第三章平均指标练习及答案
- 格式:doc
- 大小:52.00 KB
- 文档页数:6
第39讲平均数、中位数和众数题一:某校九年级(2)班50名同学为玉树灾区献爱心捐款情况如下表:50则该班捐款金额的平均数是.题二:在今年的助残募捐活动中,我市某中学九年级(1)班同学组织献爱心捐款活动,班长根据第一组12名同学捐款情况绘制成如图的条形统计图.根据图中提供的信息,第一组捐款金额的平均数是______.题三:在一次数学单元考试中,某小组7名同学的成绩(单位:分)分别是:65,80,70,90,95,100,70.这组数据的中位数是________.题四:在一次数学测验中,12名学生的成绩如下:60,95,80,75,80,85,60,55,90,55,80,70.这组数据的中位数是________.题五:在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是________.题六:在一次数学竞赛中,10名学生的成绩如下:75,80,80,70,85,95,70,65,70,80.则这次竞赛成绩的众数是________.题七:为了了解2012年我市初三学生理化操作实验考试的成绩情况,随机抽取了初三50位考生的得分情况如下表:根据表中信息,解答下列问题:(1)求这50位同学理化实验操作得分的众数、中位数、平均数.(2)将这50位同学此次操作得分制成如图所示的扇形统计图.试计算扇形①的圆心角度数.题八:在本学期第九周进行的白云区08年初三毕业班中考第一次模拟考试(简称初三“一模”)中,九年级某班50名同学选择题(共10小题,每小题3分,满分30分)的得分情况如下表:选择题得分分值及人数统计表(1)该班选择题中,答对3题的人数为______人;(2)该班选择题得分的平均分为______,众数为______,中位数为______;(3)为了制作右面的扇形统计图(如图),请分别求出得20分以下人数占总人数的百分比和扇形圆心角度数及得满分人数占总人数的百分比和扇形圆心角度数.题九:“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:8486(1)写出说课成绩的中位数、众数;(2)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?题十:某科技开发公司现有员工50人,所有员工的月工资情况如表:请根据上述内容,解答下列问题:(1)该公司的高级技工有多少名?(2)所有员工月工资的中位数、众数是多少元?(3)去掉四个管理人员的工资后,请你计算出其他普通工作人员的月平均工资.(最后结果保留两位小数)第39讲平均数、中位数和众数题一:38.详解:该班捐款金额的平均数是10315630114011501360650⨯+⨯+⨯+⨯+⨯+⨯=38.题二:10.详解:根据题意,第一组捐款金额的平均数是6541022512⨯+⨯+⨯=10.题三:80.详解:将这组数据按从小到大的顺序排列为:65,70,70,80,90,95,100,处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80.题四:77.5.详解:将12名学生的成绩从高到低重新排列:95,90,85,80,80,80,75,70,60,60,55,55,中间的两个数是80和75,故中位数是80752+=77.5.题五:9.详解:依题意得9出现了三次,次数最多,∴这组数据的众数是9.题六:70和80.详解:在这一组数据中70和80是出现次数最多的,故众数是70和80.题七:9、9、8.82 ;57.6°.详解:(1)众数为9,中位数为9,平均分=151020988572650⨯+⨯+⨯+⨯+⨯=8.82;(2)∵扇形①所占的百分数为250×100%550×100% =16%,∴扇形①圆心角度数=16%×360°=57.6°.题八:0;23.52,24,24;18%,64.8%,16%,57.6°.详解:(1)∵得9分的人数为0,∴该班选择题中,答对3题的人数为0人;(2)平均分为(6×1+12×2+18×6+21×8+24×15+27×10+30×8)÷50=23.52;24分的人数最多,众数为24;第25个,第26个的得分都是24,中位数为24.(3)20分以下人数占的比例=(1+2+6)÷50=18%,在扇形统计图中所对的圆心角=360°×18%=64.8°;满分人数占的比例=8÷50=16%,在扇形统计图中所对的圆心角=360°×16%=57.6°.题九:85.5,85;3号选手和6号选手.详解:(1)将说课成绩按从小到大的顺序排列:78、85、85、86、88、94,∴中位数是(85+86)÷2=85.5,85出现的次数最多,∴众数是85;(2)5号选手的成绩为:65×0.2+88×0.3+94×0.5=86.4分;6号选手的成绩为:84×0.2+92×0.3+85×0.5=86.9分.∵序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,∴3号选手和6号选手,应被录取.题十:16;1700,1600;1713.04元.详解:(1)该公司“高级技工”的人数=5名),(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是160018002=1700(元);在这些数中1600元出现的次数最多,因而众数是1600元;故中位数1700元,众数1600元;(3)平均数=(2025×2+2200×3+1800×16+1600×24+950)÷46≈1713.04(元).故其他普通工作人员的月平均工资为1713.04元.。
统计学第三章练习题(附答案).单项选择题B.平均差 D.离散系数2.如果峰度系数k >3,表明该组数据是(A )0A. 64.5 和 78.5 D.64.5 和 67.55.对于右偏分布,平均数、中位数和众数之间的关系是( A)o7.在离散程度的测度中,最容易受极端值影响的是( A)08.在⽐较两组数据的离散程度时,不能直接⽐较它们的标准差,因为两组数据的 (D )oA.标准差不同C 数据个数不同1.⽐较两组数据的离散程度最合适的统计量是(D )。
A.极差 C 标准差A.尖峰分布B 扁平分布C 左偏分布 D.右偏分布3.某⼤学经济管理学院有 1200 名学⽣,法学院有 800 名学⽣,医学院有 320 名学⽣,理学院有 200 名学⽣0上⾯的描述中,众数是(B)0A.1200B.经济管理学院C.200D 理学院4. 某班共有 25 名学⽣ , 期末统计学课程的考试分数分别为:68,73,66,76,86,74,61,89,65,90,69,67,76,62,81,63,68,81,70,73,60,87,75,64,56考试分数下四分位数和上四分位数分别是( A)0B.67.5 和 71.5C.64.5和 71.5A.平均数>中位数>众数B. 中位数>平均数>众数 C 众数〉中位数〉平均数D.众数〉平均数〉中位数6.某班学⽣的统计学平均成绩是70分,最⾼分是 96分,最低分是 62分,根据这些信息,可以计算的测度离散程度的指标是(B)0A ⽅差B 极差C 标准差 D.变异系数A.极差B ⽅差C 标准差D.平均差B.⽅差不同 D.计量单位不同9.总量指标按其反应的内容不同,可分为( C)0A.总体指标和个体指标B.时期指标和时点指标c 总体单位总量指标和总体标识总量指标 D.总体单位总量指标和标识单位指标10.反映同⼀总体在不同时间上的数量对⽐关系的是(D.⽐例相对指标11.2003年全国男性⼈⼝数为 66556万⼈,2002年全国⾦融、保险业增加值为 5948.9亿元,2003年全社会固定资产投资总额为 55566.61亿元,2003年全国城乡居民⼈民币储蓄存款余额103617.7亿元。
第三章平均指标练习及答案第三章平均指数和标记变异指数1,填写问题1。
平均指数是一种统计指数,表明某个标记在特定的时间、地点和条件下达到_ _ _ _ _ _ _ _ _ _,也称为平均值2。
权重对算术平均值的影响不是由权重的大小决定的,而是由权重的大小决定的3。
几何平均数是n的n根。
这是最适合计算和平均速度的方法。
4。
当标记值较大且次数较多时,平均值接近标记值较大的一侧;当标志值小且次数大时,平均值接近标志值较小的一侧。
5。
当加权算术平均值等于简单算术平均值时6.使用组中值计算加权算术平均值时,假设每个组中的标记值都是分布的,计算结果为1 7。
中位数是位于可变序列中的标记值,模式是群体中出现次数的标记值中位数和众数也可以称为平均数8。
调和平均是一种平均,它是9。
当变量序列中的算术平均值大于模式时,变量序列的分布是分布的;另一方面,当算术平均值小于模式时,变量序列的分布是分布的10。
更常用的趋势指标是、、、、11.标准偏差系数是12。
据了解,XXXX一季度某一系列商品的平均销售数量按商品销售情况分为以下几类:按商品销售情况(低于2万-30元)公司20家店铺商品销售的平均差价是()如果店铺数量为1.530-40.9 40-50超过3 2(数)甲7万元乙10万元丙12万元丁3万元9当数据集高度倾斜时,哪个平均值更具代表性?()算术平均值b中值c模式d几何平均值14。
方差为()A绝对偏差平均值B平方偏差平均值C平方偏差平均值D绝对偏差平均值15。
一组数据的偏度系数为1.3。
显示这组数据的分布是()正态分布b 平顶分布c左偏置分布d右偏置分布16。
当一组数据属于左偏置分布时,则()A均值、中值和模式组合成左侧的一个B模式和右侧的C模式。
平均值越小,平均值越大。
d模式在右侧,平均值为17。
四分位偏差排除了序列两端()单位标志值的影响A1096B 15% C25 % D35 %18。
优势比是代表_ _ _ _ _ _ _ _ _ _ _规模的指标。
第三章 数据分布特征的描述(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.平均指标反映了( )。
①总体变量值分布的集中趋势 ②总体分布的离散特征 ③总体单位的集中趋势 ④总体变动趋势 2.加权算术平均数的大小( )。
①受各组标志值的影响最大 ②受各组次数的影响最大③受各组权数系数的影响最大 ④受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数( )。
①接近于变量值大的一方 ②接近于变量值小的一方 ③不受权数的影响 ④无法判断4.权数对于平均数的影响作用取决于( )。
①总体单位总量 ②各组的次数多少 ③各组标志值的大小 ④各组次数在总体单位总量中的比重 5.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )。
①各组的次数必须相等 ②各组标志值必须相等 ③各组标志值在本组内呈均匀分布 ④各组必须是封闭组 6.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数( )。
①增加到原来的21 ②稳定不变 ③减少到原来的21④扩大为原来的2倍 7.已知某市场某种蔬菜早市、午市、晚市的每公斤价格,在早市、午市、晚市的销售额基本相同的情况下,计算平均价格可采取的平均数形式是( )。
①简单算术平均数 ②加权算术平均数③简单调和平均数 ④加权调和平均数8.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( )。
①算术平均法 ②调和平均法 ③几何平均法 ④中位数法 9.四分位差排除了数列两端各( )单位标志值的影响。
①10% ②15% ③25% ④ 35% 10.如果一组变量值中有一项为零,则不能计算( )。
①算术平均数 ②调和平均数 ③众数 ④中位数11.在掌握了各组单位成本和各组产量资料时,计算平均单位成本所使用的方法应是( )。
第三章 数据分布特征的描述(一)单项选择题(在下列备选答案中,只有一个是正确的,请将其顺序号填入括号内)1.平均指标反映了( )。
①总体变量值分布的集中趋势 ②总体分布的离散特征 ③总体单位的集中趋势 ④总体变动趋势 2.加权算术平均数的大小( )。
①受各组标志值的影响最大 ②受各组次数的影响最大③受各组权数系数的影响最大 ④受各组标志值和各组次数的共同影响3.在变量数列中,如果变量值较小的一组权数较大,则计算出来的算术平均数( )。
①接近于变量值大的一方 ②接近于变量值小的一方 ③不受权数的影响 ④无法判断4.权数对于平均数的影响作用取决于( )。
①总体单位总量 ②各组的次数多少 ③各组标志值的大小 ④各组次数在总体单位总量中的比重 5.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )。
①各组的次数必须相等 ②各组标志值必须相等 ③各组标志值在本组内呈均匀分布 ④各组必须是封闭组 6.如果次数分布中,各个标志值扩大为原来的2倍,各组次数都减小为原来的1/2,则算术平均数( )。
①增加到原来的21 ②稳定不变 ③减少到原来的21④扩大为原来的2倍 7.已知某市场某种蔬菜早市、午市、晚市的每公斤价格,在早市、午市、晚市的销售额基本相同的情况下,计算平均价格可采取的平均数形式是( )。
①简单算术平均数 ②加权算术平均数③简单调和平均数 ④加权调和平均数8.凡是变量值的连乘积等于总比率或总速度的现象,要计算其平均比率或平均速度都可以采用( )。
①算术平均法 ②调和平均法 ③几何平均法 ④中位数法 9.四分位差排除了数列两端各( )单位标志值的影响。
①10% ②15% ③25% ④ 35% 10.如果一组变量值中有一项为零,则不能计算( )。
①算术平均数 ②调和平均数 ③众数 ④中位数11.在掌握了各组单位成本和各组产量资料时,计算平均单位成本所使用的方法应是( )。
第39讲平均数、中位数和众数题一:某校九年级(2)班50名同学为玉树灾区献爱心捐款情况如下表:50则该班捐款金额的平均数是.题二:在今年的助残募捐活动中,我市某中学九年级(1)班同学组织献爱心捐款活动,班长根据第一组12名同学捐款情况绘制成如图的条形统计图.根据图中提供的信息,第一组捐款金额的平均数是______.题三:在一次数学单元考试中,某小组7名同学的成绩(单位:分)分别是:65,80,70,90,95,100,70.这组数据的中位数是________.题四:在一次数学测验中,12名学生的成绩如下:60,95,80,75,80,85,60,55,90,55,80,70.这组数据的中位数是________.题五:在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是________.题六:在一次数学竞赛中,10名学生的成绩如下:75,80,80,70,85,95,70,65,70,80.则这次竞赛成绩的众数是________.题七:为了了解2012年我市初三学生理化操作实验考试的成绩情况,随机抽取了初三50位考生的得分情况如下表:根据表中信息,解答下列问题:(1)求这50位同学理化实验操作得分的众数、中位数、平均数.(2)将这50位同学此次操作得分制成如图所示的扇形统计图.试计算扇形①的圆心角度数.题八:在本学期第九周进行的白云区08年初三毕业班中考第一次模拟考试(简称初三“一模”)中,九年级某班50名同学选择题(共10小题,每小题3分,满分30分)的得分情况如下表:选择题得分分值及人数统计表(1)该班选择题中,答对3题的人数为______人;(2)该班选择题得分的平均分为______,众数为______,中位数为______;(3)为了制作右面的扇形统计图(如图),请分别求出得20分以下人数占总人数的百分比和扇形圆心角度数及得满分人数占总人数的百分比和扇形圆心角度数.题九:“十年树木,百年树人”,教师的素养关系到国家的未来.我市某区招聘音乐教师采用笔试、专业技能测试、说课三种形式进行选拔,这三项的成绩满分均为100分,并按2:3:5的比例折合纳入总分,最后,按照成绩的排序从高到低依次录取.该区要招聘2名音乐教师,通过笔试、专业技能测试筛选出前6名选手进入说课环节,这6名选手的各项成绩见下表:8486(1)写出说课成绩的中位数、众数;(2)已知序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,请你判断这六位选手中序号是多少的选手将被录用?为什么?题十:某科技开发公司现有员工50人,所有员工的月工资情况如表:请根据上述内容,解答下列问题:(1)该公司的高级技工有多少名?(2)所有员工月工资的中位数、众数是多少元?(3)去掉四个管理人员的工资后,请你计算出其他普通工作人员的月平均工资.(最后结果保留两位小数)第39讲平均数、中位数和众数题一:38.详解:该班捐款金额的平均数是10315630114011501360650⨯+⨯+⨯+⨯+⨯+⨯=38.题二:10.详解:根据题意,第一组捐款金额的平均数是6541022512⨯+⨯+⨯=10.题三:80.详解:将这组数据按从小到大的顺序排列为:65,70,70,80,90,95,100,处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80.题四:77.5.详解:将12名学生的成绩从高到低重新排列:95,90,85,80,80,80,75,70,60,60,55,55,中间的两个数是80和75,故中位数是80752+=77.5.题五:9.详解:依题意得9出现了三次,次数最多,∴这组数据的众数是9.题六:70和80.详解:在这一组数据中70和80是出现次数最多的,故众数是70和80.题七:9、9、8.82 ;57.6°.详解:(1)众数为9,中位数为9,平均分=151020988572650⨯+⨯+⨯+⨯+⨯=8.82;(2)∵扇形①所占的百分数为250×100%550×100% =16%,∴扇形①圆心角度数=16%×360°=57.6°.题八:0;23.52,24,24;18%,64.8%,16%,57.6°.详解:(1)∵得9分的人数为0,∴该班选择题中,答对3题的人数为0人;(2)平均分为(6×1+12×2+18×6+21×8+24×15+27×10+30×8)÷50=23.52;24分的人数最多,众数为24;第25个,第26个的得分都是24,中位数为24.(3)20分以下人数占的比例=(1+2+6)÷50=18%,在扇形统计图中所对的圆心角=360°×18%=64.8°;满分人数占的比例=8÷50=16%,在扇形统计图中所对的圆心角=360°×16%=57.6°.题九:85.5,85;3号选手和6号选手.详解:(1)将说课成绩按从小到大的顺序排列:78、85、85、86、88、94,∴中位数是(85+86)÷2=85.5,85出现的次数最多,∴众数是85;(2)5号选手的成绩为:65×0.2+88×0.3+94×0.5=86.4分;6号选手的成绩为:84×0.2+92×0.3+85×0.5=86.9分.∵序号为1,2,3,4号选手的成绩分别为84.2分,84.6分,88.1分,80.8分,∴3号选手和6号选手,应被录取.题十:16;1700,1600;1713.04元.详解:(1)该公司“高级技工”的人数=5名),(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是160018002=1700(元);在这些数中1600元出现的次数最多,因而众数是1600元;故中位数1700元,众数1600元;(3)平均数=(2025×2+2200×3+1800×16+1600×24+950)÷46≈1713.04(元).故其他普通工作人员的月平均工资为1713.04元.。
第三章静态分析指标习题答案一、名词解释用规范性的语言解释统计学中的名词。
1. 总量指标:指反映在一定时间、空间条件下某种现象的总体范围、总体规模、总体水平的指标。
2. 强度相对数:指同一时期两个性质不同但有一定联系的总量指标之比。
3. 平均指标:指将同质总体内各单位某一数量标志的差异抽象化,用以反映同类现象在具体条件下的一般水平。
4. 算术平均数:指总体标志总量与总体单位总量之比,它是分析社会经济现象一般水平和典型特征的最基本指标。
5. 调和平均数:指总体各单位标志值倒数的算术平均数的倒数,也称为倒数平均数。
6. 众数:指总体中出现次数最多的标志值,它能直观地说明客观现象分配中的集中趋势。
7. 中位数:指现象总体中各单位标志值按大小顺序排列,居于中间位置的那个标志值。
8. 标准差:指总体各单位标志值与其算术平均数离差平方的平均数的算术平方根。
9. 标志变异指标:指反映总体各单位标志值之间差异大小的综合指标,又称为标志变动度。
二、填空题根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。
1. 平均指标、相对指标2. 两个有联系、联系程度3. 104. 系数、成数、有名数5. 相对数、平均数6. 期中7. 102.22、660、6488. 水平法、累计法9. 结构相对数10. 高11. 不同空间12. 计划完成相对数、结构相对数13. 总体标志总量、总体单位总量14. 调和平均数、算术平均数15. 集中趋势、离中趋势16. 那个标志值17. 绝对数、比重18. 同质总体19. 平均差、标准差、离散系数、标准差20. P21. 标准差、其算术平均数22. 360023. 平方、平均差24. 412.31元、103.08%25. 相等、中位数三、单项选择从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。
1 B2 D3 C4 B5 C6 D7 C8 B9 B 10 D11 D 12 B 13 B 14 D 15 D16 C 17 A 18 B 19 B 20 B21 A 22 C 23 B 24 B 25 B26 A 27 D 28 B 29 A 30 B四、多项选择从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。
第三章平均指标与标志变异指标一、填空题1.平均指标是表明__________某一标志在具体时间、地点、条件下达到的_________的统计指标,也称为平均数。
2.权数对算术平均数的影响作用不决定于权数的大小,而决定于权数的________的大小。
3.几何平均数是n个__________的n次方根,.它是计算和平均速度的最适用的一种方法。
4.当标志值较大而次数较多时,平均数接近于标志值较的一方;当标志值较小而次数较多时,平均数靠近于标志值较的一方。
5.当时,加权算术平均数等于简单算术平均数。
6.利用组中值计算加权算术平均数是假定各组内的标志值是分布的,其计算结果是一个。
7.中位数是位于变量数列的那个标志值,众数是在总体中出现次数的那个标志值。
中位数和众数也可以称为平均数。
8.调和平均数是平均数的一种,它是的算术平均数的。
9.当变量数列中算术平均数大于众数时,这种变量数列的分布呈分布;反之算术平均数小于众数时,变量数列的分布则呈分布。
10.较常使用的离中趋势指标有、、、、、。
11.标准差系数是与之比。
12.已知某数列的平均数是200,标准差系数是30%,则该数列的方差是。
13.对某村6户居民家庭共30人进行调查,所得的结果是,人均收入400元,其离差平方和为5100000,则标准差是,标准差系数是。
14.在对称分配的情况下,平均数、中位数与众数是的。
在偏态分配的情况下,平均数、中位数与众数是的。
如果众数在左边、平均数在右边,称为偏态。
如果众数在右边、平均数在左边,则称为偏态。
15.采用分组资料,计算平均差的公式是,计算标准差的公式是。
二、单项选择题1.加权算术平均数的大小( )A受各组次数f的影响最大 B受各组标志值X的影响最大C只受各组标志值X的影响 D受各组次数f和各组标志值X的共同影响2,平均数反映了( )A总体分布的集中趋势 B总体中总体单位分布的集中趋势C总体分布的离散趋势 D总体变动的趋势3.在变量数列中,如果标志值较小的一组权数较大,则计算出来的算术平均数( )A接近于标志值大的一方 B接近于标志值小的一方C不受权数的影响 D无法判断4.根据变量数列计算平均数时,在下列哪种情况下,加权算术平均数等于简单算术平均数( )A各组次数递增 B各组次数大致相等 C各组次数相等 D 各组次数不相等5.已知某局所属12个工业企业的职工人数和工资总额,要求计算该局职工的平均工资,应该采用( )A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法6.已知5个水果商店苹果的单价和销售额,要求计算5个商店苹果的平均单价,应该采用( )A简单算术平均法 B加权算术平均法 C加权调和平均法 D几何平均法7.计算平均数的基本要求是所要计算的平均数的总体单位应是( )A大量的 B同质的 C差异的 D少量的8.某公司下属5个企业,已知每个企业某月产值计划完成百分比和实际产值,要求计算该公司平均计划完成程度,应采用加权调和平均数的方法计算,其权数是( )A计划产值 B实际产值 C工人数 D企业数9.由组距变量数列计算算术平均数时,用组中值代表组内标志值的一般水平,有一个假定条件,即( )A各组的次数必须相等 B各组标志值必须相等C各组标志值在本组内呈均匀分布 D各组必须是封闭组10.离中趋势指标中,最容易受极端值影响的是( )A极差 B平均差 C标准差 D标准差系数11.平均差与标准差的主要区别在于( )A指标意义不同 B计算条件不同 C计算结果不同 D数学处理方法不同12.某贸易公司的20个商店本年第一季度按商品销售额分组如下:则该公司20个商店商品销售额的平均差为( )A 7万元B 1万元C 12 万元D 3万元13.当数据组高度偏态时,哪一种平均数更具有代表性? ( ) A算术平均数 B中位数 C众数 D几何平均数14.方差是数据中各变量值与其算术平均数的( )A离差绝对值的平均数 B离差平方的平均数C离差平均数的平方 D离差平均数的绝对值15.一组数据的偏态系数为1.3,表明该组数据的分布是( )A 正态分布 B平顶分布 C左偏分布 D右偏分布16.当一组数据属于左偏分布时,则( )A平均数、中位数与众数是合而为一的 B众数在左边、平均数在右边C众数的数值较小,平均数的数值较大 D众数在右边、平均数在左边17.四分位差排除了数列两端各( )单位标志值的影响。
A 1096B 15% C25% D 35%18.异众比率是说明_________代表性大小的指标。
A 中位数B 众数C 算术平均数D 几何平均数三、多项选择题1.在各种平均数中,不受极端值影响的平均数是( )A算术平均数 B调和平均数 C中位数 D几何平均数 E众数2.加权算术平均数的大小受哪些因素的影响( )A受各组频数或频率的影响 B受各组标志值大小的影响C受各组标志值和权数的共同影响 D只受各组标志值大小的影响E只受权数大小的影响3.平均数的作用是( )A反映总体的一般水平B对不同时间、不同地点、不同部门的同质总体平均数进行对比C测定总体各单位的离散程度 D测定总体各单位分布的集中趋势E反映总体的规模4.众数是( )A位置平均数 B总体中出现次数最多的标志值 C不受极端值的影响D适用于总体单位数多,有明显集中趋势的情况E处于变量数列中点位置的那个标志值5.在什么条件下,加权算术平均数等于简单算术平均数( )。
A各组次数相等 B各组标志值不等 C变量数列为组距变量数列D 各组次数都为1E 各组次数占总次数的比重相等6.加权算术平均数的计算公式有( ) A n x ∑ B ∑∑f xf C∑∑f f x D ∑∑x m m E ∑x n 17.计算和应用平均数的原则是( )A 现象的同质性B 用组平均数补充说明总平均数C 用变量数列补充说明平均数D 用时间变量数列补充说明平均数E 把平均数和典型事例结合起来8.下列变量数列中可以计算算术平均数的有( )A 变量数列B 等距变量数列C 品质变量数列D 时间变量数列E 不等距变量数列9.几何平均数主要适用于( )A 标志值的代数和等于标志值总量的情况B 标志值的连乘积等于总比率的情况C 标志值的连乘积等于总速度的情况D 具有等比关系的变量数列E 求平均比率时10.中位数是( )A 由标志值在变量数列中所处的位置决定的B 根据标志值出现的次数决定的C 总体单位水平的平均值D 总体一般水平的代表值E 不受总体中极端数值的影响11.有些离中趋势指标是用有名数表示的,它们是( )A 极差B 平均差C 标准差D 平均差系数E 四分位差12.不同总体间的标准差不能简单进行对比,是因为( )A 平均数不一致B 标准差不一致C 计量单位不一致D 总体单位数不一致E 与平均数的离差之和不一致13.不同数据组间各标志值的差异程度可以通过标准差系数进行比较,因为标准差系数( )A 消除了不同数据组各标志值的计量单位的影响B 消除了不同数列平均水平高低的影响C 消除了各标志值差异的影响D 数值的大小与数列的差异水平无关E 数值的大小与数列的平均数大小无关14.关于极差,下列说法正确的有( )A 只能说明变量值变异的范围B 不反映所有变量值差异的大小C 反映数据的分配状况D 最大的缺点是受极端值的影响E 最大的优点是不受极端值的影响15.下列指标中,反映数据组中所有数值变异大小的指标有( )A四分位差 B平均差 C标准差 D极差 E离散系数四、判断题1.权数对算术平均数的影响作用取决于权数本身绝对值的大小。
( )2.算术平均数的大小,只受总体各单位标志值大小的影响。
( ) 3.在特定条件下,加权算术平均数可以等于简单算术平均数。
( ) 4.中位数和众数都属于平均数,因此它们数值的大小受到总体内各单位标志值大小的影响。
( )5.分位数都属于数值平均数。
( )6.在资料已分组时,形成变量数列的条件下,计算算术平均数或调和平均数时,应采用简单式;反之,采用加权式。
( )7.当各标志值的连乘积等于总比率或总速度时,宜采用几何平均法计算平均数。
( )8.众数是总体中出现最多的次数。
( )9.未知计算平均数的基本公式中的分子资料时,应采用加权算术平均数方法计算。
( )10.按人口平均的粮食产量是一个平均数。
( )11.变量数列的分布呈右偏分布时,算术平均数的值最小。
( ) 12.总体中各标志值之间的差异程度越大,标准差系数就越小。
( )13.同一数列,同时计算平均差,标准差,二者必然相等。
( ) 14.如果两个数列的极差相同,那么,它们的离中程度就相同。
( ) 15.离中趋势指标既反映了数据组中各标志值的共性,又反映了它们之间的差异性。
( )16.若两组数据的平均数与标准差均相同,则其分布也是相同的。
( )第三章平均指标与标志变异指标一、填空题1.同质总体、一般水平2.绝对数、相对数3.比率连乘积的n次方根、平均比率4.大、小5.各组权数相等6.均匀、假定值7.中间位置、最多、位置8.标志值倒数、倒数9.右偏、左偏10.异众比率、极差、四分位差、平均差、标准差、离散系数11.标准差、平均数12.360013.412.31、1.0314.相等的、不等的、右偏、左偏15. ∑∑-=f f x x A.D. ∑∑-=f f x)(x σ2二、单项选择题1.D 2.B 3.B 4.C 5.A 6.C 7.B 8.B 9.C 10.A 11.D12.A 13.C 14.B 15.D 16.D 17.C 18.B三、多项选择题1.CE 2.ABC 3.ABD 4.ABCD 5.ADE 6.BC7.ABCE 8.ABE 9.BCE 10.ADE 11.ABCE 12.AC 13.ABDE 14.ABD 15.BCE四、判断题1.× 2.× 3.√ 4.× 5.× 6.× 7.√ 8.× 9.√ 10.× 11.× 12.× 13.× 14.× 15.× 16. ×。