种构造假定梁柱连接有足够的刚性,梁柱间无相对转动,连接能承受弯矩。铰支连接这种构造假定结构承受重力荷载时,主梁和柱之间只传递垂直剪力,不传递弯矩。这种连接可以不受约束的转动。 2.在钢结构框架的传统分析与设计中,为简化分析设计过程,梁柱连接被认作理想的铰接连接或完全的刚性连接,并且认为:连接对转动约束达到理想刚接的90%以上,可视为刚接;在外力作用下,柱梁轴线夹角的改变量达到理想铰接的80%以上的连接视为铰接。采用理想铰接的假定,将意味着梁与柱之间没有弯矩的传递,就转动而论,用铰连在一起的梁和柱将相互独立地转动.

板传梁梁传柱荷载计算

板传梁梁传柱荷载计算 河南科技大学毕业设计 ?6.1.1.板传荷载计算 计算单元见下图所示: 因为楼板为整体现浇,本板选用双向板,可沿四角点沿45?线将区格分为小块,每个板上的荷载传给与之相邻的梁,板传至梁上的三角形或梯形荷载可等效为均布荷载。 图6-1 框架结构计算单元 42 河南科技大学毕业设计 图6-2 框架结构计算单元等效荷载一.B,C, (D,E)轴间框架梁: 屋面板传荷载: 222恒载: 6.09KN/m1.5m[1-2(1.5/6)(1.5/6)]2=17.128K,,,,N/m 222活载: 2.0KN/m1.5m[1-2(1.5/6)(1.5/6)]2=5.625KN/,,,,,m楼面板传荷载: 222恒载: 3.83KN/m1.5m[1-2(1.5/6)(1.5/6)]2=10.772K,,,,,N/m 222活载: 2.0KN/m1.5m[1-2(1.5/6)(1.5/6)]2=5.625KN/,,,,,m梁自重:3.95KN/m B,C, (D,E)轴间框架梁均布荷载为: 屋面梁:恒载,梁自重,板传荷载 ,17.128 KN/m+3.95 KN/m=21.103 KN/m

活载,板传荷载,5.625 KN/m 楼面板传荷载:恒载,梁自重,板传荷载,3.95 KN/m+10.772 KN/m=14.747 KN/m 活载,板传荷载,5.625 KN/m 二. C,D轴间框架梁: 屋面板传荷载: 26.09KN/m1.2m5/82=9.135KN/m,,,恒载: 22.0KN/m1.5m5/82=3KN/m,,,活载: 楼面板传荷载: 23.83KN/m1.25/82=5.745KN/m,,,恒载: 43 河南科技大学毕业设计 22.0KN/m1.2m5/82=3.75KN/m,,,活载: 梁自重:3.95KN/m C,D轴间框架梁均布荷载为: 屋面梁:恒载,梁自重,板传荷载 ,2.349 KN/m+9.135 KN/m=11.484 KN/m 活载,板传荷载,3 KN/m 楼面板传荷载:恒载,梁自重,板传荷载 ,2.349 KN/m+5.745KN/m=8.09KN/m 活载,板传荷载,3.75 KN/m 三.B轴柱纵向集中荷载计算: 顶层柱: 女儿墙自重:(做法:墙高900?,100?的混凝土压顶)

相关主题
文本预览
相关文档 最新文档