变频器恒压供水系统方案设计分析论文
- 格式:doc
- 大小:272.00 KB
- 文档页数:22
基于PLC的变频恒压供水系统的设计【摘要】在我国,可编程控制器(PLC)已经广泛地运用在所有的工业部门,是应用最广的计算机控制装置,是自动控制系统中的关键设备,随着其性能价格比的不断提高,应用范围不断扩大。
本文是一个采用PLC与变频器构成恒压变频供水系统的设计,设计内容流畅、所设计的电路单元较为合理。
关键词:PLC 变频器恒压供水【前言】长期以来传统的区域、楼宇供水系统都是由市政管网经过二次加压和水塔或天面水池来满足用户对供水压力的要求。
在这种供水系统中加压泵通常是用最不利用水点的水压要求来确定相应的扬程设计,然后泵组根据流量变化情况来选配,并确定水泵的运行方式。
由于小区用水有着季节和时段的明显变化,日常供水运行控制就常采用水泵的运行方式调整加上出口阀开度调节供水的水量水压,大量能量消耗在出口阀而浪费,而且存在着水池“二次污染”的问题。
本文介绍一种变频调速恒压供水系统,该系统可根据管网瞬间压力变化,自动调节某台水泵的转速和多台水泵的投入及退出,使管网主干管出口端保持在恒定的设定压力值,变频调速技术在给水泵站的应用,成功地解决了能耗和污染的两大难题。
在实际运行中小区变频恒压供水技术比传统的加压供水系统还有水压稳定、维护运行成本低等明显优势。
1.可编程控制器(PLC)的概述可编程控制器(Programmable Logic Controller)简称为PLC,它的应用面广、功能强大、使用方便,已成为当代工业自动化的主要控制设备之一,在工业生产的所有领域得到了广泛的应用,在其他领域(例如民用和家庭自动化)的应用也得到了迅速的发展。
国际电工委员会(IEC)在1985年的PLC标准草案第3稿中,对PLC 作了以下定义:“可编程序控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。
它采用可编程序的存储器,用来在其内部存储执行逻辑运算、顺序控制、定时、计数和算术运算等操作的指令,并通过数字式、模拟式的输入和输出,控制各种类型的机械或生产过程。
目录绪论 (1)1.恒压变频供简介 (2)1.1恒压变频供水产生背景及国内现状 (2)1.2传统供水系统及特点 (2)1.3恒压变频供水系统的优点 (3)2.恒压变频供水系统的相关原理 (4)2.1恒压变频供水系统的理论框图 (4)2.2供水系统的基本特性 (5)2.3变频调速原理 (6)2.4 PID控制原理 (7)3.元件选择及功能单元设计 (9)3.1变频器选择及系统总体介绍 (9)3.2系统主体电路 (10)3.3系统控制电路 (13)3.4系统反馈电路 (16)3.5 系统总体电路图和使用说明 (16)4.系统软件设计 (18)结束语 (25)致谢 (26)参考文献 (27)附录 (28)绪论随着社会经济的迅速发展,水对人民生活与工业生产的影响日益加强,人民对供水的质量和供水系统可靠性的要求不断提高。
把先进的自动化技术、控制技术、通讯及网络技术等应用到供水领域,成为对供水系统的新要求。
变频恒压供水系统集变频技术、电气技术、现代控制技术于一体。
采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控;同时系统具有良好的节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。
自从通用变频器问世以来。
变频调速技术在各个领域得到了广泛的应用。
变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点。
在实际应用中发挥了很大的作用。
以往的变频调速恒压供水设备。
大都采用带有模拟量输入/模拟量输出的可编程控制器或PID调节器,PID算法编程难度大,设备成本高,调试困难。
随着电力电子技术的飞速发展,变频器的功能越来越强。
可以充分利用变频器内置的各种功能,合理地设计变频调速恒压供水设备。
变频调速恒压供水设备一般具有设备投资少,系统运行稳定可靠,占地面积小,节电节水,自动化程度高,操作控制方便等特点。
因此,变频调速恒压供水设备在住宅小区及高层建筑生活消防供水系统中起着非常重要的作用。
恒压供水系统引言恒压供水系统是一种能够保持水压稳定的供水系统,广泛应用于楼宇、住宅区、工业园区等场所。
本文将介绍恒压供水系统的原理、构成和工作原理,并对其在实际应用中的优势和局限性进行分析。
原理恒压供水系统是通过控制水泵的启停和变频器的运行来实现水压的稳定。
系统根据水压的变化情况对水泵进行控制,以保持恒定的供水压力。
当水压过低时,水泵启动并加大供水流量;当水压过高时,水泵停止运行以减少供水流量。
变频器能够根据需求自动调整水泵的转速,以适应不同的供水压力需求。
构成恒压供水系统主要由水泵、水箱、变频器、传感器、控制器等组成。
水泵水泵是恒压供水系统的核心设备,负责提供稳定的供水能力。
根据实际需求,可以选择不同类型和规格的水泵,如离心泵、轴流泵等。
水箱水箱用于储存供水。
通过调整水箱的水位来实现不同水压需求下的供水控制。
变频器变频器是恒压供水系统的调速设备。
它可以自动控制水泵的转速,使其能够根据实际需求提供恒定的供水压力。
传感器传感器用于监测供水压力和水位等参数,并将数据传输给控制器进行处理。
控制器控制器通过对传感器数据的分析和处理,实现对水泵和变频器的智能控制。
控制器可以根据实际需求调整水泵的启停和变频器的运行,以保持恒定的供水压力。
工作原理恒压供水系统的工作过程可以分为三个阶段:冲洗阶段、稳定阶段和停机阶段。
冲洗阶段在供水系统启动时,水泵启动并辅以最大功率工作。
此时,控制器通过传感器监测到水压低于设定值,并发出启动变频器的信号。
变频器调整水泵的转速,使其提供较大的供水流量以冲洗管道中的空气。
稳定阶段当冲洗阶段完成后,系统进入稳定阶段。
此时,控制器监测到水压已达到或接近设定值,并发送停止变频器的信号。
水泵停止运行或工作在较低的转速下,以提供稳定的供水流量。
停机阶段当供水需求减小或停止时,系统进入停机阶段。
控制器通过传感器监测到水压高于设定值,并发送启动变频器的信号。
变频器调整水泵的转速,使其提供较低的供水流量或停机。
变频恒压供水控制系统设计【摘要】本文介绍了变频恒压供水控制系统设计的相关内容。
在系统设计要求中,需要考虑稳定供水压力和节约能源的需求。
系统组成包括变频驱动器、传感器、控制器等部件。
系统控制原理是利用变频器对水泵速度进行调节来维持恒定的供水压力。
在系统设计方案中,需要考虑水泵的选型和安装位置等因素。
通过系统性能分析可以评估系统的稳定性和效率。
通过本文的研究,可以为变频恒压供水控制系统的设计和应用提供参考。
【关键词】变频恒压、供水控制系统、设计要求、系统组成、系统控制原理、系统设计方案、系统性能分析、结论。
1. 引言1.1 引言变频恒压供水控制系统设计是现代城市供水系统中的重要组成部分,它能够有效地调节水压,确保供水稳定性和节能高效性。
随着城市化进程的加快,供水需求不断增加,传统的供水系统已经不能满足需求,因此采用变频恒压供水控制系统已经成为一个必然趋势。
本文将首先介绍系统设计的基本要求,包括稳定的供水压力、节能高效、易维护等方面。
然后将详细介绍系统的组成,包括变频器、水泵、传感器等核心部件。
接着将介绍系统的控制原理,包括PID控制、频率调节等技术原理。
将提出系统的设计方案,包括硬件设计、软件设计以及系统整体架构。
对系统的性能进行分析,包括稳定性、节能性、可靠性等方面,以验证系统设计的合理性。
通过本文的介绍,读者可以了解变频恒压供水控制系统设计的基本原理与方法,为现代供水系统的优化设计提供参考。
2. 正文2.1 系统设计要求1. 稳定性要求:变频恒压供水控制系统需要保持稳定的工作状态,确保水压在设定范围内波动较小,以满足用户对水压稳定性的需求。
2. 响应速度要求:系统需要具有较快的响应速度,能够及时调整水泵的转速以保持设定的恒压供水状态,提高用户体验。
3. 节能性要求:设计要充分考虑系统的能耗情况,尽量减少无效能耗,优化控制算法以实现节能运行,降低运行成本。
4. 可靠性要求:系统设计应考虑到设备的可靠性,确保系统能够长时间稳定运行,减少维护和修复成本,提高系统的可用性和可靠性。
《基于PLC的变频恒压供水系统的设计》篇一一、引言随着社会经济的不断发展和人民生活水平的持续提高,对于供水系统的稳定性和可靠性要求越来越高。
传统的供水系统往往存在能耗高、调节不精确等问题。
因此,基于PLC(可编程逻辑控制器)的变频恒压供水系统应运而生,其通过变频技术实现恒压供水,不仅提高了供水的稳定性和可靠性,还大大降低了能耗。
本文将详细介绍基于PLC的变频恒压供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现供水系统的恒压供水,降低能耗,提高供水的稳定性和可靠性。
具体来说,包括以下几点:1. 保持供水压力的稳定性,满足用户需求。
2. 通过变频技术实现电机的节能运行。
3. 实现系统的自动化控制,降低人工干预。
4. 具备故障自诊断和保护功能,确保系统安全稳定运行。
三、系统组成基于PLC的变频恒压供水系统主要由以下几部分组成:1. 水泵:负责供水的动力来源,采用变频电机实现调速。
2. PLC控制器:负责整个系统的控制,包括压力采集、电机控制、故障诊断等功能。
3. 压力传感器:实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
4. 变频器:接收PLC控制器的指令,控制电机的运行速度,实现恒压供水。
5. 其他辅助设备:包括管网、阀门、过滤器等,保证供水的正常运行。
四、系统设计流程1. 需求分析:根据实际需求,确定系统的功能、性能指标等。
2. 硬件选型:选择合适的水泵、PLC控制器、压力传感器、变频器等硬件设备。
3. 系统布线:根据硬件设备的布局,进行合理的布线设计,确保系统的稳定性和可靠性。
4. 程序设计:编写PLC控制程序,实现压力采集、电机控制、故障诊断等功能。
5. 系统调试:对系统进行整体调试,确保系统的各项功能正常运行。
6. 运行维护:对系统进行定期检查和维护,确保系统的长期稳定运行。
五、系统实现1. 压力采集:通过压力传感器实时监测供水压力,将压力信号转换为电信号供PLC控制器处理。
摘要基于变频器的智能恒压供水系统以西门子S7-200系列PLC作为控制器,采用其扩展模拟输入输出模块EM235,利用其内部的PID控制指令,配合MM420型号的变频器和电机,同时用KBY压力变送器来检测管网压力。
构成闭环调速系统。
变频调速技术是一种新型的、成熟的交流电机无级调速驱动技术,变频器的作用是为电机提供可变频率的电源,实现电机的无级调速,从而使管网水压连续变化。
压力变送器的作用是检测管网水压。
智能PID调节器实现管网水压的PID调节。
PLC控制单元则是泵组管理的执行设备,同时还是变频器的驱动控制,根据用水量的实际变化,自动调整输出模拟量,进而控制变频器。
变频恒压供水控制系统通过测到的管网压力,经PLC内置PID 调节器运算后,通过EM235模拟输出端传送到变频器,调节输出频率,实现管网的恒压供水。
关键词:恒压供水、可编程控制器、无级调速、PID控制、闭环调速系统、山东科技大学专科毕业论文目录目录1 绪论 (1)1.1 恒压供水系统的发展历程 (1)1.2 恒压供水系统研究的目的和意义 (2)1.3 恒压供水系统的应用 (3)2 基于变频器的智能恒压供水系统的设计方案 (4)2.2 恒压供水系统设计总体方案设计 (4)2.3 变频恒压供水原理 (6)3 基于变频器的智能恒压供水系统的硬件设计 (7)3.1 系统中硬件电路构成 (7)3.2 PLC型号选择和系统硬件配置 (20)3.3 外部硬件电路设计 (22)4 基于变频器的智能恒压供水系统的软件设计 (24)4.1 系统流程图 (24)4.2软件设计 (25)结术语 (31)致谢词 (32)参考文献 (33)1 绪论变频恒压供水系统成为现在建筑中普遍采用的一种水处理系统。
随着社会和变频调速技术发展和人们节水节能意识的不断增强,变频恒压供水系统的节能特性使得其越来越广泛用于工厂、住宅、高层建筑的生活及消防供水系统。
恒压供水是指用户端在任何时候,不管用水量的大小,总能保持网管中水压的基本恒定。
摘要随着社会市场经济的不断发展,人们对供水质量和供水系统可靠性的要求不断提高;再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然的趋势。
首先,介绍了当前国内外恒压供水系统的发展情况,并提出不同的控制方案,通过研究和比较,详细说明了恒压供水系统的工作原理。
本文采用变频器和PLC实现恒压供水和数据传输,然后用数字PID对系统中的恒压控制进行设计。
其次,详细陈述了基于PLC变频恒压供水系统工程的方案设计,包括系统的硬件和软件设计,并对系统采取了可靠性措施进行了说明。
最后,结合MCGS组态软件对所设计的电路和程序进行了仿真、调试。
结果表明,所设计的硬件电路及程序运行可靠,极大地提高了供水的质量,并且节省了人力,具有明显的经济效益和社会效益,能够满足用户恒压供水的要求。
关键词:变频器,恒压供水,PLC,MCGS,压力传感器AbstractWith the rapid development of socialistic marketing economy,there is a growing demand for better quality of water supply and higher reliability of supply system. In addition ,considering the current common energy crisis, achieving the scheme of automatingthe water supply system. So it is an inevitable tendency to design and create an energy-savingconstant-pressure water supply system of excellent performance with the help of advancedtechniques of automation,monitor-control system; and communication. Meanwhile, the System can also adapt to various water Supply regions.Firstly, this paper introduces the current situation of constant pressure water supply system, and puts forward the development situation of different control scheme, through research and comparison, detailed descriptions of constant pressure water supply system principle of work. This paper adopts inverter and PLC constant pressure water supply and data transmission, then use digital PID on system of constant pressure control design.Secondly, a detailed statement based on PLC frequency constant pressure water supply system engineering design, including the system hardware and software design of the system adopted reliability measures are presented.Finally, combined the MCGS software to design the circuit and procedures are simulated, debugging.Results show that the design of hardware circuit and program reliable operation, has greatly improved the quality of water supply, and save the human, has the obvious economic benefits and social benefits, and can satisfy the requirements of users constant pressure water supply.Key Words:VF speed; constant pressure water supply;PLC;MCGS;Pressure sensor目录1 绪论 (1)1.1城市供水系统的要求 (1)1.2变频调速系统的发展趋势 (1)1.3变频恒压供水产生的背景和意义 (1)1.4国内外研究概况 (2)1.5本课题的主要设计研究对象 (3)2 恒压供水系统 (4)2.1变频恒压供水系统 (4)2.2变频恒压供水控制方式的选择 (5)2.3变频恒压供水系统及工作原理 (5)2.3.1 系统的构成 (5)2.3.2 工作原理 (6)2.4主电路接线图 (6)3 硬件的设计方案 (8)3.1可编程控制器 (8)3.1.1简介PLC (8)3.1.2 PLC的特点 (8)3.1.3 PLC的国内外状况 (9)3.1.4 PLC的构成 (9)3.1.5 PLC的工作过程图 (9)3.1.6 PLC的选型 (10)3.1.7 PLC的接线 (10)3.2变频器 (11)3.2.1 变频器的构成 (11)3.2.2 变频器的特点 (12)3.2.3 变频器的选型 (12)3.2.4 变频器的接线 (13)3.3PID调节器 (13)3.4压力传感器的接线 (14)3.5原件表 (14)4 软件的设计方案 (16)4.1PLC控制 (16)4.1.1 手动运行和自动运行 (17)4.2编程及介绍 (18)4.2.1 总程序的顺序功能图 (18)4.2.2 自动运行顺序功能图 (18)4.2.3 手动模式顺序功能图 (19)5 MCGS组态软件的仿真与调试 (20)5.1MCGS组态软件 (20)5.1.1 MCGS组态软件的整体结构 (20)5.1.2 MCGS工程的五大部分 (21)5.2建立界面 (21)5.2.1 建立窗口 (21)5.2.2 定义数据对象 (22)5.2.3 编辑画面 (23)5.2.4 对象元件的选择 (24)5.2.5调试步骤 (25)5.2.6系统总体调试 (25)5.3本章小结 (25)结论 (26)参考文献 (27)致谢 (28)1 绪论1.1城市供水系统的要求众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能己成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。
《PLC实现恒压变频供水系统的设计》篇一一、引言随着工业自动化和智能化水平的不断提高,PLC(可编程逻辑控制器)在工业控制领域的应用越来越广泛。
恒压变频供水系统作为现代建筑和工业生产中的重要组成部分,其稳定性和可靠性对于保障供水系统的正常运行至关重要。
本文将详细介绍如何利用PLC实现恒压变频供水系统的设计。
二、系统设计目标本系统设计的主要目标是实现恒压供水,即通过PLC控制变频器,使水泵电机运行在最佳状态,以保持供水压力的恒定。
同时,系统应具备自动化、智能化、高效率和低能耗的特点,确保供水的稳定性和可靠性。
三、系统组成恒压变频供水系统主要由PLC控制器、变频器、水泵电机、压力传感器、水管网等部分组成。
其中,PLC控制器是系统的核心,负责接收压力传感器的信号,根据设定的压力值控制变频器,从而调节水泵电机的运行状态。
四、PLC控制策略1. 压力采集:通过压力传感器实时采集供水系统的压力信号,并将其传输给PLC控制器。
2. 压力设定:在PLC控制器中设定目标压力值,与实际采集的压力值进行比较。
3. 变频控制:根据压力差值,PLC控制器输出控制信号给变频器,调节水泵电机的运行频率,使供水压力接近目标压力值。
4. 故障诊断与保护:PLC控制器具备故障诊断与保护功能,当系统出现故障时,能及时切断电源,保护设备安全。
五、系统实现1. 硬件选型与配置:根据系统需求,选择合适的PLC控制器、变频器、水泵电机和压力传感器等设备,并进行合理的配置。
2. PLC编程:根据控制策略,编写PLC程序,实现压力的实时采集、比较、控制和故障诊断与保护等功能。
3. 系统调试:对系统进行整体调试,确保各部分设备正常运行,达到恒压供水的目标。
4. 运行维护:定期对系统进行巡检和维护,确保系统的稳定性和可靠性。
六、系统优势1. 自动化程度高:通过PLC控制,实现供水的自动化,减少人工干预,提高工作效率。
2. 节能环保:根据实际需求调节水泵电机的运行状态,降低能耗,减少对环境的影响。
**学院毕业设计〔论文〕题目变频恒压供水控制系统设计姓名学号院〔系〕专业指导教师职称评阅教师职称年月日学生毕业设计〔论文〕原创性声明本人以信誉声明:所呈交的毕业设计〔论文〕是在导师的指导下进展的设计〔研究〕工作与取得的成果,论文〔设计〕中引用他〔她〕人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果与为获得某某科技学院或其它教育机构的学位或证书而使用其材料。
与我一同工作的同志对本设计〔研究〕所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
毕业设计〔论文〕作者〔签字〕:签字日期年月日贴校徽处**学院本科生毕业设计〔论文〕变频恒压供水系统设计学生某某:指导教师专业:院〔系〕:年月日摘要本论文结合我国中小城市供水厂的现状,设计了一套基于PLC的变频调速恒压供水自动控制系统。
变频调速恒压供水自动控制系统由可编程控制器、变频器、水泵电机组、传感器、以与控制柜等构成。
在变频调速恒压供水系统中,单台水泵的调节是通过变频器来改变电源的频率f来改变电机的转速n,从而改变水泵性能曲线得以实现的。
分析水泵的能耗比拟图,可以看出利用变频调速实现恒压供水,当转速降低时,流量与转速成正比,功率以转速的三次方下降,与传统供水方式中用阀门节流方式相比,在一定程度上可以减少能量损耗,能够明显节能。
通过编程软件设计了一个用于供水系统压力控制的PID控制器,PID控制器内置在PLC中,该控制器对于压力给定值与测量值的偏差进展处理,实时控制变频器的输出电压和频率,进而改变水泵电动机的转速来改变水泵出水口流量,实现整个供水的压力的自动调节,使压力稳定在设定值附近。
关键词:PLC控制变频调速恒压供水水泵节能AbstractThe present paper unifies in our country the small city for the waterworks present situation, has designed a set based on the PLC frequencyconversion velocity modulation constant pressure water supplyautomatic control system.In order to pledge water supply, the unit is in the super pressure state usually moving, not only the efficiency is low and power consumption is big, but also Guan Wang in city over a long period of time is in the super pressure running state, and it is also very serious to wear and tear. This thesis bines the middle and small city water supply present situation of factory of our country, and has designed basseting on the fast constant voltage water supply automatic control system of frequency conversion accent of PLC.The fast constant voltage water supply automatic control system of frequency conversion accent forms by programmable controller and frequency converter and water pump electrical machinery group, sensor as well as control cupboard etc. This system uses frequency converter to pull to move many electromotor to start, moves and accent speed, uses respectively to circulate the method operating of use, by way of super ordinate machine.Key word: PLC control, frequency conversion velocity modulation,constant pressure water supply, water pump, energy conservation目录摘要IABSTRACTII前言11绪论2项目的意义与应用背景2课题的方案设计3本文研究的内容42恒压供水原理与工艺5系统的组成和根本工作原理5系统框图与工作模式6主要元器件选型7该系统的特点83控制系统分析与设计10低压电器设备局部10控制柜面板设计123.3PLC控制局部134软硬件的根本原理介绍144.1PLC可编程控制器(三菱FX2N-32MR)14可编程控制器的特点14可编程控制器的工作原理15变频器的原理与特性(ATV38)20变频器简介20变频与变压(VVVF)原理20变频调速的根本原理21变频调速的升速和启动21变频调速的降速和制动22变频后的电动机的机械特性22水泵类平方律负载的机械特性234.2.8 V/F控制的概念23矢量控制的概述244.2.10 ATV38的特性25压力传感器简介275系统开发295.1PLC应用的开发步骤295.2PID调节305.2.1 PID调节原理305.2.2 PID参数设置315.2.3 PID设定值的调整与控制算法31 5.3PLC程序32根本步骤33程序中使用的继电器335.3.3 PLC I/O表36程序流程365.3.5 PLC程序的运行和模拟调试42 6调试44硬件功能调试44系统总体调试44结论45致谢46参考文献47附录PLC 梯形图48前言据报道,目前国内在用的水泵和风机约5000万台,年消耗的电量可达约1000亿度。
某理工大学华夏学院《变频器技术》课程论文变频器在恒压供水系统中的应用关键词:变频器、PLC、恒压供水信息工程系自动化某理工大华夏学院《变频器技术》课程论文目录1 变频器恒压供水系统简介 (1)1.1变频恒压供水系统理论分析 (1)1.1.1变频恒压供水系统节能原理 (1)1.1.2 变频恒压控制理论模型 (2)1.2恒压供水控制系统构成 (3)1.3 变频器恒压供水产生的背景和意义 (4)2 变频恒压供水系统设计 (4)2.1 设计任务及要求 (4)2.2 系统主电路设计 (5)2.3 系统工作过程 (6)3 器件的选型及介绍 (7)3.1 变频器简介 (7)3.1.1 变频器的基本结构与分类 (7)3.1.2 变频器的控制方式 (7)3.2 变频器选型 (8)3.2.1 变频器的控制方式 (8)3.2.2 变频器容量的选择 (9)3.2.3 变频器主电路外围设备选择 (11)3.3 可编程控制器(PLC) (13)3.3.1 PLC的定义及特点 (13)3.3.2 PLC的工作原理 (14)3.3.3 PLC及压力传感器的选择 (14)4 PLC编程及变频器参数设置 (15)4.1 PLC的I/O接线图 (15)4.2 PLC程序 (15)4.3 变频器参数的设置 (18)4.3.1 参数复位 (18)4.3.2 电机参数设置 (18)附录 (19)参考文献 (20)1 变频器恒压供水系统简介1.1变频恒压供水系统理论分析1.1.1变频恒压供水系统节能原理供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1所示。
图1-1供水系统的基本特征由图可以看出,流量Q越大,扬程H越小。
由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。
而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。
管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。
由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。
由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。
因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。
扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。
在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。
图1-1供水系统的基本特征。
变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。
通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵做成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。
因此,供水系统变频的实质是异步电动机的变频调速。
异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。
1.1.2 变频恒压控制理论模型变频恒压控制系统以供水出口管网水压为控制目标,在控制上实现出口总管网的实际供水压力跟随设定的供水压力。
设定的供水压力可以是一个常数,也可以是一个时间分段函数,在每一个时段内是一个常数。
所以,在某个特定时段内,恒压控制的目标就是使出口总管网的实际供水压力维持在设定的供水压力上从图1-2中可以看出,在系统运行过程中,如果实际供水压力低于设定压力,控制系统将得到正的压力差,这个差值经过计算和转换,计算出变频器输出频率的增加值,该值就是为了减小实际供水压力与设定压力的差值,将这个增量和变频器当前的输出值相加,得出的值即为变频器当前应该输出的频率。
该频率使水泵机组转速增大,从而使实际供水压力提高,在运行过程中该过程将被重复,直到实际供水压力和设定压力相等为止。
如果运行过程中实际供水压力高于设定压力,情况刚好相反,变频器的输出频率将会降低,水泵的转速减小,实际供水压力因此而减小。
同样,最后调节的结果是实际供水压力和设定压力相等。
图1-2变频恒压控制原理图1.2恒压供水控制系统构成变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。
通常由异步电动机驱动水泵旋转来供水,并且把电机和水泵连成一体,通过变频器调节异步电机的转速,从而改变水泵的出水流量而实现恒压供水的。
因此,供水系统变频的实质是异步电动机的变频调速。
异步电动机的变频调速是通过改变定子供电频率来改变同步转速而实现调速的。
图1-3恒压供水系统方框图水压由压力传感器的信号4-20mA送入变频器内部的PID模块,与用户设定的压力值进行比较,并通过变频器内置PID运算将结果转换为频率调节信号,以调整水泵电机的电源频率,从而实现控制水泵转速。
由于变频器内部自带的PID调节器采用了优化算法,所以使水压的调节十分平滑,稳定。
同时,为了保证水压反馈信号值的准确、不失值,可对该信号设置滤波时间常数,同时还可对反馈信号进行换算,使系统的调试更为简单、方便。
西门子系列PLC编程采用STEP7软件,它是西门子PLC的视窗软件支持工具,提供完整的编程环境,可进行离线编程和在线连接和调试,并能实现梯形图与语句表的相互转换。
系统程序包括主程序和起动子程序,主程序包括参与调节程序和电机切换程序;电机切换程序又包括加电机程序和减电机程序。
起动子程序实际上是清零子程序。
在主程序中,设置两个变频器频率上下限到达滤波时间继电器,用于稳定系统。
1.3 变频器恒压供水产生的背景和意义泵站担负着工农业和生活用水的重要任务,运行中需要大量消耗能量,提高泵站效率;降低能耗,对国民经济有重大意义。
我过泵站的特点是数量大、范围广、类型多、发展速度快,在工程规模上也有一定水平,但由于设计中忽视动能经济观点以及机电产品类型和质量上存在的一些问题等原因,至使在技术水平、工程标准以及经济效益指标等方面与国外先进水平相比,还有一定的差距。
目前,大量的动能消耗在水泵、风机负载上,城乡居民用水设备所消耗的电量在这类负载中占了相当大的比例。
因此,研究提水系统的能量模型,找出能够节能的控制策略方法是目前较为重要的一件事。
以变频器为核心结合PLC组成的控制系统具有高可靠性、强抗干扰能力、组合灵活、编程简单、维修方便和低成本等诸多特点,变频恒压供水系统集变频技术、电气技术、防雷避雷技术、现代控制、远程监控技术与一体。
采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便的实现供水系统的集中管理与监控;同时系统具有良好节能性,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。
2 变频恒压供水系统设计2.1 设计任务及要求本系统是以一个供水系统作为被控对象,PLC与变频器协调控制电机的转速与启动和停止。
系统控制要求:(1) 工艺参数: 供水系统由3台水泵组成:母管压力H≥0.8时,一台定速,一台变速,一台备用。
母管压力H≤0.64时,一台定速或变速,二台备用。
母管压力H≤0.52时,一台变速,二台备用。
(2) 电动机参数:型号:JD-L-39-4功率:75KW额定频率:50Hz额定电压:380VAC;额定转速:1470 r/min额定电流:126.6 A(3) 水泵电机的起动/停止、正转、调速控制。
(4) 变频器采用远方控制方式。
(5) 通过母管压力变送器测得实际压力大小,同时和压力给定组成闭环控制。
(6) 变频器的运行状态指示(如运行、停止、过流、低压等)。
(7) 变频器的报警处理。
2.2 系统主电路设计图2.1 系统主电路图由恒压供水主电路图可见,接触器1KM2、2KM2、和3KM2用于变频器输出,分别接到水泵M1、M2和M3,而接触器1KM3、2KM3和3KM3将工频电源接到3台水泵。
变频器可以对任何一台水泵启动和恒压供水控制。
空气开关(QL)是当电动机过载时自动将电动机从电网中断开热继电器(FR)是利用电流的热效应原理工作的保护电路,它在电路中用作电动机的过载保护。
2.3 系统工作过程1、减泵过程当用水量减少、水压上升、变频器输出频率低于下限值时,但管网压力仍偏高时,则各泵将依次退出运行,依次退出运行的方式有两种。
(1)先开先停方式。
PLC接收到下限频率到达信号,延时一定时间后,接触器1KM2失电复位,水泵M1脱离工频电源停止运行。
变频器输出频率仍然低于下限值,重复上述过程,水泵M2脱离工频电源停止运行,变频器驱动水泵M3恒压供水,水压稳定在设定值上。
这种方式称为循环方式,通常用于各台水泵的容量都相等的供水系统中。
其优点是可以自动的使各泵运行的时间比较均衡;缺点是工频运行状态直接停机时,可能由于停机太快而使管网压力发生较大波动。
(2)先开后停方式。
首先使正在变频运行的M3减速停机,然后使变频器的输出频率升至50Hz,将M2切换为变频工作,依此类推这种方式通常用于各台水泵的容量不相等的供水系统中,其优点是水泵的停机比较缓慢,管网压力比较稳定;缺点是不能自动地循环变换。
2、加泵过程首先由M1在变频控制的情况下工作。
当用水量增大、水压下降,变频器输出频率上升到50Hz时水压仍然不足,经过短暂的延时,将M1切换为工频工作,同时变频器的输出频率迅速降低为0,然后使M2投入变频运行。
当M2也达到额定频率而水压仍不足时,重复开始运行时的过程,水泵M2脱离变频器驱动,由工频供电全速运行,变频器驱动水泵M3变频运行,使水压恒定在设定值上。
3 器件的选型及介绍3.1 变频器简介3.1.1 变频器的基本结构与分类1、变频器的基本结构变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。
变频器包括控制电路、整流电路、中间直流电路及逆变电路组成。
其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。
对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。
2、变频器的分类变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。
3.1.2 变频器的控制方式在交流变频器中使用的非智能控制方式有V/f协调控制、转差频率控制、矢量控制、直接转矩控制等。