当前位置:文档之家› 关于重积分对称性的结论

关于重积分对称性的结论

关于重积分对称性的结论
关于重积分对称性的结论

考虑如何正确利用二重积分中的被积函数的奇偶性和积分区域的对称性来简化二重积分的计算,主要结论如下:

一般设函数(,)f x y 在闭区域D 上连续,则(,)D

I f x y d σ=??存在。

1.若D 关于y 轴对称,而对任意的(,)x y D ∈,那么

(1)当(,)f x y 在D 上为x 的奇函数,即(,)(,)f x y f x y -=-时,有0I =;

(2)当(,)f x y 在D 上为x 的偶函数,即(,)(,)f x y f x y -=时,则有1

2(,)D I f x y d σ=??,其中

1{()|(),0}D x,y x,y D x =∈≥或者1{()|0}D D x,y x =≥。

2. 若D 关于x 轴对称,而对任意的(,)x y D ∈,那么

(1)当(,)f x y 在D 上为y 的奇函数,即(,)(,)f x y f x y -=-时,有0I =;

(2)当(,)f x y 在D 上为y 的偶函数,即(,)(,)f x y f x y -=时,则有2

2(,)D I f x y d σ=??,其中

2{()|(),0}D x,y x,y D y =∈≥或者2{()|0}D D x,y y =≥。

3. 若D 关于原点对称,而对任意的(,)x y D ∈,那么

(1)当(,)f x y 在D 上为关于x 和y 的奇函数,即(,)(,)f x y f x y --=-时,有0I =;

(2)当(,)f x y 在D 上为关于x 和y 的偶函数,即(,)(,)f x y f x y --=时,则我们就有12

2(,)2(,)D D I f x y d f x y d σσ==????,其中1D 、2D 同上述1与2中所述。

4. 若D 关于直线y x =对称,那么我们有

(,)()D D

f x y d f y,x d σσ=????,称此特性为积分区域D 关于积分变量具有对称性。

考虑如何利用对称性简化三重积分的计算,直接给出相应的主要结论如下:

设函数(,,)f x y z 在空间闭区域Ω上连续,则(,,)I f x y z dv Ω

=???存在。

1.(1)若(,,)f x y z 在Ω上是关于变量x 的奇函数,且Ω关于yoz 面对称,则有0I =;

(2)若(,,)f x y z 在Ω上是关于变量x 的偶函数,且Ω关于yoz 面对称,则有: 12(,,)I f x y z dv Ω=???,其中1Ω

为Ω在yoz 面前方或后方的部分。

注意:在上述结论中,将x 换成y 或z ,相应的坐标面换成zox 或xoy ,结论均成立。

2. 若Ω关于z 轴对称,则有:

2

0,(-,-,)=(,,)(,,)2(,,)(-,-,)=(,,)f x y f x y z f x y z f x y z dv f x y z dv f x y f x y z f x y z ΩΩΩ-??=?Ω????????在上为关于和的奇函数,即;,在上为关于和的偶函数,即,其中2Ω为Ω在平面x y =或x y =-一侧部分的区域。

注意:上述结论中z 轴换为x 轴或y 轴亦有相似的结论。

3. 若Ω关于原点对称,则有:

3

0,,,(-,-,-)=(,,)(,,)2(,,),,(-,-,-)=(,,)f x y z f x y z f x y z f x y z dv f x y z dv f x y z f x y z f x y z ΩΩΩ-??=?Ω????????在上为关于的奇函数,即;,在上为关于的偶函数,即其中3Ω是Ω中关于原点对称的两部分区域中的任意一部分。

二重积分对称性定理的证明及应用

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 前言 (1) 1.预备知识 (1) 2.二重积分对称性定理在不同条件下的证明及其应用 (2) 2.1 积分区域D关于坐标轴对称 (2) 2.2 积分区域D关于坐标区域内任意直线对称 (5) 2.3 积分区域D关于坐标原点对称 (9) 2.4 积分区域D关于坐标区域内任意一点对称 (11) 2.5 积分区域D同时关于坐标轴和坐标原点对称 (12) 结束语 (12) 参考文献 (13) 二重积分对称性定理的证明及应用

摘 要:本文归纳利用对称性来计算二重积分的方法,给出了二重积分对称性定理的证明并举出了相应例题. 关键词:对称性;积分区城;被积函数 The Application of Symmetry in Double Integral Calculating Abstract :It is introduced in the thesis some ways of how to calculate double integral with the application of symmetry. It is also put forward in it how to simplify the calculating methods with symmetry. Keywords :Symmetry; Integral region; Integrated function 前言 利用对称性计算二重积分,不但可以使计算简化,有时还可以避免错误.在一般情况下,必须是积分区域D 具有对称性,而且被积函数对于区域D 也具有对称性,才能利用对称性来计算.在特殊情况下,虽然积分区域D 没有对称性,或者关于对称区域D 被积函数没有对称性,但经过技巧性的处理,化为能用对称性来简化计算的积分.这些都是很值得我们探讨的问题. 1 预备知识 对于二重积分(,)D f x y dxdy ??的计算,我们总是将其化为二次定积分来完成的,而在 定积分的计算中,若遇到对称区间,则有下面非常简洁的结论: 当()f x 在区间上为连续的奇函数时,()0a a f x dx -=?. 当()f x 在区间上为连续的偶函数时,0 ()2()a a a f x dx f x dx -=??. 这个结论,常可简化计算奇、偶函数在对称于原点的区间上的定积分. 在计算二重积分时,若积分区域具有某种对称性,是否也有相应的结论呢?回答是肯定的.下面,我们将此结论类似地推广到二重积分. 2 二重积分对称性定理在不同条件下的证明及其应用 定理1[]1 若二重积分(,)D f x y dxdy ??满足

高三第一轮复习函数的对称性

函数的对称性 一、有关对称性的常用结论 (一)函数图象自身的对称关系 1、轴对称 (1))(x f -=)(x f ?函数)(x f y =图象关于y 轴对称; (2) 函数)(x f y =图象关于a x =对称?)()(x a f x a f -=+?()(2)f x f a x =- ?()(2)f x f a x -=+; (3)若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2 b a x += 对称。 2、中心对称 (1))(x f -=-)(x f ?函数)(x f y =图象关于原点对称;. (2)函数)(x f y =图象关于(,0)a 对称?)()(x a f x a f --=+?()(2)f x f a x =-- ?)2()(x a f x f +=-; (3)函数)(x f y =图象关于),(b a 成中心对称?b x a f x a f 2)()(=++- ?b x f x a f 2)()2(=+- (4)若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数),则函 数)(x f y =的图象关于点)2 ,2(c b a + 对称。 (二)两个函数图象之间的对称关系 1.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f y -=的图象关于直线2a b x -= 对称。 推论1:函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对称。 推论2:函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。 2.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f c y --=的图象关于点)2,2( c a b -对称。 推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2(a b -对称。

对称性在积分中应用

对称性在积分中的应用 摘要:对称性是宇宙中许多事物都具有的性质,大到银河星系,小到分子原子.根据对称性,我们就可以把复杂的东西简单化,把整体的东西部分化.本文介绍运用数学中的对称性来解决积分中的计算问题,主要介绍了几种常见的对称性在积分计算过程中的一些结论及其应用,并通过实例讨论了利用积分区间、积分区域、被积函数的奇偶性,从而简化定积分、重积分、曲线积分、曲面积分的计算方法.另外对于曲面积分的计算,本文还给出了利用轮换对称性简化积分的计算.积分的计算是高等数学教学的难点,在积分计算时,许多问题用“正规”的方法解决,反而把计算复杂化,而善于运用积分中的对称性,往往能使计算简捷,达到事半功倍的效果. 关键词:积分对称定积分重积分曲线积分曲面积分区域对称轮换对称

目录 一、引言 二、相关对称的定义 (一)区域对称的定义 (二)函数对称性定义 (三)轮换对称的定义 三、重积分的对称性 (一)定积分中的对称性定理及应用(二)二重积分中的对称性定理及应用(三)三重积分中的对称性定理及应用四、曲线积分的对称性 (一)第一曲线积分的对称性定理及应用(二)第二曲线积分的对称性定理及应用五、曲线积分的对称性 (一)第一曲面积分的对称性定理及应用(二)第二曲面积分的对称性定理及应用六、小结 参考文献 谢词

一、 引言 积分的对称性包括重积分、曲线积分、曲面积分的对称性.在积分计算中,根据题目的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.下面我将从积分对称性的定理及结论,再结合相关的实例进行具体探讨.本文从积分区域平行于坐标轴、对角线的直线的对称性,平行于坐标面的平面等的对称性定义. 二、相关的定义 定义1: 设平面区域为D ,若点),(y x ),2(y x a D -?∈,则D 关于直线a x =对 称,对称点),(y x 与),2(y x a -是关于a x =的对称点.若点),(y x ∈D ?)2,(y b x - ),(y x D ∈,则D 关于直线b y =对称,称点),(y x 与)2,(y b x -是关于b y =的对称(显然 当0=a ,0=b 对D 关于y ,x 轴对称). 定义2: 设平面区域为D ,若点),(y x D ∈?),(a x a y --,则D a x y +=对称, 称点),(y x 与),(a x a y --是关于a x y +=的对称点.若点),(y x D ∈?),(x a y a -- D ∈,则D 关于直线z y ±=对称. 注释:空间区域关于平行于坐标面的平面对称;平面曲线关于平行于坐标轴的直线 对称;平面曲面以平行于坐标面对称,也有以上类似的定义. 空间对称区域. 定义3:(1)若对Ω∈?),,(z y x ,?点Ω∈-),,(z y x ,则称空间区域Ω关于xoy 面对 称;利用相同的方法,可以定义关于另外两个坐标面的对称性. (2)若对Ω∈?),,(z y x ,?点Ω∈-),,(z y x ,则称空间区域Ω关于z 轴对称;利用相同 的方法,可以定义关于另外两个坐标轴的对称性. (3)若对Ω∈?),,(z y x ,?点Ω∈---),,(z y x , 则称空间区域Ω关于坐标原点对称. (4)若对Ω∈?),,(z y x ,?点Ω∈),,(),,,(y x z x z y ,则称空间区域Ω关于z y x ,,具有 轮换对称性. 定义4:若函数)(x f 在区间()a a ,-上连续且有)()(a x f a x f +=-,则)(x f 关于 a x =对称当且仅当0=a 时)()(x f x f =-,则)(x f 为偶函数.若)()(x a f x a f +-=-,

二重积分积分区域的对称性

情形一:积分区域关于坐标轴对称 定理4设二元函数在平面区域连续,且关于轴对称,则 1)当(即就是关于得奇函数)时,有 、 2)当(即就是关于得偶函数)时,有 、 其中就是由轴分割所得到得一半区域. 例5 计算,其中为由与围成得区域。 解:如图所示,积分区域关于轴对称,且 即就是关于得奇函数,由定理1有、 类似地,有: 定理5设二元函数在平面区域连续,且关于轴对称,则 其中就是由轴分割所得到得一半区域。 例6 计算其中为由所围。 解:如图所示,关于轴对称,并且,即被积分函数就是关于轴得偶函数,由对称性定理结论有:、 定理6设二元函数在平面区域连续,且关于轴与轴都对称,则 (1)当或时,有 、 (2)当时,有 其中为由轴与轴分割所得到得1/4区域。 9例7 计算二重积分,其中: 、 解:如图所示,关于轴与轴均对称,且被积分函数关于与就是 偶函数,即有 ,由定理2,得

其中就是得第一象限部分,由对称性知,, 故、 情形二、积分区域关于原点对称 定理7 设平面区域,且关于原点对称,则当上连续函数满足 1)时,有 2)时,有、 例8 计算二重积分,为与所围区域、 解:如图所示,区域关于原点对称,对于被积函数,有 ,有定理7,得 、 情形三、积分区域关于直线对称 定理8 设二元函数在平面区域连续,且,关于直线对称, 则 1); 、 2)当时,有、 3)当时,有、 例9 求,为所围、 解:积分区域关于直线对称,由定理8,得 , 故 、 类似地,可得: 定理9设二元函数在平面区域连续,且,关于直线对称,则(1)当,则有; (2)当,则有、 例10 计算,其中为区域:, 、 解:如图所示,积分区域关于直线对称,且满足, 由以上性质,得:

积分对称性定理

关于积分对称性定理 1、 定积分: 设)(x f 在[],a a -上连续,则 ()()()()-0 0,d 2d ,a a a f x x f x x f x x f x x ?? =???? ?为的奇函数,为的偶函数. 2、 二重积分: 若函数),(y x f 在平面闭区域D 上连续,则 (1)如果积分区域D 关于x 轴对称,),(y x f 为y 的奇(或偶)函数,即 ),(),(y x f y x f -=-(或),(),(y x f y x f =-),则二重积分 ()()()()1 0,,,d d 2,d d ,,D D f x y y f x y x y f x y x y f x y y ?? =???????为的奇函数,为的偶函数. 其中:1D 为D 满足0≥y 上半平面区域。 (2) 如果积分区域D 关于y 轴对称,),(y x f 为x 的奇(或偶)函数,即()(),,f x y f x y -=-(或()(),,f x y f x y -=),则二重积分

()()()()2 0,,,d d 2,d d , ,D D f x y x f x y x y f x y x y f x y x ?? =????? ??为的奇函数,为的偶函数. 其中:2D 为D 满足0x ≥的右半平面区域。 (3)如果积分区域D 关于原点对称,),(y x f 为y x ,的奇(或偶)函数,即 ),(),(y x f y x f -=--(或),(),(y x f y x f =--)则二重积分 ()()()()2 0,,,,d d 2,d d ,,,D D f x y x y f x y x y f x y x y f x y x y ?? =???????为的奇函数,为的偶函数. 其中:1D 为D 在0≥y 上半平面的部分区域。 (4)如果积分区域D 关于直线x y =对称,则二重积分 ()()y x x y f y x y x f D D d d ,d d ,????=.(二重积分的轮换对称 性) (5)如果积分区域D 关于直线y x =-对称,则有 1 0,(,)(,)(,)2(,),(,)(,)D D f y x f x y f x y dxdy f x y dxdy f y x f x y --=-?? =?--=??????当时当时 利用上述性质定理化简二重积分计算时,应注意的是(1)(2)(3)中应同时具有积分域D 对称及被积函数()y x f ,具有奇偶性两个特

高中数学《函数对称性》重要结论—优享文档

高中数学《函数对称性》重要结论 二、函数对称性的几个重要结论 (一)函数)(x f y =图象本身的对称性(自身对称) 若()()f x a f x b +=±+,则()f x 具有周期性;若()()f a x f b x +=±-,则()f x 具有对称性:“内同表示周期性,内反表示对称性”。 推论1:)()(x a f x a f -=+ ?)(x f y =的图象关于直线a x =对称 推论2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称 推论3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称 推论1、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称 推论2、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称 推论3、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、偶函数)(x f y =与)(x f y -=图象关于Y 轴对称 2、奇函数)(x f y =与)(x f y --=图象关于原点对称函数 3、函数)(x f y =与()y f x =-图象关于X 轴对称 4、互为反函数)(x f y =与函数1()y f x -=图象关于直线y x =对称 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称 推论2:函数)(x f y =与)2(x a f y -= 图象关于直线a x =对称 推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称

巧用二重积分的对称性

龙源期刊网 https://www.doczj.com/doc/9e13879425.html, 巧用二重积分的对称性 作者:韩英裴丹妹刘庞凤宝杨竞艳邵诗雅吴婷婷 来源:《中国科教创新导刊》2013年第17期 摘要:利用二重积分被积函数的奇偶性及积分区域的对称性,可以将一些繁琐的二重积分的计算简化. 关键词:二重积分,对称性,奇偶性 中图分类号:O172.2 文献标识码:A 文章编号:1673-9795(2013)06(b)-0000-00 二重积分计算时,根据题目中的条件,充分利用积分区域的对称性及被积函数的奇偶性,往往可以达到事半功倍的效果.本文结合实例探讨二重积分的对称性的条件,结论和技巧. 1 二重积分的对称性基本性质运用 4 结束语 计算二重积分是高等数学教学中的重要内容,利用二重积分积分区域的对称性以及被积函数的奇偶性,往往能减少计算量. 需注意的是,只有具备积分域的对称性与被积函数的奇偶性两个条件才能使用对称性的结论。 参考文献 [1] 吴传生主编.《经济数学——微积分》[M].高等教育出版社.2003.06:346-368 [2] 吴赣昌主编.《微积分(下册)》学习辅导与习题解答[M].中国人民大学出版社 2010.09:54-55 [3]薛春荣,王芳.对称性在定积分及二重积分计算中的应用[J].科学技术与工程,2010.10(1):172-174 [4] 隋梅真.对称区域上二重积分可以简化的条件和方法[J].山东建筑工程学院报,1995.10.(2):76-81 [5]吴赣昌.微积分(下册)学习辅导与习题解答[M].中国人民大学出版社.2010.09:52-62. [6] 陈文灯主编,黄先开.《考研数学复习指南(经济类)》[M].北京理工大学出版社2012.01:265.

最全最详细抽象函数的对称性、奇偶性和周期性常用结论

抽象函数的对称性、奇偶性与周期性常用结论 一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力 1、周期函数的定义: 对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。 分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。把)()(a b K KT x x f y -==轴平移沿个单位即按向量 )()0,(x f y kT a ==平移,即得在其他周期的图像: []b kT a kT x kT x f y ++∈-=,),(。 [][]? ??++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数: 设[][][]b a a b x b a x x f y ,,,),( --∈∈=或 ①若为奇函数;则称)(),()(x f y x f x f =-=- ②若为偶函数则称)()()(x f y x f x f ==-。 分段函数的奇偶性 3、函数的对称性: (1)中心对称即点对称: ①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++-- ③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=- ⑤成中心对称。关于点与(函数),(0)2,2(0),b a y b x a F y x F =--= (2)轴对称:对称轴方程为:0=++C By Ax 。 ①))(2,)(2(),(),(2222//B A C By Ax B y B A C By Ax A x B y x B y x A +++-+++-=与点关于

二重积分积分区域的对称性

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? . 2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =?? ?? . 其中1D 是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy = +??,其中D 为由2 2y x =与2x =围成的区域。 解:如图所示,积分区域D 关于x 轴对称,且 3(,)()(,)f x y xy y f x y -=-+=- 即(,)f x y 是关于y 的奇函数,由定理1有 3()0D f xy y dxdy +=?? . 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 2 2(,),(,)(,). (,)0,(,)(,).D D f x y dxdy f x y f x y f x y dxdy f x y f x y ?-=?=??-=? ???? 当当 其中2D 是由y 轴分割D 所得到的一半区域。 例 6 计算2,D I x ydxdy = ??其中D 为由22;-220y x y x y =+=+=及所围。 解:如图所示,D 关于y 轴对称,并且 2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴 的偶函数,由对称性定理结论有:

积分中的对称性

积分中的对称性 作者:刘建康 【摘要】介绍几种常见对称性在重积分、曲线积分及曲面积分的计算过程中的几个结论。【关键词】积分;轮换对称性;奇对称;偶对称 在积分的计算过程中,当积分区域具有某种对称性时,如果被积函数具有某种特性,这时可以利用对称性简化积分的计算。这里所讨论的对称性主要包括两个方面:积分区域关于坐标轴(或坐标面)的对称性和积分区域的轮换对称性。设Dn为一积分区域,所谓积分区域的轮换对称性是指当任一点P(x1,x2,…,xn)∈Dn时,有Pi(xi, xi+1, … , xn,x1,x2,…,xi-1)∈Dn, i=1,2,…,n。 在一元函数积分学中,我们有下面所熟悉结论: 若f(x)在闭区间[-a,a]上连续,则有 ∫a-af(x)dx= 0, f(-x)=-f(x) 2〖JF(Z〗a0f(x)dx〖JF)〗,f(-x)=f(x) 利用这一性质,可以简化较复杂的定积分的计算。对重积分、曲线积分及曲面积分也有类似的结论。下面我们根据积分范围的不同来介绍对称性在各类积分计算中的几点应用。 1 对称性在重积分计算中的应用 对称性在计算二重积分Df(x,y)dσ方面的应用。 结论1 若f(x,y)在区域D内可积,且区域D关于y轴(或x轴)对称,则有 ①Df(x,y)dσ=0, f(x)为关于x(或y)的奇函数 ②Df(x,y)dσ=2D1f(x,y)dσ,f(x,y)为关于x(或y)的偶函数。 其中D1为区域D被y轴(或x轴)所分割的两个对称区域之一。 结论2 若f(x,y)在区域D内可积,且区域D关于原点成中心对称,则有: ①Df(x,y)dσ=0,f(-x,-y)=-f(x,y),即f(x,y)关于原点成奇对称; ②Df(x,y)dσ=2D1f(x,y)dσ=2D2f(x,y)dσ,f(-x,-y)=f(x,y),即f(x,y)关于原点成偶对称,其中D1、D2关于原点对称,且D1+D2=0。

积分对称性

重积分计算中对称性的应用 二重积分的对称性质 一般的本科教材中都末具体给出,但在计算积分中经常用到,现补充如下: 结论1:如果积分区域D 关于y 对称,}0,),(),{(1≥∈=x D y x y x D 则 ?? ????? ??=--=-=D D y x f y x f d y x f y x f y x f d y x f 1 ),(),(),(2),(),(0),(时当时当σ σ 结论2:如果积分区域D 关于x 轴对称,}0,),(),{(1≥∈=y D y x y x D 则 ?? ????? ??=--=-=D D y x f y x f d y x f y x f y x f d y x f 1 ),(),(),(2),(),(0),(时当时当σ σ 结论3:如果积分区域D 关于坐标原点O 对称,则 ?? ????? ??=---=--=D D y x f y x f d y x f y x f y x f d y x f 1 ),(),(),(2),(),(0),(时当时当σ σ 其中}0, ),(),{(1≥∈=x D y x y x D 结论4:如果积分区域D 关于直线x y ,对称,则 ????=D D d x y f d y x f σσ),(),( 三重积分的对称性,可类似给出。 二、补充例题 例1. 利用二重积分性质,估计积分 ??++= D d y x I σ)94(22的值,其中D 是图形区域:42 2≤+y x 解法1. 首先求94),(2 2++=y x y x f 在D 上的最小值m 和最大值M 由于 x x f 2=??,y y f 8=??,令0=??x f ,0=??y f 得驻点),00(,9)0,0(=f D 的边界42 2 =+y x ,此时94494),(2 2 2 2 ++-=++=y y y x y x f

函数对称性与周期性几个重要结论论述.doc

函数对称性与周期性几个重要结论 一、几个重要的结论 (一)函数图象本身的对称性(自身对称) 1、函数 )(x f y =满足 )()(x T f x T f -=+(T 为常数)的充要条件是 )(x f y =的图象关于直线 T x =对称。 2、函数 )(x f y =满足 )2()(x T f x f -=(T 为常数)的充要条件是 )(x f y =的图象关于直线 T x =对称。 3、函数 )(x f y =满足 )()(x b f x a f -=+的充要条件是 )(x f y =图象关于直线 22)()(b a x b x a x += -++= 对称。 4、如果函数 )(x f y =满足 )()(11x T f x T f -=+且 )()(22x T f x T f -=+,( 1T 和 2T 是不相等的常数),则 )(x f y =是以为 )(212T T -为周期的周期函数。 5、如果奇函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以4T 为周期的周期性函数。 6、如果偶函数 )(x f y =满足 )()(x T f x T f -=+( 0≠T ),则函数 )(x f y =是以2T 为周期的周期性函数。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、曲线 )(x f y =与 )(x f y -=关于X 轴对称。 2、曲线 )(x f y =与 )(x f y -=关于Y 轴对称。 3、曲线 )(x f y =与 )2(x a f y -=关于直线 a x =对称。 4、曲线 0),(=y x f 关于直线 b x =对称曲线为 0)2,(=-y b x f 。 5、曲线 0),(=y x f 关于直线 0=++c y x 对称曲线为 0),(=----c x c y f 。 6、曲线 0),(=y x f 关于直线 0=+-c y x 对称曲线为 0),(=+-c x c y f 。 7、曲线 0),(=y x f 关于点 ),(b a P 对称曲线为 0)2,2(=--y b x a f 。 二、试试看,练练笔 1、定义在实数集上的奇函数 )(x f 恒满足 )1()1(x f x f -=+,且 )0,1(-∈x 时, 51 2)(+ =x x f ,则 =)20(log 2f ________。 2、已知函数 )(x f y =满足 0)2()(=-+x f x f ,则 )(x f y =图象关于__________对

函数奇偶性 对称性与周期性有关结论

函数奇偶性、对称性与周期性 奇偶性、对称性和周期性是函数的重要性质,下面总结关于它们的一些重要结论及运用它们解决抽象型函数的有关习题。 一、几个重要的结论 (一)函数)(x f y =图象本身的对称性(自身对称) 2、)2()(x a f x f -= ?)(x f y =的图象关于直线a x =对称。 3、)2()(x a f x f +=- ?)(x f y =的图象关于直线a x =对称。 4、)()(x b f x a f -=+ ?)(x f y =的图象关于直线22)()(b a x b x a x +=-++=对称。 5、b x a f x a f 2)()(=-++ ?)(x f y =的图象关于点),(b a 对称。 6、b x a f x f 2)2()(=-+ ?)(x f y =的图象关于点),(b a 对称。 7、b x a f x f 2)2()(=++- ?)(x f y =的图象关于点),(b a 对称。 8、c x b f x a f 2)()(=-++ ?)(x f y =的图象关于点),2 (c b a +对称。 (二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解) 1、函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称。 2、函数)(x f y =与)2(x a f y -=图象关于直线a x =对称 3、函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称 4、函数)(x a f y +=与)(x b f y -=图象关于直线0)()(=--+x b x a 对称 即直线2 a b x -=对称 5、函数)(x f y =与)(x f y -=图象关于X 轴对称。 6、函数)(x f y =与)(x f y -=图象关于Y 轴对称。 7、函数)(x f y =与)(x f y --=图象关于原点对称

有关周期性与对称性的常见结论

有关周期性的常见结论:),0(b a a ≠≠ 1、 若)(x f 对定义域内的任意x 都有)()(x f a x f -=+,则a T 2=; 2、 若)(x f 对定义域内的任意x 都有) (1)(x f a x f =+,则a T 2=; 3、 若)(x f 对定义域内的任意x 都有)(1)(x f a x f - =+,则a T 2=; 4、 若)(x f 对定义域内的任意x 都有) (1)(1)(x f x f a x f +-=+,则a T 2=; 5、 若)(x f 对定义域内的任意x 都有)(1)(1)(x f x f a x f -+= +,则a T 4=; 6、 若)(x f 的图象关于a x =对称,且关于b x =对称,则||2b a T -=; 7、 若)(x f 的图象关于)0,(a 对称,且关于b x =对称,则||4b a T -=; 8、 若)(x f 的图象关于)0,(a 对称,且关于)0,(b 对称,则||2b a T -=; 有关对称性的常见结论: 1、 若)(x f 对定义域内的任意x 都有)()(x a f x a f -=+,则)(x f 的图象关于直线a x =对称; 2、 若)(x f 对定义域内的任意x 都有)()(x a f x f -=,则)(x f 的图象关于直线2 a x = 对称; 3、 若)(x f 对定义域内的任意x 都有)()(x b f x a f -=+,则)(x f 的图象关于直线2b a x +=对称; 4、 若)(x f 对定义域内的任意x 都有0)()(=-++x a f x a f ,则)(x f 的图象关于点)0,(a 对称; 5、 若)(x f 对定义域内的任意x 都有0)()(=-++x b f x a f ,则)(x f 的图象关于点)0,2 ( b a +对称; 6、 若)(x f 对定义域内的任意x 都有 c x b f x a f =-++)()(,则)(x f 的图象关于点)2,2(c b a +对称;

关于重积分对称性的结论

考虑如何正确利用二重积分中的被积函数的奇偶性和积分区域的对称性来简化二重积分的计算,主要结论如下: 一般设函数(,)f x y 在闭区域D 上连续,则(,)D I f x y d σ=??存在。 1.若D 关于y 轴对称,而对任意的(,)x y D ∈,那么 (1)当(,)f x y 在D 上为x 的奇函数,即(,)(,)f x y f x y -=-时,有0I =; (2)当(,)f x y 在D 上为x 的偶函数,即(,)(,)f x y f x y -=时,则有1 2(,)D I f x y d σ=??,其中 1{()|(),0}D x,y x,y D x =∈≥或者1{()|0}D D x,y x =≥。 2. 若D 关于x 轴对称,而对任意的(,)x y D ∈,那么 (1)当(,)f x y 在D 上为y 的奇函数,即(,)(,)f x y f x y -=-时,有0I =; (2)当(,)f x y 在D 上为y 的偶函数,即(,)(,)f x y f x y -=时,则有2 2(,)D I f x y d σ=??,其中 2{()|(),0}D x,y x,y D y =∈≥或者2{()|0}D D x,y y =≥。 3. 若D 关于原点对称,而对任意的(,)x y D ∈,那么 (1)当(,)f x y 在D 上为关于x 和y 的奇函数,即(,)(,)f x y f x y --=-时,有0I =; (2)当(,)f x y 在D 上为关于x 和y 的偶函数,即(,)(,)f x y f x y --=时,则我们就有12 2(,)2(,)D D I f x y d f x y d σσ==????,其中1D 、2D 同上述1与2中所述。 4. 若D 关于直线y x =对称,那么我们有 (,)()D D f x y d f y,x d σσ=????,称此特性为积分区域D 关于积分变量具有对称性。

高等数学-积分对称性

二重积分的对称性: ??=D d y x f I σ),( ⑴若D 关于y 轴)0(=x 对称, ①若),,(),(y x f y x f -=-则0=I , ②若),,(),(y x f y x f =-则??=1 ),(2D d y x f I σ,1 D :0≥x ⑵若D 关于x 轴)0(=y 对称, ①若),,(),(y x f y x f -=-则0=I , ②若),,(),(y x f y x f =-则??=2 ),(2D d y x f I σ,2 D :0≥y 三重积分的对称性: ???Ω =dv z y x f I ),,( ⑴若Ω关于xoy 面)0(=z 对称, ①若),,,(),,(z y x f z y x f -=-则0=I , ②若),,,(),,(z y x f z y x f =-则1 ,),,(21 Ω=???Ωdv z y x f I :0≥z ⑵若Ω关于yoz 面)0(=x 对称, ①若),,,(),,(z y x f z y x f -=-则0=I , ②若),,,(),,(z y x f z y x f =-则2 ,),,(22 Ω =???Ωdv z y x f I :0≥x ⑶若Ω关于xoz 面)0(=y 对称, ①若),,,(),,(z y x f z y x f -=-则0=I , ②若),,,(),,(z y x f z y x f =-则3,),,(2 3 Ω =???Ωdv z y x f I : 0≥y 轮换对称性: 设Ω关于z y x ,,具有轮换对称性(既若Ω∈),,(z y x ,则将 z y x ,,任意互换后的点也属于Ω),则被积函数中的自变量可以任意轮换 而不改变积分值: ???Ω dv z y x f ),,(???Ω =dv x z y f ),,(???Ω =dv x y z f ),,( 特别:???Ω dv x f )(???Ω =dv y f )(???Ω =dv z f )( 从而 3)]()()([=++???Ω dv z f y f x f ???Ω dv x f )(

对称性在各种积分中的定理

对称性在积分计算中的应用 定理2.1.1[3] 设函数),(y x f 在xoy 平面上的有界区域D 上连续,且D 关于 x 轴对称.如果函数),(y x f 是关于y 的奇函数, 即),(),(y x f y x f -=-,D y x ∈),(, 则(,)0D f x y d σ=??;如果),(y x f 是关于y 的偶函数,即),(),(y x f y x f =-, D y x ∈),(,则1 (,)2(,)D D f x y d f x y d σσ=????. 其中1D 是D 在x 轴上方的平面区域. 同理可写出积分区域关于y 轴对称的情形. 则由定理2.1.1知32sin 0D y xd σ=??. 由定理2.1.1可得如下推论. 推论2 设函数),(y x f 在xoy 平面上的有界区域D 上连续,若积分区域D 既关于x 轴对称,又关于y 轴对称,则 ⑴ 若函数),(y x f 关于变量y x ,均为偶函数,则1 (,)4(,)D D f x y d f x y d σσ=????. 其中1D 是区域D 在第一象限的部分,{}1(,)|0,0D x y D x y =∈≥≥. ⑵ 若函数),(y x f 关于变量x 或变量y 为奇函数,则(,)0D f x y d σ=??. 当积分区域关于原点对称时,我们可以得到如下的定理. 定理 2.1.2[]4 设函数),(y x f 在xoy 平面上的有界区域D 上连续,且D 关于 原点对称.如果),(),(y x f y x f -=--,(,)x y D ∈,则(,)0D f x y d σ=??;如果),(),(y x f y x f =--,(,)x y D ∈,则1 2(,)2(,)2(,)D D D f x y d f x y d f x y d σσσ==??????,其中{}1(,)|0D x y D x =∈≥,{}2(,)|0D x y D y =∈≥. 为了叙述的方便,我们给出区域关于y x ,的轮换对称性的定义. 定义 2.1.1 设D 为一有界可度量平面区域(或光滑平面曲线段),如果对于任意(,)x y D ∈,存在(,)y x D ∈,则称区域D (或光滑平面曲线段)关于y x ,具

一、有关对称性的常用结论

函数的对称性 一、有关对称性的常用结论 (一)函数图象自身的对称关系 1、轴对称 (1))(x f -=)(x f ?函数)(x f y =图象关于y 轴对称; (2) 函数)(x f y =图象关于a x =对称?)()(x a f x a f -=+?()(2)f x f a x =- ?()(2)f x f a x -=+; (3)若函数)(x f y =定义域为R ,且满足条件)()(x b f x a f -=+,则函数)(x f y =的图象关于直线2 b a x += 对称。 2、中心对称 (1))(x f -=-)(x f ?函数)(x f y =图象关于原点对称;. (2)函数)(x f y =图象关于(,0)a 对称?)()(x a f x a f --=+?()(2)f x f a x =-- ?)2()(x a f x f +=-; (3)函数)(x f y =图象关于),(b a 成中心对称?b x a f x a f 2)()(=++- ?b x f x a f 2)()2(=+- (4)若函数)(x f y = 定义域为R ,且满足条件c x b f x a f =-++)()((c b a ,,为常数),则函 数)(x f y =的图象关于点)2 ,2(c b a + 对称。 (二)两个函数图象之间的对称关系 1.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f y -=的图象关于直线2a b x -= 对称。 推论1:函数)(x a f y +=与函数)(x a f y -=的图象关于直线0=x 对称。 推论2:函数)(a x f y -=与函数)(x a f y -=的图象关于直线a x =对称。 2.若函数)(x f y =定义域为R ,则两函数)(x a f y +=与)(x b f c y --=的图象关于点)2,2( c a b -对称。 推论:函数)(x a f y +=与函数)(x b f y --=图象关于点)0,2(a b -对称。 (一)选择题 1. 已知定义域为R 的函数)(x f 在) ,(∞+8上为减函数,且函数)8(+=x f y 为偶函数,则( ) A .)7()6(f f > B.)9()6(f f > C.)9()7(f f > D.)10()7(f f >

重积分积分区域的对称性

重积分积分区域的对称 性 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

情形一:积分区域D 关于坐标轴对称 定理4 设二元函数(,)f x y 在平面区域D 连续,且D 关于x 轴对称,则 1)当(,)(,)f x y f x y -=-(即(,)f x y 是关于y 的奇函数)时,有 (,)0D f x y dxdy =?? . 2)当(,)(,)f x y f x y -=(即(,)f x y 是关于y 的偶函数)时,有 1 (,)2(,)D D f x y dxdy f x y dxdy =?? ?? . 其中1D 是由x 轴分割D 所得到的一半区域。 例5 计算3()D I xy y dxdy =+??,其中D 为由22y x =与2x =围成的区域。 解:如图所示,积分区域D 关于x 轴 对称,且 3(,)()(,)f x y xy y f x y -=-+=- 有 即(,)f x y 是关于y 的奇函数,由定理13()0D f xy y dxdy +=?? . 类似地,有: 定理5 设二元函数(,)f x y 在平面区域D 连续,且D 关于y 轴对称,则 其中2D 是由y 轴分割D 所得到的一半区域。 例6 计算2,D I x ydxdy =??其中D 为由 22;-220y x y x y =+=+=及所围。 解:如图所示,D 关于y 轴对称,并且 2(,)(,)f x y x y f x y -==,即被积分函数是关于x 轴的 偶函数,由对称性定理结论有: 1 1 22 22200 22215 x D D I x ydxdy x ydxdy dx x ydxdy -+==== ?????? .

函数的对称性知识点讲解及典型习题分析

函数的对称性知识点讲解及典型习题分析 新课标高中数学教材上就函数的性质着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏对函数对称性、连 续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴,反比例函数的对称性,三角 函数的对称性,因而考查的频率一直比较高。 对称性的概念及常见函数的对称性 1、对称性的概念: ①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称, 该直线称为该函数的对称轴。 ②中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的 中心对称,该点称为该函数的对称中心。 常见函数的对称性(所有函数自变量可取有意义的所有值) ①常数函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ②一次函数:既是轴对称又是中心对称,其中直线上的所有点均为它的对称中心,与该直线相垂直的直线均为它的对称轴。 ③二次函数:是轴对称,不是中心对称,其对称轴方程为 a b x2。 ④反比例函数:既是轴对称又是中心对称,其中原点为它的对称中心,y=x与y=-x均为它的对称轴。 ⑤指数函数:既不是轴对称,也不是中心对称。 ⑥对数函数:既不是轴对称,也不是中心对称。 ⑦幂函数:显然幂函数中的奇函数是中心对称,对称中心是原点;幂函数中的偶函数是轴对称,对称轴是y轴;而其他的幂函数不具备对称性。 ⑧正弦函数:既是轴对称又是中心对称,其中(kπ,0 )是它的对称中心,2kx是它的对称轴。 ⑨正弦型函数:正弦型函数y=Asin(ωx+φ)既是轴对称又是中心对称,只需从ωx+φ=kπ中解出x,就是它的对称中心的横坐标,纵坐标当然为零;只需从ωx+φ=kπ+π/2中解出x,就是它的对称轴;需要注意的是如果图像向上向下平移,对称轴不 会改变,但对称中心的纵坐标会跟着变化。 ⑩余弦函数:既是轴对称又是中心对称,其中x=kπ是它的对称轴,) 0,2 (k是它的对称中心。 (11 )正切函数:不是轴对称,但是是中心对称,其中)0,2 ( k是它的对称中心,容易犯错误的是可能有的同学会误以为对 称中心只是(kπ,0)。 对号函数:对号函数y=x+a/x(其中a>0)因为是奇函数所以是中心对称,原点是它的对称中心。但容易犯错误的是同学们可能 误以为最值处是它的对称轴。 三次函数:显然三次函数中的奇函数是中心对称,对称中心是原点,而其他的三次函数是否具备对称性得因题而异。 绝对值函数:这里主要说的是y=f(│x│)和y=│f(x)│两类。前者显然是偶函数,它会关于y轴对称;后者是把x轴下方的图像对称到x轴的上方,是否仍然具备对称性,这也没有一定的结论,例如y=│lnx│就没有对称性,而y=│sinx│却仍然是轴对称。 二、函数的对称性猜测: 具体函数特殊的对称性猜测 ①一个函数一般是不会关于x轴对称,这是由函数定义决定的,因为一个x不会对应两个y的值。但一个曲线是可能关于x 轴对称的。例1、判断曲线xy42 ②函数关于y轴对称例2、判断函数y=cos(sinx)的对称性。 ③函数关于原点对称例3、判断函数xxysin3 ④函数关于y=x对称例4 、判断函数x y1 ⑤函数关于y=-x对称例5 、判断函数x y4 总结为:设(x,y)为原曲线图像上任一点,如果(x,-y)也在图像上,则该曲线关于x轴对称;如果(-x,y)也在图像上,则该曲线关于y轴对称;如果(-x,-y)也在图像上,则该曲线关于原点对称;如果(y,x)也在图像上,则该曲线关 于y=x对称;如果(-y,-x)也在图像上,则该曲线关于y=-x轴对称。2、抽象函数的对称性猜测①轴对称 例6、如果函数y=f(x)满足f(x+1)=f(4-x),求该函数的所有对称轴。(任意取值代入例如x=0有f(1)=f(4),正中间 2.5,从而该函数关于x=2.5对称) 例7、如果函数y=f(x)满足f(x)=f(-x),求该函数的所有对称轴。(按上例一样的方法可以猜出对称轴为x=0,可见偶函数是特殊的轴对称) 例8、如果f(x)为偶函数,并且f(x+1)=f(x+3),求该函数的所有对称轴。(因为f(x+1)=f(-x-3),按上例可以猜出对称轴x=-1,又因为它以2为周期,所以x=k是它所有的对称轴,k∈Z)②中心对称 例9、如果函数y=f(x)满足f(3+x)+f(4-x)=6,求该函数的对称中心。(因为自变量加起来为7时函数值的和始终为6,所以中点固定为(3.5,3),这就是它的对称中心)

相关主题
文本预览
相关文档 最新文档