四位二进制加法器的设计
- 格式:doc
- 大小:566.50 KB
- 文档页数:10
4位加法器的设计原理四位加法器是一种数字电路,用于实现四位二进制数的加法运算。
它由多个逻辑门组成,主要包括四个全加器、一个四路二选一选择器和一个四位二进制数输出。
在四位加法器中,每个全加器都负责计算两个输入位和上一位的进位的和。
全加器的原理是采用异或门(XOR)、与门(AND)和或门(OR)的组合。
具体来说,全加器有三个输入端,分别是两个输入位(A和B)和上一位的进位(Cin),两个输出端,分别是当前位的和(S)和当前位的进位(Cout)。
全加器的计算公式如下:S = (A XOR B) XOR CinCout = AB + (A XOR B)Cin其中,“XOR”代表异或操作,“AND”代表与操作,“OR”代表或操作。
全加器的设计原理是基于四位二进制数的加法运算规则。
在四位加法过程中,每一位的和由该位的两个输入位和上一位的进位确定。
进位则与上一位的输入位和上一位的进位有关。
因此,通过级联四个全加器,就可以实现四位加法运算。
除了四个全加器以外,四位加法器还包括一个四路二选一选择器。
这个选择器根据一个控制信号选择输出。
四位加法器的输出是一个四位二进制数,可以选择以原码、反码或补码的形式输出。
通过选择器的控制信号,可以选择输出形式。
四位加法器的工作原理是:首先,将四个输入数两两相加,得到每一位的和,以及进位。
然后,将每一位的和通过四个全加器计算得到最终的和,同时将进位以及控制信号传递给选择器。
最后,选择器选择要输出的结果。
总结来说,四位加法器是基于全加器的构建的数字电路,可以实现四位二进制数的加法运算。
它的设计原理是根据四位二进制数加法的规则和全加器的计算公式,通过级联四个全加器,并通过选择器控制输出形式,实现四位二进制数的加法运算。
长安大学电工与电子技术课程设计题目:4位二进制加法器学院:汽车学院专业:汽车运用工程班级:姓名:学号:指导老师:李三财目录一、课题名称与技术要求···························二、摘要·········································三、总体设计方案论证及选择·······················1、方案论证与选择······························2、加法器的选取································3、译码器的选取································4、数码管的选取································四、设计方案的原理框图、总体电路原理图及说明·····1、原理框图····································2、总体电路原理图······························3、说明········································五、单元电路设计、主要元器件选择及电路参数计算···1、单元电路设计································2、主要元器件选择······························六、收获与体会及存在的问题·······················七、参考文献·····································八、附件·········································一、课题名称及技术要求1、课题名称:四位二进制加法器2、技术要求:a、四位二进制加数与被加数输入b、二位数码管显示二、摘要本加法器要实现能够输入加数和被加数,并且还能够将最终结果用二位数码管显示出来的功能。
4bitalu加法器工作原理
4位二进制加法器(4-bit binary adder)是一种电子电路,用于将两个4位二进制数相加。
最常见的4位二进制加法器是基于全加器(Full Adder)的设计。
以下是4位二进制加法器的工作原理:
输入:
4位二进制加法器有两个4位的输入,通常表示为A和B。
每一位都可以是0或1。
全加器:
4位二进制加法器由4个全加器组成,每个全加器都用于处理对应位的加法。
全加器的结构:
每个全加器包括三个输入:A的对应位(Ai)、B的对应位(Bi)和前一位的进位(Ci-1)。
输出包括两个部分:当前位的和(Si)和传递到下一位的进位(Ci)。
第一位的处理:
第一位的全加器只有两个输入,即A0和B0,因为没有前一位的进位。
输出为第一位的和(S0)和传递到第二位的进位(C1)。
中间位的处理:
对于中间的三位,每个全加器都有三个输入(Ai、Bi、Ci-1)和两个输出(Si、Ci)。
输出的和(Si)作为当前位的二进制和。
输出的进位(Ci)传递到下一位的进位输入(Ci-1)。
最后一位的处理:
最后一位的全加器输出的和(S3)和进位(C4)即为4位二进制数相加的结果。
进位检测:
如果最后一位的全加器输出的进位(C4)为1,则表示溢出。
输出:
4位二进制加法器的输出为一个4位的二进制数,其中每一位都是相应位的和。
总体而言,4位二进制加法器通过级联多个全加器,逐位相加并处理进位,实现对两个4位二进制数的加法运算。
这种结构也可以扩
展到更多位数的二进制加法器。
4位二进制补码加法器溢出检测电路的设计思路
(1)原理图输入:调用寄存器、移位器、补码加法器等元件根据图1完成四位补码运算器电路设计、调试并生成元件符号。
(2)管脚锁定:将4位操作数A(a3a2a1a0)锁定在K7-4上、将4位操作数B(b3b2b1b0)锁定在K3-0上、将打入脉冲CPR0锁定在K8上、将打入脉冲CPR1锁定在K9上、将打入脉冲CPR2锁定在K10上、将LM锁定在K11上、将DM锁定在K12上、将RM锁定在K13上、将C0(低位的进位)锁定在K14上。
开关K由低电平拔向高电平再拔向低电平,相当于一个脉冲。
将存放结果的寄存器R2的输出端D(d3d2d1d0)分别锁定在LD3-0上。
(3)管脚锁定完毕后在QuartusⅡ中选择EP2C8Q208C8器件,进行原理图的编译和适配,无误后完成下载。
(4)功能测试:利用开关K与LED测试:加法、加1、左移、右移、直传等功能,并分析结果正确性。
3、关于移位器
(1)采用传送方式实现二进制数的移位电路。
(2)可对四位二进制数实现左移1位(×2),右移1位(÷2)和直接传送功能。
(3)控制信号3个:左移(LM)、右移(RM)、直送(DM)
(4)①先行在Quratus II上完成移位器的逻辑电路设计;(生成原理图文件)
②完成目标器件的选择;
③编译;
④引脚分配;
⑤编程下载;
⑥生成原件图。
总电路图如下:。
实验一4位二进制并行加法器的设计1.实验目的:(1)学习使用Quartus II软件的基本用法(2)了解和掌握VHDL语言的语法规则和编程方法及基本流程(3)了解VHDL语言的基本结构2.实验内容用VHDL语言设计一4位二进制并行加法器。
参考设计思路:加法器是数字系统中的基本逻辑器件,减法器和硬件乘法器都可由加法器来构成。
多位加法器的构成有两种方式:并行进位和串行进位方式。
并行进位加法器设有进位产生逻辑,运算速度较快;串行进位方式是将全加器级联构成多位加法器。
并行进位加法器通常比串行级联加法器占用更多的资源。
随着位数的增加,相同位数的并行加法器与串行加法器的资源占用差距也越来越大。
因此,在工程中使用加法器时,要在速度和容量之间寻找平衡点。
实践证明,4位二进制并行加法器和串行级联加法器占用几乎相同的资源。
这样,多位加法器由4位二进制并行加法器级联构成是较好的折中选择。
3.实验要求(1)编写VHDL程序(2)记录系统仿真,画出时序图(3)记录实验过程中遇到的问题及解决办法4.程序设计5.生成RTL电路图6.仿真波形7.实验心得本周的实验是我学习该门课程进行的第一次实验,在实验过程中遇到了很多问题,比如:对Quartus II软件不熟悉,而且全是英文状态,不会使用软件的功能;编写程序时,多次报错,各种各样报错;编写程序完成后,成功编译了,但不会对仿真赋值等。
最后,我通过反复观看老师发的实验操作案例,并通过百度搜索相关的操作流程,翻阅教科书查找相关的解决方案。
第一次实验难免会遇到困难,最后经过我的不懈努力,终于把问题解决了,实验也很成功。
四位二进制加法器课程分析研究报告[1]————————————————————————————————作者:————————————————————————————————日期:课题名称与技术要求课题名称:四位二进制加法器设计技术要求:1)四位二进制加数与被加数输入2)二位数码管显示摘要本设计通过八个开关将A3,A2,A1,A0和B3,B2,B1,B0信号作为加数和被加数输入四位串行进位加法器相加,将输出信号S3,S2,S1,S0和向高位的进位C3通过译码器Ⅰ译码,再将输出的Y3,Y2,Y1,Y0和X3,X2,X1,X0各自分别通过一个74LS247译码器,最后分别通过数码管BS204实现二位显示。
本设计中译码器Ⅰ由两部分组成,包括五位二进制译码器和八位二进制输出器。
信号S3,S2,S1,S0和向高位的进位C3输入五位二进制-脉冲产生器,将得到的n(五位二进制数码对应的十进制数)个脉冲信号输入八位二进制输出器,使电路的后续部分得以执行。
总体论证方案与选择设计思路:两个四位二进制数的输入可用八个开关实现,这两个二进制数经全加器求和后最多可以是五位二进制数。
本题又要求用两个数码管分别显示求和结果的十进制十位和各位,因此需要两个译码器Ⅱ分别译码十位和个位。
综上所述,需要设计一个译码器Ⅰ,能将求和得到的五位二进制数译成八位,其中四位表示这个五位二进制数对应十进制数的十位,另四位表示个位。
而译码器Ⅱ有现成的芯片可选用,此处可选74LS247,故设计重点就在译码器Ⅰ。
加法器选择全加器:能对两个1位二进制数进行相加并考虑低位来的进位,即相当于3个1位二进制数相加,求得和及进位的逻辑电路称为全加器。
或:不仅考虑两个一位二进制数相加,而且还考虑来自低位进位数相加的运算电路,称为全加器。
1)串行进位加法器构成:把n位全加器串联起来,低位全加器的进位输出连接到相邻的高位全加器的进位输入。
优点:电路比较简单。
最大缺点:进位信号是由低位向高位逐级传递的,运算速度慢。
长安大学电子技术课程设计四位二进制加法器专业班级姓名指导教师日期四位二进制加法器一、技术要求(1)四位二进制加数与被加数输入(2)二位数码管显示二、摘要理论上,由二进制数算法的运算可知,加、减、乘、除运算都可分解成加法进行运算,而实际上,为了减少硬件复杂性,这些运算基本上也是通过加法来实现的。
此次设计的是简单的四位二进制加法器。
设计中通过不断改变脉冲信号,来控制数码管的显示。
本次设计选择一个超前进位的4位全加器74LS283。
译码器选择五输入八输出的译码器,用二位数码管显示,采用七段显示译码器。
本次设计采用的是共阴极数码管,所以选择74ls48译码器三、总体设计方案论证与选择设计四位二进制加法器,可以选择串行二进制并行加法器,但为了提高加法器的运算速度,所以应尽量减少或除去由于进位信号逐级传递所花费的时间,使各位的进位直接由加数和被加数来决定,而无须依赖低位进位,因而我们选择超前进位的4位全加器74LS283。
设一个n位的加法器的第i位输入为a i、b i、c i,输出s i和c i+1,其中c i是低位来的进位,c i+1(i=n-1,n-2,…,1,0)是向高位的进位,c0是整个加法器的进位输入,而c n是整个加法器的进位输出。
则和s i=a i + b i + c i+a i b i c i (1)进位c i+1=a i b i+a i c i+b i c i (2)令g i=a i b i,(3)p i=a i+b i, (4)则c i+1= g i+p i c i (5)只要a i b i=1,就会产生向i+1位的进位,称g为进位产生函数;同样,只要a i+b i=1,就会把c i传递到i+1位,所以称p为进位传递函数。
把(5)式展开,得到c i+1= g i+ p i g i-1+p i p i-1g i-2+…+ p i p i-1…p1g0+ p i p i-1…p0c0 (6)随着位数的增加(6)式会加长,但总保持三个逻辑级的深度,因此形成进位的延迟是与位数无关的常数。
4位⼆进制全加器的设计4位⼆进制全加器的设计摘要加法器是产⽣数的和的装置。
加数和被加数为输⼊,和数与进位为输出的装置为半加器。
若加数、被加数与低位的进位数为输⼊,⽽和数与进位为输出则为全加器。
常⽤作计算机算术逻辑部件,执⾏逻辑操作、移位与指令调⽤。
在电⼦学中,加法器是⼀种数位电路,其可进⾏数字的加法计算。
在现代的电脑中,加法器存在于算术逻辑单元(ALU)之中。
加法器可以⽤来表⽰各种数值,如:BCD、加三码,主要的加法器是以⼆进制作运算。
多位加法器的构成有两种⽅式:并⾏进位和串⾏进位⽅式。
并⾏进位加法器设有并⾏进位产⽣逻辑,运⾏速度快;串⾏进位⽅式是将全加器级联构成多位加法器。
通常,并⾏加法器⽐串⾏加法器的资源占⽤差距也会越来越⼤。
我们采⽤4位⼆进制并⾏加法器作为折中选择,所选加法器为4位⼆进制先⾏进位的74LS283,它从C0到C4输出的传输延迟很短,只⽤了⼏级逻辑来形成和及进位输出,由其构成4位⼆进制全加器,并⽤Verilog HDL进⾏仿真。
关键字全加器,四位⼆进制,迭代电路,并⾏进位,74LS283,Verilog HDL仿真总电路设计⼀、硬件电路的设计该4位⼆进制全加器以74LS283(图1)为核⼼,采⽤先⾏进位⽅式,极⼤地提⾼了电路运⾏速度,下⾯是对4位全加器电路设计的具体分析。
图11)全加器(full-adder )全加器是⼀种由被加数、加数和来⾃低位的进位数三者相加的运算器。
基本功能是实现⼆进制加法。
全加器的功能表输⼊输出输⼊输出逻辑表达式:CI B A S ⊕⊕==AB'CI'+A'BCI'+A'B'CI+ABCI()AB CI B A CO ++=其中,如果输⼊有奇数个1,则S 为1;如果输⼊有2个或2个以上的1,则CO=1。
实现全加器等式的门级电路图如图2所⽰,逻辑符号如图3所⽰.图2 图32)四位⼆级制加法器 a) 串⾏进位加法器四位⼆进制加法器为4个全加器的级联,每个处理⼀位。
任务一4位全加器设计一、实验目的1、掌握运用Quartus II原理图编辑器进行层次电路系统设计的方法。
2、进一步熟悉利用Quartus II进行电路系统设计的一般流程。
3、掌握4位全加器原理图输入设计的基本方法及过程。
二、实验原理(1)设计一位半加器真值表:(2)设计一位全加器真值表:SOn=n n n−1;COn=(A n⨁B n)C n−1+A n B n;(2)设计多位全加器由一位全加器组合成多位全加器。
依次将低位全加器的进位输出端接到高位全加器的进位输入端,由四个一位全加器构成四位全加器。
三、实验过程1、一位半加器的设计(1)电路图①执行“Files”─>“New”─>“Block Diagram/Sch matic”─>“OK”②在编辑窗口输入“与非”门电路原理图,保存电路为“01.bdf”,如图:(2)仿真波形①执行“Files”─>“New”─>“Vector Waveform File”─>“OK”②在波形编辑窗口双击左键,执行“Insert Node or Bus”─> “New Finder”─> “List”─>“》”─>“OK”。
③保存文件为“01.vwf”。
④执行菜单“Processing”─> “Start Simulation”,如图:(3)仿真波形分析:(4)封装之后的图:设“01.bdf”为顶层文件,执行“Files”─>“Create、Update”─> “Create Symbol Files forCurrent Files”,保存。
如图:2、一位全加器(1)电路图①执行“Files”─>“New”─>“Block Diagram/Sch matic”─>“OK”②在编辑窗口输入“与非”门电路原理图,保存电路为“02.bdf”,如图:(2)仿真波形①设“02.bdf”为顶层文件。
4位快速加法器设计故障与调试4位快速加法器设计故障与调试引言:在数字电路设计中,快速加法器是一个非常重要的组件。
它用于将两个二进制数相加,并输出其结果。
然而,在设计和实现过程中,可能会遇到一些故障或错误。
本文将介绍4位快速加法器的设计故障和调试方法。
一、4位快速加法器的基本原理1.1 二进制加法的基本概念二进制加法是指将两个二进制数相加,并按照二进制规则进行进位和求和。
当两个二进制数A=1101和B=1010相加时,其结果为C=10111。
1.2 4位快速加法器的结构4位快速加法器由四个全加器组成,每个全加器负责计算一对输入位的和以及前一位的进位。
四个全加器按照级联方式连接起来,形成一个完整的4位快速加法器。
二、常见故障与解决方法2.1 电路连接错误在设计和实现过程中,可能会出现电路连接错误导致功能无法正常工作。
这种情况下,需要检查电路连接是否正确,并进行修正。
2.2 逻辑门选择错误在选择逻辑门时,可能会选错门类型或门数量不足,导致电路无法正确计算和输出结果。
解决方法是仔细检查逻辑门的选择,并根据需要增加或更换逻辑门。
2.3 信号线延迟问题在数字电路中,信号线延迟是一个常见的问题。
当信号传输的时间超过了设计所允许的范围时,可能会导致计算结果出错。
解决方法是通过添加缓冲器或调整信号线长度来解决延迟问题。
2.4 电源供应不稳定电源供应不稳定可能导致电路工作不正常或产生噪声干扰。
为了解决这个问题,可以使用稳压器来提供稳定的电源,并添加滤波器以降低噪声干扰。
三、调试方法3.1 逐级验证在进行调试时,可以使用逐级验证的方法。
首先验证单个全加器的功能是否正常,然后再将多个全加器级联起来进行整体验证。
3.2 输入输出检查通过检查输入和输出信号是否符合预期结果,可以确定是否存在故障。
如果输入和输出不匹配,则需要检查逻辑门连接、输入数据和控制信号等方面是否有错误。
3.3 示波器测量使用示波器可以观察信号的波形和时序,从而帮助定位故障。
长安大学
电子技术课程设计四位二进制加法器
专业
班级
姓名
指导教师
日期
四位二进制加法器
一、技术要求
(1)四位二进制加数与被加数输入
(2)二位数码管显示
二、摘要
理论上,由二进制数算法的运算可知,加、减、乘、除运算都可分解成加法进行运算,而实际上,为了减少硬件复杂性,这些运算基本上也是通过加法来实现的。
此次设计的是简单的四位二进制加法器。
设计中通过不断改变脉冲信号,来控制数码管的显示。
本次设计选择一个超前进位的4位全加器74LS283。
译码器选择五输入八输出的译码器,用二位数码管显示,采用七段显示译码器。
本次设计采用的是共阴极数码管,所以选择74ls48译码器
三、总体设计方案论证与选择
设计四位二进制加法器,可以选择串行二进制并行加法器,但为了提高加法器的运算速度,所以应尽量减少或除去由于进位信号逐级传递所花费的时间,使各位的进位直接由加数和被加数来决定,而无须依赖低位进位,因而我们选择超前进位的4位全加器74LS283。
设一个n位的加法器的第i位输入为a i、b i、c i,输出s i和c i+1,
其中c i是低位来的进位,c i+1(i=n-1,n-2,…,1,0)是向高位的进位,c0是整个加法器的进位输入,而c n是整个加法器的进位输出。
则和s i=a i + b i + c i+a i b i c i (1)
进位c i+1=a i b i+a i c i+b i c i (2)
令g i=a i b i,(3)
p i=a i+b i, (4)
则c i+1= g i+p i c i (5)
只要a i b i=1,就会产生向i+1位的进位,称g为进位产生函数;同样,只要a i+b i=1,就会把c i传递到i+1位,所以称p为进位传递函数。
把(5)式展开,得到
c i+1= g i+ p i g i-1+p i p i-1g i-2+…+ p i p i-1…p1g0+ p i p i-1…p0c0 (6)
随着位数的增加(6)式会加长,但总保持三个逻辑级的深度,因此形成进位的延迟是与位数无关的常数。
一旦进位(c1~c n-1)算出以后,和也就可由(1)式得出。
使用上述公式来并行产生所有进位的加法器就是超前进位加法器。
产生g i和p i需要一级门延迟,c i需要两级,s i需要两级,总共需要五级门延迟。
与串联加法器(一般要2n级门延迟)相比,(特别是n比较大的时候)超前进位加法器的延迟时间大大缩短了。
四、设计方案的原理框图、总体电路图、接线图及说明
总体原理图
总体接线图
五、单元电路设计、主要元器件选择与电路参数计算
(1)加法器
本次设计采用的是四位二进制超前并行加法器,选用的是74LS283型号
74LS283引脚图
74LS283真值表
74LS283逻辑说明:74LS283上有两组数据输入端A3,A2,A1,Ao,B3,B2,B1,Bo和进位信号输入端Co,求和信号,进位信号分别由S4,S3,S2,S1及C1输出。
图中输入端A3,A2,A1,Ao 分别接一个逻辑开关,输入端B3,B2,B1,Bo分别接另4个逻辑开关,Co接一个逻辑开关。
(2)译码器设计
十进制数
输入输出
C1 4 S3 S2 S1 Y4 Y3 Y2 Y1 X4 X3 X2 X1
0 1 2 3 4 5 6 7 8 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
七段显示译码器
74LS48 是 BCD 码到七段码的显示译码器,它可以直接驱动共阴极数码管。
它的管脚图如图
图 74LS48的引脚排列
它的功能表为:
1
1
1
1
1
表74LS48的功能表
74LS248(48)共阴极接法:图中ABCD是8421BCD码的输入信号,a、b、c、d、e、f、g是七段显示译码输出信号,LT,RBI,BI为控制端,灯测试输出端LT:当LT=0,BI=1时无论A B C D 为何种状态,a、b、c、d、e、f、g状态均为1,数码管七段全亮,显示“8”字形,用以检查七段显示器是否正常工作。
灭零输入端RBI:当RBI=0时,且LI=1,BI=0时,若A B C D的状态均为0,则所有光段均灭。
在数字显示中用以熄灭不必要的0,灭灯输入/灭零输出端BI:BI=0时,无论LI、RBI及数码管输入A、B、C、D状态如何,输出a、b、c、d、e、f、g均为0七段全灭,不显示数字,当BI=1时显示译码器正常工作。
(3)数码管:
一个LED数码管可用来显示一位0~9十进制数和一个小数点。
小型数码管(0.5寸和0.36寸)每段发光二极管的正向压降,随显示光(通常为红、绿、黄、橙色)的颜色不同略有差别,通常约为2~2.5V,每个发光二极管的点亮电流在5~10mA。
六、材料清单
74LS283加法器、中间译码器一个、2个74Ls48集成块、14*510欧的电阻,2个数码管。
七、收获与体会
(1)此次课程设计主要研究及设计了简单的四位二进制加法器,使我更好的了解了其中的原理,更深刻的体会到了电工的重要性及实用性。
(2)通过这次课程设计,加强了我们动手、思考和解决问题的能力。
(3)锻炼了自己的独立思考能力及组织能力,加强了同学之间对于知识的交流。
八、调试中出现的故障、原因及排除方法
故障A、无论怎么改变输入端的值,LED始终不亮。
原因1:通过检查,发现面包板的有些接口是坏的。
排除方法:更换器件用到的面包板的接口位置,直到确保面包板的接口完好为止。
原因2:经过检查发现所用面包板的接口是完好好的,而当单片机插入后,信号无法输入或者输出。
排除方法:调换导线或者跟换同类插孔使用,若情况得不到改善,则将导线直接插到和引脚同一个接口中。
故障B、经过检查确认电路正确后,接通电源,LED不能稳定发光。
原因:导线插入面包板接口中牢固,节点处接触不良。
排除方法:耐心地将导线一个一个插紧,用万用表检查是否存在同一点有断路现象即可。
九、参考文献
1.李春茂.电子技术.北京:科学技术文献出版社 2006
2.许小军.电子技术实验与课程设计指导.南京:东南大学出版社2005
3.李银华.电子线路设计指导.北京:北京航空航天大学出版社,2005
4.电子技术基础实验与课程设计/高吉祥主编.—北京:电子工业出版社,2002.2
5.电子技术实验基础/陈先荣主编.—北京:国防工业出版社,2004.7。