傅立叶光学第一章总结
- 格式:doc
- 大小:52.50 KB
- 文档页数:2
考点一:矩形函数
1()20a x x rect a other ⎧≤⎪=⎨⎪⎩
(1)讨论特殊情况:
11()02x rect ξ⎧--=⎨⎩
性质:中心点是 –(x-1) ,宽度是2,高度是1,左端是x-1-1,右端是x-1+1。
(2)二维矩形函数可以表示成两个一维函数的乘积 如图:(,)()()x y f x y rect rect a b
=
考点二:什么叫卷积、卷积的四个步骤。
估计会考课件上的卷积计算!!!
考点三:有关傅里叶变换的计算题
考点四:证明傅里叶变换的反比性。
反比性即其频谱的有效宽度与原函数的有效宽度之间存在一定的反比关系1x f
∆⋅∆=。
其
物理意义是原函数越窄,则其频谱函数就越宽
考点五:证明卷积定理[(,)(,)](,)(,)x y x y F g x y h x y G f f H f f *=
考点六:设一实函数h(x),其频谱为H(f),即()[()]()()i f a F h x H f H f e φ==
证明其与余弦函数的卷积为:0000()cos 2()cos[2()]a h x f x H f f x f ππφ*=⋅+ 考点七:菲
涅尔衍射积分公式的表达式221101111()()exp()(,)(,)exp 2x x y y jkz U x y U x y jk dx dy j z z λ∞-∞⎡⎤-+-=⎢⎥⎣⎦
⎰⎰ 考点七:问答:用菲涅耳衍射公式可以计算的情况:会聚球面波照明衍射屏,衍射花样是屏函数的傅里叶变换。
(详细计算见ppt )。
考点八:空间频率的定义(两种定义方式)。
考点九:阐述傅里叶光学,*计算题为课件上讲的,证明题为重点。
补充读物傅里叶光学和数字图象处理光学与电通讯和电信息理论相互结合,逐渐形成了傅里叶光学。
傅里叶光学的数学基础是傅里叶变换,它的物理基础是光的衍射理论。
一、空间频率和复振幅设一维简谐波以相速度u 沿x 轴正方向传播,)(cos ),(0ϕωξ+−=x k t A t x简谐振动的时间周期性:时间周期T ,时间频率ν,时间角频率ω .简谐波还具有空间周期性?波速u :(单位时间内振动状态的传播距离称为波速,相速)πλωλνλ2===T u . 空间周期性:空间周期:波长λ (表示振动在一个周期T 内所传播的距离,两个相邻的振动相位相同的点之间距离。
)空间频率:1/λ空间角频率:波数2π/λ若两个单色波沿其传播方向有不同的空间频率,意味着它们有不同的波长。
时间周期性和空间周期性的联系(对单色光):λ = uT 沿空间任意k 方向传播的单色平面波,复振幅 )(i 00e )(~ϕ−⋅=r k r A E ])cos cos cos ([i 0e ϕγβα−++=z y x k A ,其中α , β 和γ 为传播矢量k 的方位角。
在多数情况下,若不考虑光波随时间的变化,可以只用复振幅表示光波以简化计算。
二、空间频率概念的推广(二维)通常,要处理一个二维的复振幅分布或光强分布,如分析平面上的衍射花样,这时要推广空间频率。
沿k 方向传播的单色平面波,0z z =平面的复振幅分布为 γcos i 000e ),(~z k A y x E =)cos cos (i e βαy x k +对于沿一定方向传播的平面波,γcos i 0e z k =常数,则A y x E =),(~0)cos cos (i e βαy x k +x, y 平面上各点复振幅的差别仅来源于不同的(x, y )处有不同的相位差。
x y 平面上的相位分布?k 方向传播的平面波的波面如上图示,0z z =平面与任一波面的交线(虚线)上,各点的位相=该波面的相位值;交线族 = 等相位线族,其方程为 =+)cos cos (2βαλπy x 常数 故,0z z =平面上复振幅分布的特点:等位相线是一组平行线, 呈周期分布(周期为π2)。
第一章 傅里叶分析
第一章内容为傅里叶光学课程的数学基础。
主要介绍了δ函数的定义及其相关性质,由δ函数引申出梳状函数。
介绍了其他一些常用函数:阶跃函数、符号函数、矩形函数、三角形函数、sinc 函数、高斯函数和圆域函数等,主要用于表述振幅透过率或者光强分布等。
重点讲解了以上常用函数的傅里叶变换以及傅里叶变换的主要性质。
另一个重要内容是卷积与相关性,它们在后续的学习中均有十分重要的应用。
δ函数:常用于描述点质量、点电荷、点光源等在某一坐标系中高度集中的物理量。
○
1筛选性:()()()0000,,d d ,x x y y x y x y x y δφφ∞
--=⎰⎰ ○2比例变换性:()()1,,ax by x y ab
δδ= ○
3与普通函数乘积:()()()()000000,,,,f x y x x y y f x y x x y y δδ--=--
梳状函数:常用于对其他函数作等间距抽样。
○
1()()n comb x x n δ∞=-∞
=-∑ ○2()1
n x comb x n δτττ∞=-∞⎛⎫=- ⎪⎝⎭∑ ○3与普通函数乘积:()()()1
n x f x comb f n x n τδτττ∞=-∞⎛⎫=- ⎪⎝⎭∑
卷积:()()()(),,,,d d f x y h x y f h x y ξηξηξη∞
*=--⎰⎰
○
1展宽:一般卷积的宽度等于被卷积函数宽度之和; ○
2平滑化:被卷积函数经卷积运算,其细微结构在一定程度上被消除。
相关:包括自相关与互相关。
互相关是两个信号之间存在多少相似性的量度;自相关是同一函数自变量相差某一大小时,函数值间相关的量度。
对于周期函数(满足狄里赫利条件),可以将其展开为傅里叶级数形式,包括三角傅里叶级数和指数傅里叶级数;它的傅里叶系数是频率的函数,称为频谱函数,是离散的。
对于非周期函数,可以作傅里叶变换,它的频谱函数是连续的。
主要讨论傅里叶变换:
空间域 ()()(),,exp 2d d x y x y x y g x y G f f j xf yf f f π∞⎡⎤=
+⎣⎦⎰⎰ 频域 (
)()(),,exp -2d d x y x
y G f f g x y j xf yf x y π∞⎡⎤=+⎣⎦⎰⎰ 卷积定理:()(){}()()()(){}()(),,,,,,,,x y x y
x y x y
g x y h x y G f f H f f g x y h x y G f f H f f *==*
常见傅里叶变换对:见课本p39。