高二物理选修讲义
- 格式:docx
- 大小:304.77 KB
- 文档页数:16
交变电流知识点一:交变电流一、交变电流1.交变电流:大小和方向随时间做周期性变化的电流叫作交变电流,简称交流.2.直流:方向不随时间变化的电流称为直流.二、交变电流的产生交流发电机的线圈在磁场中转动时,转轴与磁场方向垂直,用右手定则判断线圈切割磁感线产生的感应电流方向.三、交变电流的变化规律1.中性面(1)中性面:与磁感线垂直的平面.(2)当线圈平面位于中性面时,线圈中的磁通量最大,线圈中的电流为零.2.从中性面开始计时,线圈中产生的电动势的瞬时值表达式:e=E m sin ωt,E m叫作电动势的峰值,E m=NωBS.3.正弦式交变电流:按正弦规律变化的交变电流叫作正弦式交变电流,简称正弦式电流.4.正弦式交变电流和电压电流表达式i=I m sin_ωt,电压表达式u=U m sin_ωt.其中I m、U m分别是电流和电压的最大值,也叫峰值.四、交流发电机1.主要构造:电枢和磁体.2.分类(1)旋转电枢式发电机:电枢转动,磁极不动.(2)旋转磁极式发电机:磁极转动,电枢不动.技巧点拨一、交变电流与直流1.交变电流大小和方向随时间做周期性变化的电流叫作交变电流,简称交流.2.常见的交变电流的波形图实际应用中,交变电流有着不同的变化规律,常见的有以下几种,如下图所示.3.直流方向不随时间变化的电流叫作直流,大小和方向都不随时间变化的电流叫作恒定电流. 二、两个特殊位置假定线圈绕OO ′轴沿逆时针方向匀速转动,如下图所示:1.中性面位置(S ⊥B ,如图中的甲、丙)线圈平面与磁场垂直的位置,此时Φ最大,ΔΦΔt 为0,e 为0,i 为0.线圈经过中性面时,电流方向发生改变,线圈转一圈电流方向改变两次. 2.垂直中性面位置(S ∥B ,如图中的乙、丁) 此时Φ为0,ΔΦΔt 最大,e 最大,i 最大.三、交变电流的变化规律 1.正弦交变电流的瞬时值表达式 (1)从中性面位置开始计时e =E m sin ωt ,i =I m sin ωt ,u =U m sin ωt (2)从与中性面垂直的位置开始计时 e =E m cos ωt ,i =I m cos ωt ,u =U m cos ωt . 2.交变电流的峰值 E m =NωBS ,I m =NωBS R +r ,U m =NωBSRR +r. 四、交变电流的图像如图甲、乙所示,从图像中可以得到以下信息:(1)交变电流的峰值E m 、I m . (2)两个特殊值对应的位置:①e =0(或i =0)时:线圈位于中性面上,此时ΔΦΔt =0,Φ最大.②e 最大(或i 最大)时:线圈平行于磁感线,此时ΔΦΔt 最大,Φ=0.(3)e 、i 大小和方向随时间的变化规律.例题精练1.(2021春•洛阳月考)如图甲所示,在匀强磁场中,一矩形金属线圈两次分别以不同的转速绕与磁感线垂直的轴匀速转动,产生的交变电动势图象如图乙中曲线a 、b 所示,则下列说法正确的是( )A .曲线b 表示的交变电动势有效值为5VB .曲线a 、b 对应的线圈转速之比为2:3C .曲线a 表示的交变电动势频率为50HzD .t =3×10﹣2s 时曲线a 对应线框的磁通量最大2.(2021•天津二模)如图所示,为交流发电机的示意图,装置中两磁极之间产生的磁场可近似为匀强磁场,线圈转动时通过滑环和电流保持与外电路的闭合。
传感器知识点一:常见传感器的工作原理及应用一、传感器及其工作原理1.传感器的定义:能够感受诸如力、温度、光、声、化学成分等被测量,并能把它们按照一定的规律转换为便于传送和处理的可用信号输出.通常是电压、电流等电学量,或转换为电路的通断.2.非电学量转换为电学量的意义:把非电学量转换为电学量,可以很方便地进行测量、传输、处理和控制.3.传感器的组成:传感器的基本部分一般由敏感元件、转换元件组成.4.传感器应用的一般模式:二、光敏电阻光敏电阻在被光照射时电阻发生变化,光敏电阻能够把光照强弱这个光学量转换为电阻这个电学量.三、金属热电阻和热敏电阻1.金属热电阻:金属的电阻率随温度的升高而增大,利用这一特性,金属丝可以制作成温度传感器,称为热电阻.2.热敏电阻:用半导体材料制成,氧化锰制成的热敏电阻的阻值随温度的升高而减小.四、电阻应变片1.电阻应变效应:金属导体在外力作用下发生机械形变时,其电阻也随之变化的现象.2.电阻应变片:电阻应变片有金属电阻应变片和半导体电阻应变片,半导体电阻应变片的工作原理是基于半导体材料的压阻效应.3.电阻应变片能够把物体形变这个力学量转换为电阻这个电学量.技巧点拨一、传感器1.传感器的核心元件(1)敏感元件:相当于人的感觉器官,是传感器的核心部分,是利用材料的某种敏感效应(如热敏、光敏、压敏、力敏、湿敏等)制成的.(2)转换元件:是传感器中能将敏感元件输出的与被测物理量成一定关系的非电信号转换成电信号的电子元件.(3)转换电路:将转换元件输出的不易测量的电学量转换成易于测量的电学量,如电压、电流、电阻等.2.传感器的工作原理传感器感受的通常是非电学量,如压力、温度、位移、浓度、速度、酸碱度等,而它输出的通常是电学量,如电压、电流、电荷量等.这些输出信号是非常微弱的,通常要经过放大后再输送给控制系统产生各种控制动作.传感器的工作原理如下所示:非电学量→敏感元件→转换元件→转换电路→电学量二、光敏电阻及其应用1.光敏电阻一般由半导体材料制成,当半导体材料受到光照时,载流子增多,导电性能明显增强,光敏电阻把光照的强弱转换为电阻的大小.2.光敏电阻的阻值随光照强度的增强而明显减小.它能够把光照强弱这个光学量转换为电阻这个电学量.三、金属热电阻和热敏电阻及其应用1.金属热电阻:金属导体的电阻随温度的升高而增大,如图5图线①所示.2.热敏电阻(1)热敏电阻指用半导体材料制成,电阻值随温度变化发生明显变化的电阻.如下图线②所示为某热敏电阻的电阻—温度特性曲线.(2)热敏电阻分正温度系数和负温度系数热敏电阻两类,电阻值随温度升高而增大的是正温度系数(PTC)热敏电阻;电阻值随温度升高而减小的是负温度系数(NTC)热敏电阻.常用的是负温度系数热敏电阻.例题精练1.(2021•广东学业考试)测量体温是新冠疫情防控的一种措施.在许多场合,使用手持测温仪测量体温,该测温仪用到的传感器通常是()A.气体传感器B.红外线传感器C.压力传感器D.生物传感器2.(2021春•洛阳月考)关于传感器,下列说法中正确的是()A.干簧管是一种能够感知电场的传感器B.火灾报警器都是利用温度传感器实现报警C.电熨斗通过温度传感器实现温度的自动控制D.话筒是将电信号转换为声信号的传感器随堂练习1.(2021春•瑶海区月考)图甲表示某压敏电阻的阻值R随所受压力变化的情况。
第14讲 电磁场与电磁波课程标准课标解读1.初步了解麦克斯韦电磁场理论的基本思想,初步了解场的统一性与多样性,体会物理学对统一性的追求。
2.结合牛顿万有引力定律和麦克斯韦电磁场理论,体会物理学发展过程中对统一性的追求。
1.知道电磁场的概念及产生过程.2.了解电磁波的基本特点、发现过程及传播规律,知道电磁波与机械波的区别.知识点01 电磁场1.变化的磁场产生电场(1)实验基础:如图所示,在变化的磁场中放一个闭合电路,电路里就会产生感应电流.(2)麦克斯韦的见解:电路里能产生感应电流,是因为变化的磁场产生了电场,电场促使导体中的自由电荷做定向运动.(3)实质:变化的磁场产生了电场. 2.变化的电场产生磁场麦克斯韦假设,既然变化的磁场能产生电场,那么变化的电场也会在空间产生磁场. 【知识拓展1】对麦克斯韦电磁场理论的理解 (1)变化的磁场产生电场①均匀变化的磁场产生恒定的电场. ②非均匀变化的磁场产生变化的电场.③周期性变化的磁场产生同频率的周期性变化的电场.知识精讲目标导航(2)变化的电场产生磁场①均匀变化的电场产生恒定的磁场.②非均匀变化的电场产生变化的磁场.③周期性变化的电场产生同频率的周期性变化的磁场.【即学即练1】麦克斯韦是从牛顿到爱因斯坦这一阶段中最伟大的理论物理学家,他的科学思想和科学方法的重要意义直到20世纪科学革命来临时才充分体现出来,下列关于麦克斯韦的理论,正确的是()A.均匀变化的电场周围产生均匀变化的磁场B.光是以波动形式传播的一种电磁振动C.水波、声波和电磁波都能在真空中传播D.当电场和磁场同时存在空间某一区域时,就会形成电磁波知识点02 电磁波1.电磁波的产生:变化的电场和磁场交替产生,由近及远向周围传播,形成电磁波.2.电磁波的特点:(1)电磁波在空间传播不需要介质;(2)电磁波是横波:电磁波中的电场强度与磁感应强度互相垂直,而且二者均与波的传播方向垂直,因此电磁波是横波.(3)电磁波的波长、频率、波速的关系:v=λf,在真空中,电磁波的速度c=3.0×108 m/s.(4)电磁波能产生反射、折射、干涉、偏振和衍射等现象.3.电磁波具有能量电磁场的转换就是电场能量与磁场能量的转换,电磁波的发射过程是辐射能量的过程,传播过程是能量传播的过程.【知识拓展2】电磁波与机械波的比较名称项目机械波电磁波研究对象力学现象电磁现象周期性位移随时间和空间做周期性变化电场强度E和磁感应强度B随时间和空间做周期性变化传播情况传播需要介质,波速与介质有关,与频率无关传播无需介质,在真空中波速等于光速c,在介质中传播时,波速与介质和频率都有关产生机理由质点(波源)的振动产生由电磁振荡激发波的特点横波或纵波横波干涉和衍射可以发生干涉和衍射【即学即练2】下列说法正确的是()A.磁场中某一点的磁感应强度等于一小段通电导线放在该点时受到的磁场力F与该导线的长度1、通过的电流I乘积的比值,即F BIlB.环形金属软弹簧套在条形磁铁的中心位置。
磁场对通电导线的作用力知识点:磁场对通电导线的作用力一、安培力的方向1.安培力:通电导线在磁场中受的力.2.左手定则:伸开左手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内;让磁感线从掌心垂直进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.3.安培力方向与磁场方向、电流方向的关系:F⊥B,F⊥I,即F垂直于B与I所决定的平面.二、安培力的大小1.垂直于磁场B的方向放置的长为l的通电导线,当通过的电流为I时,所受安培力为F =IlB.2.当磁感应强度B的方向与电流方向成θ角时,公式F=IlB sin_θ.三、磁电式电流表1.原理:安培力与电流的关系.通电线圈在磁场中受到安培力而偏转,线圈偏转的角度越大,被测电流就越大.根据指针的偏转方向,可以知道被测电流的方向.2.构造:磁体、线圈、螺旋弹簧、指针、极靴.3.特点:极靴与铁质圆柱间的磁场沿半径方向,线圈无论转到什么位置,它的平面都跟磁感线平行,且线圈左右两边所在处的磁感应强度大小相等.4.优点:灵敏度高,可以测出很弱的电流.缺点:线圈的导线很细,允许通过的电流很弱.技巧点拨一、安培力的方向1.安培力方向的特点安培力的方向既垂直于电流方向,也垂直于磁场方向,即垂直于电流I和磁场B所决定的平面.(1)当电流方向跟磁场方向垂直时,安培力的方向、磁场方向和电流方向两两相互垂直.应用左手定则判断时,磁感线从掌心垂直进入,拇指、其余四指和磁感线三者两两垂直.(2)当电流方向跟磁场方向不垂直时,安培力的方向仍垂直于电流方向,也垂直于磁场方向.应用左手定则判断时,磁感线斜着穿入掌心.2.判断安培力方向的步骤(1)明确研究对象;(2)用安培定则或根据磁体的磁场特征,画出研究对象所在位置的磁场方向;(3)由左手定则判断安培力方向.3.应用实例应用左手定则和安培定则可以判定平行通电直导线间的作用力:同向电流相互吸引,反向电流相互排斥.二、安培力的大小1.公式F=IlB sinθ中B对放入的通电导线来说是外加磁场的磁感应强度,不必考虑导线自身产生的磁场对外加磁场的影响.2.公式F=IlB sinθ中θ是B和I方向的夹角(1)当θ=90°时,即B⊥I,sinθ=1,公式变为F=IlB.(2)当θ=0°时,即B∥I,F=0.3.公式F=IlB sinθ中l指的是导线在磁场中的“有效长度”,弯曲导线的有效长度l,等于连接两端点直线的长度(如下图所示);相应的电流沿导线由始端流向末端.推论:对任意形状的闭合平面线圈,当线圈平面与磁场方向垂直时,线圈的有效长度l=0,故通电后线圈在匀强磁场中所受安培力的矢量和一定为零,如下图所示.例题精练1.(2021•北京模拟)在两个倾角均为α的光滑斜面上,放有两个相同的金属棒,分别通有电流I1和I2,磁场的磁感应强度大小相同,方向分别为竖直向上和垂直于斜面向上,如图甲、乙所示,两金属棒均处于平衡状态。
电能的输送知识点:电能的输送一、输送电能的基本要求1.可靠:指供电线路可靠地工作,故障少.2.保质:保证电能的质量——电压和频率稳定.3.经济:指输电线路建造和运行的费用低,电能损耗少.二、降低输电损耗的两个途径1.输电线上的功率损失:P=I2r,I为输电电流,r为输电线的电阻.2.降低输电损耗的两个途径(1)减小输电线的电阻:在输电距离一定的情况下,为了减小电阻,应当选用电阻率小的金属材料,还要尽可能增加导线的横截面积.(2)减小输电线中的电流:为了减小输电电流,同时又要保证向用户提供一定的电功率,就要提高输电电压.三、电网供电1.远距离输电的基本原理:在发电站内用升压变压器升压,然后进行远距离输电,在用电区域通过降压变压器降到所需的电压.2.电网:通过网状的输电线、变电站,将许多电厂和广大用户连接起来,形成全国性或地区性的输电网络.3.电网输电的优点(1)降低一次能源的运输成本,获得最大的经济效益.(2)减小断电的风险,调剂不同地区电力供需的平衡.(3)合理调度电力,使电力的供应更加可靠,质量更高.技巧点拨一、输电线上的电压和功率损失1.输电线上的电压损失图2ΔU =U -U ′=Ir =PU r .2.输电线上的功率损失(1)ΔP =I 2r ,其中I 为输电线上的电流,r 为输电线的电阻. (2)ΔP =ΔU ·I 或ΔP =(ΔU )2r ,其中ΔU 为输电线上的电压损失.3.减少电压损失和功率损失的方法(1)减小输电线的电阻r ,根据r =ρLS ,可减小电阻率ρ,目前一般用电阻率较小的铜或铝作为导线材料;也可增大导线的横截面积S ,但过粗的导线会多耗费金属材料,增加成本,同时给输电线的架设带来很大的困难.(2)减小输电电流I ,根据I =PU ,在输送功率P 一定,输电线电阻r 一定的条件下,输电电压提高到原来的n 倍,输送电流可减为原来的1n ,输电线上的功率损耗将降为原来的1n 2.二、解决远距离高压输电问题的基本方法1.首先应画出远距离输电的电路图(如图),并将已知量和待求量写在电路图的相应位置.2.理清三个回路: 回路1:P 1=U 1I 1回路2:U 2=ΔU +U 3,P 2=ΔP +P 3=I 22R 线+P 3,I 2=I 3 回路3:P 4=U 4I 4. 3.常用关系(1)功率关系:P 1=P 2,P 2=ΔP +P 3,P 3=P 4. (2)电压关系:U 1U 2=n 1n 2,U 2=ΔU +U 3,U 3U 4=n 3n 4.(3)电流关系:I 1I 2=n 2n 1,I 2=I 线=I 3,I 3I 4=n 4n 3.(4)输电电流:I 线=P 2U 2=P 3U 3=ΔUR 线. (5)输电线上损耗的电功率: ΔP =P 2-P 3=I 线2 R线=(ΔU )2R 线=ΔU ·I 线. (6)输电线上的电压损失:ΔU=I线R线=U2-U3.例题精练1.(2021春•台江区校级期中)如图所示,发电厂经过变压器(图中未画出,升压后的输出电压是U,用等效总电阻是r的两条输电线输电,输电线路中的电流是I1),其末端间的电压为U1,在输电线与用户间连有一理想变压器,流入用户端的电流是I2。
质谱仪与回旋加速器知识点:质谱仪与回旋加速器一、质谱仪1.质谱仪构造:主要构件有加速电场、偏转磁场和照相底片.2.运动过程(如图)(1)带电粒子经过电压为U 的加速电场加速,qU =12m v 2. (2)垂直进入磁感应强度为B 的匀强磁场中,做匀速圆周运动,r =m v qB ,可得r =1B 2mU q . 3.分析:从粒子打在底片D 上的位置可以测出圆周的半径r ,进而可以算出粒子的比荷.二、回旋加速器1.回旋加速器的构造:两个D 形盒,两D 形盒接交流电源,D 形盒处于垂直于D 形盒的匀强磁场中,如图.2.工作原理(1)电场的特点及作用特点:两个D 形盒之间的窄缝区域存在周期性变化的电场.作用:带电粒子经过该区域时被加速.(2)磁场的特点及作用 特点:D 形盒处于与盒面垂直的匀强磁场中. 作用:带电粒子在洛伦兹力作用下做匀速圆周运动,从而改变运动方向,半个圆周后再次进入电场.技巧点拨一、质谱仪1.加速:带电粒子进入质谱仪的加速电场,由动能定理得qU =12m v 2① 2.偏转:带电粒子进入质谱仪的偏转磁场做匀速圆周运动,由洛伦兹力提供向心力得q v B =m v 2r② 3.由①②两式可以求出粒子运动轨迹的半径r 、质量m 、比荷q m 等.由r =1B2mU q可知,电荷量相同时,半径将随质量的变化而变化.二、回旋加速器回旋加速器两D 形盒之间有窄缝,中心附近放置粒子源(如质子、氘核或α粒子源),D 形盒间接上交流电源,在狭缝中形成一个交变电场.D 形盒上有垂直盒面的匀强磁场(如图所示).(1)电场的特点及作用特点:周期性变化,其周期等于粒子在磁场中做圆周运动的周期.作用:对带电粒子加速,粒子的动能增大,qU =ΔE k .(2)磁场的作用改变粒子的运动方向.粒子在一个D 形盒中运动半个周期,运动至狭缝进入电场被加速.磁场中q v B =m v 2r ,r =m v qB∝v ,因此加速后的轨迹半径要大于加速前的轨迹半径.(3)粒子获得的最大动能若D 形盒的最大半径为R ,磁感应强度为B ,由r =m v qB 得粒子获得的最大速度v m =qBR m,最大动能E km =12m v m 2=q 2B 2R 22m. (4)两D 形盒窄缝所加的交流电源的周期与粒子做圆周运动的周期相同,粒子经过窄缝处均被加速,一个周期内加速两次.例题精练1.(2021•秦淮区校级一模)下列关于磁场的应用,正确的是()A.图甲是用来加速带电粒子的回旋加速器示意图,要使粒子获得的最大动能增大,可增大加速电场的电压UB.图乙是磁流体发电机示意图,由此可判断A极板是发电机的正极,B极板是发电机的负极C.图丙是速度选择器示意图,不考虑重力的带电粒子能够沿直线匀速通过速度选择器的条件是D.图丁是磁电式电流表内部结构示意图,当有电流流过时,线圈在磁极间产生的匀强磁场中偏转2.(2021•浙江模拟)劳伦斯和利文斯设计出回旋加速器,工作原理如图所示。
交变电流综合复习一、正弦式交变电流(1)瞬时值:e =NBSωsin ωt (中性面开始计时) e =NBSωcos ωt (中性面的垂直面开始计时)(2)峰值:E m =NBSω,峰值与线圈的形状无关,与转轴的位置无关,但转轴必须垂直于磁场(3)周期:T=2πω 频率:f =1T(4)中性面和垂直面的比较1. 线圈处于中性面位置时,穿过线圈的Φ最大,但线圈中的电流为零.2. 线圈每次经过中性面时,线圈中感应电流方向都要改变.线圈转动一周,感应电流方向改变两次.【例1】有一个正方形线圈的匝数为10匝,边长为20 cm ,线圈总电阻为1 Ω,线圈绕OO ′轴以10π rad/s 的角速度匀速转动,如图所示,匀强磁场的磁感应强度为0.5 T ,问: (1)该线圈产生的交变电流电动势的峰值、电流的峰值分别是多少. (2)若从中性面位置开始计时,写出感应电动势随时间变化的表达式. (3)线圈从中性面位置开始,转过30°时,感应电动势的瞬时值是多大.【例2】线圈在匀强磁场中绕垂直于磁场的转轴匀速转动,产生交变电流的图象如图所示,由图中信息可以判断( )A .在A 和C 时刻线圈处于中性面位置B .在B 和D 时刻穿过线圈的磁通量为零C .从A ~D 线圈转过的角度为2πD .若从O ~D 历时0.02 s ,则在1 s 内交变电流的方向改变100次【例3】如图a 所示,一矩形线圈abcd 放置在匀强磁场中,并绕过ab 、cd 中点的轴OO′以角速度ω逆时针匀速转动.若以线圈平面与磁场夹角θ=45°时(如图b )为计时起点,并规定当电流自a 流向b 时电流方向为正.则下列四幅图中正确的是( )【变式1】1.(多选)如图所示,矩形线圈abcd 放在匀强磁场中,ad =bc =l 1,ab =cd =l2.从图示位置起该线圈以角速度ω绕不同转轴匀速转动,则( ) A .以OO ′为转轴时,感应电动势e =Bl 1l 2ωsin ωt B .以O 1O 1′为转轴时,感应电动势e =Bl 1l 2ωsin ωt C .以OO ′为转轴时,感应电动势e =Bl 1l 2ωcos ωtD .以OO ′为转轴跟以ab 为转轴一样,感应电动势e =Bl 1l 2ωsin (ωt +π2)2. (多选)如图所示,一正方形线圈abcd 在匀强磁场中绕垂直于磁感线的对称轴OO ′匀速转动,沿着OO ′轴观察,线圈沿逆时针方向转动。
互感和自感知识点:互感和自感一、互感现象1.互感和互感电动势:两个相互靠近但导线不相连的线圈,当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势,这种现象叫作互感,这种感应电动势叫作互感电动势.2.应用:利用互感现象可以把能量由一个线圈传递到另一个线圈,如变压器就是利用互感现象制成的.3.危害:互感现象能发生在任何两个相互靠近的电路之间.在电力工程和电子电路中,互感现象有时会影响电路的正常工作.二、自感现象当一个线圈中的电流变化时,它产生的变化的磁场不仅在邻近的电路中激发出感应电动势,同样也在线圈本身激发出感应电动势,这种现象称为自感.由于自感而产生的感应电动势叫作自感电动势.三、自感系数1.自感电动势:E=LΔIΔt,其中ΔIΔt是电流的变化率;L是自感系数,简称自感或电感.单位:亨利,符号:H.2.自感系数与线圈的大小、形状、匝数,以及是否有铁芯等因素有关.四、磁场的能量1.线圈中电流从无到有时,磁场从无到有,电源把能量输送给磁场,储存在磁场中.2.线圈中电流减小时,磁场中的能量释放出来转化为电能.技巧点拨一、互感现象1.当一个线圈中的电流变化时,它产生的磁场就发生变化,变化的磁场在周围空间产生感生电场,在感生电场的作用下,另一个线圈中的自由电荷定向运动,于是产生感应电动势.2.一个线圈中电流变化越快(电流的变化率越大),另一个线圈中产生的感应电动势越大.3.应用与危害(1)应用:变压器、收音机的磁性天线都是利用互感现象制成的.(2)危害:在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时要设法减小电路间的互感.例如在电路板的刻制时就要设法减小电路间的互感现象.二、通电自感现象1.自感现象也是电磁感应现象,也符合楞次定律,可表述为自感电动势总要阻碍引起自感电动势的原电流的变化.2.当线圈中的电流增大时,自感电动势的方向与原电流的方向相反,阻碍电流的增大,使电流从零逐渐增大到稳定值,但不能阻止电流的增大.3.电流稳定时自感线圈相当于导体(若直流电阻为零,相当于导线).三、断电自感现象自感系数1.当线圈中的电流减小时,自感电动势的方向与原电流方向相同.2.断电自感中,由于自感电动势的作用,线圈中电流从原值逐渐减小.若断开开关瞬间通过灯泡的电流大于断开开关前的电流,灯泡会闪亮一下再熄灭;若断开开关瞬间通过灯泡的电流小于或等于断开开关前的电流,灯泡不会闪亮一下,而是逐渐变暗直至熄灭.3.自感电动势E=LΔIΔt,总是阻碍线圈中电流的变化,但不能阻止线圈中电流的变化.4.自感系数L(1)自感系数简称自感或电感,不同的线圈,在电流变化率相同的条件下,产生的自感电动势不同,电学中用自感系数来表示线圈的这种特性.(2)线圈的长度越长,面积越大,单位长度上匝数越多,线圈的自感系数就越大.线圈中有铁芯时比无铁芯时自感系数大.(3)单位:亨利,符号H,1H=103mH=106μH.例题精练1.(2021•茂南区校级模拟)在某个趣味物理小实验中,几位同学手拉手与一节电动势为1.5V 的干电池、导线、电键、一个有铁芯的多匝线圈按如图所示方式连接,断开电键时人会有触电的感觉。
第一节、电荷及其守恒定律(1课时)第1节、电荷及其守恒定律自然界中的两种电荷 正电荷和负电荷:把用丝绸摩擦过的玻璃棒所带的电荷称为正电荷,用正数表示.把用毛皮摩擦过的硬橡胶棒所带的电荷称为负电荷,用负数表示.电荷及其相互作用:同种电荷相互排斥,异种电荷相互吸引.1、 电荷(1)原子的核式结构及摩擦起电的微观解释构成物质的原子本身就是由带电微粒组成。
原子:包括原子核(质子和中子)和核外电子。
(2)摩擦起电的原因:不同物质的原子核束缚电子的能力不同.实质:电子的转移.结果:两个相互摩擦的物体带上了等量异种电荷.(3)金属导体模型也是一个物理模型P 3用静电感应的方法也可以使物体带电.(4)、静电感应:把电荷移近不带电的异体,可以使导体带电的现象。
利用静电感应使物体带电,叫做感应起电.2、电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分.另一种表述:一个与外界没有电荷交换的系统,电荷的代数和总是保持不变。
3.元电荷电荷的多少叫做电荷量.符号:Q 或q 单位:库仑符号:C元电荷:电子所带的电荷量,用e 表示.注意:所有带电体的电荷量或者等于e ,或者等于e 的整数倍。
就是说,电荷量是不能连续变化的物理量。
电荷量e 的值:e =×10-19C 比荷:电子的电荷量e 和电子的质量m e 的比值,为111076.1⨯=e m e C/㎏ 【小结】1、两种电荷及其相互作用、电荷量的概念、摩擦起电的知识,这些在初中都已经讲过,本节重点是讲述静电感应现象.要做好演示实验,使学生清楚地知道什么是静电感应现象.在此基础上,使学生知道,感应起电也不是创造了电荷,而是使物体中的正负电荷分开,使电荷从物体的一部分转移到另一部分.本节只说明静电感应现象。
2.在复习摩擦起电现象和讲述静电感应现象的基础上,说明起电的过程是使物体中正负电荷分开的过程,进而说明电荷守恒定律.3.要求学生知道元电荷的概念,而密立根实验作为专题,有条件的学校可以组织学生选学.第二节、库仑定律(1课时)1、影响两电荷之间相互作用力的因素:1.距离.2.电量.2、库仑定律 内容表述:力的大小跟两个点电荷的电荷量的乘积成正比,跟它们的距离的二次方成反比.作用力的方向在两个点电荷的连线上 公式:221r q q k F = 静电力常量k =×109N ·m 2/C 2适用条件:真空中,点电荷——理想化模型扩展:任何一个带电体都可以看成是由许多点电荷组成的.任意两点电荷之间的作用力都遵守库仑定律.用矢量求和法求合力.利用微积分计算得:带电小球可等效看成电量都集中在球心上的点电荷.静电力同样具有力的共性,遵循牛顿第三定律,遵循力的平行四边形定则.3、库仑扭秤实验(1785年,法国物理学家.库仑)实验技巧:(1).小量放大.(2).电量的确定.【例题1】:试比较电子和质子间的静电引力和万有引力.已知电子的质量m1=×10-31kg,质子的质量m2=×10-27kg.电子和质子的电荷量都是×10-19C.分析:这个问题不用分别计算电子和质子间的静电引力和万有引力,而是列公式,化简之后,再求解.解:电子和质子间的静电引力和万有引力分别是万有引力公式计算出的力只能是相互吸引的力,绝没有相排斥的力.其次,由计算结果看出,电子和质子间的万有引力比它们之间的静电引力小的很多,因此在研究微观带电粒子间的相互作用时,主要考虑静电力,万有引力虽然存在,但相比之下非常小,所以可忽略不计.【小结】1.真空中有两个相同的带电金属小球A和B,相距为r,带电量分别为q和2q,它们之间相互作用力的大小为F.有一个不带电的金属球C,大小跟A、B相同,当C跟A、B小球各接触一次后拿开,再将A、B间距离变为2r,那么A、B间的作用力的大小可为:[]A.3F/64B.0 C.3F/82 D.3F/162.如图14-1所示,A、B、C三点在一条直线上,各点都有一个点电荷,它们所带电量相等.A、B两处为正电荷,C处为负电荷,且BC=2AB.那么A、B、C三个点电荷所受库仑力的大小之比为________.3.真空中有两个点电荷,分别带电q1=5×10-3C,q2=-2×10-2C,它们相距15cm,现引入第三个点电荷,它应带电量为________,放在________位置才能使三个点电荷都处于静止状态.4.把一电荷Q分为电量为q和(Q-q)的两部分,使它们相距一定距离,若想使它们有最大的斥力,则q和Q的关系是________.说明:1.点电荷是一种理想化的物理模型,这一点应该使学生有明确的认识.2.通过本书的例题,应该使学生明确地知道,在研究微观带电粒子的相互作用时为什么可以忽略万有引力不计.3.在用库仑定律进行计算时,要用电荷量的绝对值代入公式进行计算,然后根据是同种电荷,还是异种电荷来判断电荷间的相互作用是引力还是斥力.4.库仑扭秤的实验原理是选学内容,但考虑到库仑定律是基本物理定律,库仑扭秤的实验对检验库仑定律具有重要意义,所以希望教师介绍给学生,可利用模型或挂图来介绍.第三节、电场电场强度第3节电场电场强度1、电场:(1)电荷之间的相互作用是通过特殊形式的物质——电场发生的,电荷的周围都存在电场.特殊性:不同于生活中常见的物质,看不见,摸不着,无法称量,可以叠加.物质性:是客观存在的,具有物质的基本属性——质量和能量.(2)基本性质:主要表现在以下几方面①引入电场中的任何带电体都将受到电场力的作用,且同一点电荷在电场中不同点处受到的电场力的大小或方向都可能不一样.②电场能使引入其中的导体产生静电感应现象.③当带电体在电场中移动时,电场力将对带电体做功,这表示电场具有能量.可见,电场具有力和能的特征2、电场强度(E):(1)关于试探电荷和场源电荷检验电荷是一种理想化模型,它是电量很小的点电荷,将其放入电场后对原电场强度无影响在电场中的同一点,电场力F与电荷电量q成正比,比值F/q由电荷q在电场中的位置所决定,跟电荷电量无关,是反映电场性质的物理量,所以我们用这个比值F/q来表示电场的强弱.(2)电场强度①定义:电场中某一点的电荷受到的电场力F跟它的电荷量q的比值,叫做该点的电场强度,简称场强.用E表示。
公式(大小):E=F/q(适用于所有电场)单位:N/C意义P13提出问题:电场强度是矢量,怎样表示电场的方向呢?②方向性:物理学中规定,电场中某点的场强方向跟正电荷在该点所受的电场力的方向相同.负电荷在电场中某点所受的电场力的方向跟该点的场强方向相反.◎唯一性和固定性电场中某一点处的电场强度E是唯一的,它的大小和方向与放入该点电荷q无关,它决定于电场的源电荷及空间位置,电场中每一点对应着的电场强度与是否放入电荷无关.带领学生总结出真空中点电荷周围电场的大小和方向.在此过程中注意引导学生总结公式E=F/q和E=kQ/r2的区别及联系.3、(真空中)点电荷周围的电场、电场强度的叠加(1)点电荷周围的电场①大小:E=kQ/r2(只适用于点电荷的电场)②方向:如果是正电荷,E的方向就是沿着PQ的连线并背离Q;如果是负电荷:E的方向就是沿着PQ的连线并指向Q.(参见课本图14-7)说明:公式E=kQ/r2中的Q是场源电荷的电量,r是场中某点到场源电荷的距离.从而使学生理解:空间某点的场强是由产生电场的场源电荷和该点距场源电荷的距离决定的,与检验电荷无关.(2)电场强度的叠加原理:某点的场强等于该点周围各个电荷单独存在时在该点产生的场强的矢量和.【例题】(课本P例题演变)在真空中有两个点电荷Q1=+×10-8C和Q2=-×910-8C,它们相距0.1m,求电场中A点的场强.A点与两个点电荷的距离相等,r=0.1m 分析:点电荷Q1和Q2的电场在A点的场强分别为E1和E2,它们大小相等,方向如图所示,合场强E在E1和E2的夹角的平分线上,此平分线跟Q1和Q2的连线平行.解:E=E1cos60°+E2cos60°=2E1cos60°=2kQ1cos60°/r2代入数值得E=×104N/C可以证明:一个半径为R的均匀球体(或球壳)在外部产生的电场,与一个位于球心的、电荷量相等的点电荷产生的电场相同,球外各点和电场强度一样即:E=kQ/r2(1)关于静电平衡(2)静电平衡后导体内部电场的特点:①处于静电平衡状态的导体,内部的场强处处为零(注意:这时的场强是合场强,即外电场和感应电场的叠加)②处于静电平衡状态的导体,电荷只分布在导体的外表面上。
4、电场线(1)电场线:电场线是画在电场中的一条条有方向的曲线,曲线上每点的切线方向表示该点的电场强度的方向。
(2)电场线的基本性质①电场线上每点的切线方向就是该点电场强度的方向.②电场线的疏密反映电场强度的大小(疏弱密强).③静电场中电场线始于正电荷或无穷远,止于负电荷或无穷远.它不封闭,也不在无电荷处中断.④任意两条电场线不会在无电荷处相交(包括相切)电场线是为了形象描述电场而引入的,电场线不是实际存在的线。
5、匀强电场(1)定义:电场中各点场强的大小相等、方向相同的电场就叫匀强电场.(2)匀强电场的电场线:是一组疏密程度相同(等间距)的平行直线.例如,两等大、正对且带等量异种电荷的平行金属板间的电场中,除边缘附近外,就是匀强电场.如图.电场电场线图样简要描述正点电荷发散状负点电荷会聚状等量同号电荷相斥状等量异号电荷相吸状匀强电场平行的、等间距的、同向的直线◎巩固练习1.下列说法中正确的是:[ABC]A.只要有电荷存在,电荷周围就一定存在着电场B.电场是一种物质,它与其他物质一样,是不依赖我们的感觉而客观存在的东西C.电荷间的相互作用是通过电场而产生的,电场最基本的性质是对处在它里面的电荷有力的作用2.下列说法中正确的是:[BC]A.电场强度反映了电场的力的性质,因此场中某点的场强与检验电荷在该点所受的电场力成正比B.电场中某点的场强等于F/q,但与检验电荷的受力大小及带电量无关C.电场中某点的场强方向即检验电荷在该点的受力方向D.公式E=F/q和E=kQ/r2对于任何静电场都是适用的3.下列说法中正确的是:[ACD]A.场强的定义式E=F/q中,F是放入电场中的电荷所受的力,q是放入电场中的电荷的电量B.场强的定义式E=F/q中,F是放入电场中的电荷所受的力,q是产生电场的电荷的电量C.在库仑定律的表达式F=kq1q2/r2中kq2/r2是电荷q2产生的电场在点电荷q1处的场强大小,此场对q1作用的电场力F=q1×kq2/r2,同样kq1/r2是电荷q1产生的电场在点电荷q2处的场强的大小,此场对q2作用的电场力F=q2×kq1/r2D.无论定义式E=F/q中的q值(不为零)如何变化,在电场中的同一点,F与q的比值始终不变4.讨论电场力与电场强度的区别于联系1.在电场中某一点,当放入正电荷时受到的电场力向右,当放入负电荷时受到电场力向左,下列说法正确的是:[]A.当放入正电荷时,该点的场强向右,当放入负电荷时,该点的场强向左B.只有在该点放入电荷时,该点才有场强C.该点的场强方向一定向右D.以上说法均不正确2.真空中,两个等量异种点电荷电量数值均为q,相距r.两点电荷连线中点处的电场强度的大小为:[]A.B.2kq/r2 C.4k/r2 D.8kq/r23.真空中,A,B两点上分别设置异种点电荷Q1、Q2,已知两点电荷间引力为10N,Q1=×10-2C,Q2=×10-2C.则Q2在A处产生的场强大小是________N/C,方向是________;若移开Q2,则Q1在B处产生的场强的大小是________N/C,方向是________.说明1.电场强度是表示电场强弱的物理量,因而在引入电场强度的概念时,应该使学生了解什么是电场的强弱,同一个电荷在电场中的不同点受到的电场力的大小是不同的,所受电场力大的点,电场强.2.应当使学生理解为什么可以用比值F/q来表示电场强度,知道这个比值与电荷q无关,是反映电场性质的物理量.用比值定义一个新的物理量是物理学中常用的方法,应结合学生前面学过的类似的定义方法,让学生领会电场强度的定义.3.应当要求学生确切地理解E=F/q和E=kQ/r2这两个公式的含义,以及它们的区别和联系.4.应用电场的叠加原理进行计算时不应过于复杂,一般只限于两个电场叠加的情形.通过这种计算,使学生理解场强的矢量性5.电场线是为了形象描述电场而引入的,电场线不是实际存在的线。