电路第10章---含有耦合电感的电路汇总
- 格式:doc
- 大小:553.50 KB
- 文档页数:24
§10.1 互感
耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。 1. 互感
两个靠得很近的电感线圈之间有磁的耦合,如图10.1所示,当线圈1中通电流 i 1 时,不仅在线圈1中产生磁通f 11,同时,有部分磁通 f 21 穿过临近线圈2,同理,若在线圈2中通电流
i 2 时,不仅在线圈2中产生磁通f 22,
同时,有部分磁通 f 12 穿过线圈1,f 12和f 21称为互感磁通。定义互磁链:
图 10.1
ψ12 = N 1φ12 ψ21 = N 2φ21
当周围空间是各向同性的线性磁介质时,磁通链与产生它的施感电流成正比,即有自感磁通链:
互感磁通链:
上式中 M 12 和 M 21 称为互感系数,单位为(H )。当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:
需要指出的是:
1)M 值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,因此,满足
M12 =M21 =M
2)自感系数L 总为正值,互感系数 M 值有正有负。正值表示自感磁链与互感磁链方向一致,互感起增助作用,负值表示自感磁链与互感磁链方向相反,互感起削弱作用。
2. 耦合因数
工程上用耦合因数k 来定量的描述两个耦合线圈的耦合紧密程度,定义
一般有:
当k =1 称全耦合,没有漏磁,满足f11 = f21,f22 = f12。
耦合因数k 与线圈的结构、相互几何位置、空间磁介质有关。
3. 耦合电感上的电压、电流关系
当电流为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。根据电磁感应定律和楞次定律得每个线圈两端的电压为:
即线圈两端的电压均包含自感电压和互感电压。
在正弦交流电路中,其相量形式的方程为
注意:当两线圈的自感磁链和互感磁链方向一致时,称为互感的“增助”作用,互感电压取正;否则取负。以上说明互感电压的正、负:
(1)与电流的参考方向有关。
(2)与线圈的相对位置和绕向有关。
4. 互感线圈的同名端
由于产生互感电压的电流在另一线圈上,因此,要确定互感电压的符号,就必须知道两个线圈的绕向,这在电路分析中很不方便。为了解决这一问题引入同名端的概念。
同名端—当两个电流分别从两个线圈的对应端子同时流入或流出时,若产生的磁通相互增强,则这两个对应端子称为两互感线圈的同名端,用小圆点或星号等符号标记。
例如图10.2中线圈1和线圈2用小圆点标示的端子为同名端,当电流从这两端子同时流入或流出时,则互感起相助作用。同理,线圈1和线圈3用星号标示的端子为同名端。线圈2和线圈3用三角标示的端子为同名端。
注意:上述图示说明当有多个线圈之间存在互感作用时,同名端必须两两线圈分别标定。
图 10.2
根据同名端的定义可以得出确定同名端的方法为:
(1) 当两个线圈中电流同时流入或流出同名端时,两个电流产生的磁场将相互增强。
(2) 当随时间增大的时变电流从一线圈的一端流入时,将会引起另一线圈相应同名端的电位升高。
两线圈同名端的实验测定:
实验线路如图10.3所示,当开关S闭合时,线圈1中流入星号一端的电流i 增加,在线圈2的星号一端产生互感电压的正极,则电压表正偏。
图 10.3
有了同名端,以后表示两个线圈相互作用,就不再考虑实际绕向,而只画出同名端及电流和电压的参考方向即可,如图 10.4 所示。根据标定的同名端和电流、电压参考方向可知:
图 10.4 (a)图 10.4(b)
(a)图(b)图
例 10-1,例 10-2
例10-1 如图所示(a)、(b)、(c)、(d)四个互感线圈,已知同名端和各线圈上电压电流参考方向,试写出每一互感线圈上的电压电流关系。
例10-1图(a)例10-1图(b)
例10-1图(c)例10-1图(d)
解:(a)
(b)
(c)
(d)
例10-2 电路如图(a)所示,图(b)为电流源波形。
已知:,
例10-2 图(a)例10-2 图(b)解:根据电流源波形,写出其函数表示式为:
该电流在线圈 2 中引起互感电压:
对线圈 1 应用 KVL ,得电流源电压为:
§10.2 含有耦合电感电路的计算
含有耦合电感(简称互感)电路的计算要注意:
(1) 在正弦稳态情况下,有互感的电路的计算仍可应用前面介绍的相量分析方法。
(2) 注意互感线圈上的电压除自感电压外,还应包含互感电压。
(3) 一般采用支路法和回路法计算。因为耦合电感支路的电压不仅与本支路电流有关,还与其他某些支路电流有关,若列结点电压方程会遇到困难,要另行处理。
1. 耦合电感的串联
(1)
顺向串联
图 10.5
图10.5 所示电路为耦合电感的串联电路,由于互感起“增助”作用,称为顺向串联。 按图示电压、电流的参考方向,KVL 方程为:
根据上述方程可以给出图10.6所示的无互感等效电路。等效电路的参数为:
图 10.6
(2) 反向串联
图 10.7 所示的耦合电感的串联电路,由于互感起“削弱”作用,称为反向串联。
按图示电压、电流的参考方向,KVL 方程为:
图 10.7
根据上述方程也可以给出图10.6所示的无互感(去耦)等效电路。但等效电路的参数为:
在正弦稳态激励下,应用相量分析,图10.5和图10.7的相量模型如图10.8所示。