信号与系统第三章 连续系统的频域分析
- 格式:ppt
- 大小:1.52 MB
- 文档页数:97
3.1信号分解为正交函数3.2 傅里叶级数3.3 周期信号的频谱3.4 非周期信号的频谱——傅里叶变换3.5 傅里叶变换的性质3.6 周期信号的傅里叶变换3.7 LTI系统的频域分析3.8 取样定理3.1信号分解为正交函数一、矢量正交与正交分解时域分析,以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数;而y f (t) = h(t)*f(t)。
本章将以正弦信号和虚指数信号e j ωt 为基本信号,任意输入信号可分解为一系列不同频率的正弦信号或虚指数信号之和。
用于系统分析的独立变量是频率,故称为频域分析。
矢量V x = ( v x1, v x2, v x3)与V y = ( v y1, v y2, v y3)正交的定义:由两两正交的矢量组成的矢量集合---称为正交矢量集如三维空间中,以矢量v x =(2,0,0)、v y =(0,2,0)、v z =(0,0,2)所组成的集合就是一个正交矢量集。
例如对于一个三维空间的矢量A ,可以用一个三维正交矢量集{v x ,v y ,v z }分量的线性组合表示。
即A=C 1v x + C 2v y + C 3v z 矢量空间正交分解的概念可推广到信号空间,在信号空间找到若干个相互正交的信号作为基本信号,使得信号空间中任意信号均可表示成它们的线性二、信号正交与正交函数集1. 定义:定义在(t 1,t 2)区间的两个函数f 1(t)和f 2(t),若满足⎰=21t t 210t d )t (f )t (f (两函数的内积为0) (3-10)则称f 1(t)和f 2(t) 在区间(t 1,t 2)内正交。
2. 正交函数集:若n 个函数g 1(t),g 2(t),…,g n (t)构成一个函数集,当这些函数在区间(t 1,t 2)内满足⎰⎧≠=2t j i ,0t d )t (g )t (g3. 完备正交函数集:如果在正交函数集{g 1(t),g 2(t),…,g n (t)}之外,不存在函数g(t)(≠0)满足则称此函数集为完备正交函数集。
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。