半导体物理第五章习题答案电子教案
- 格式:doc
- 大小:423.00 KB
- 文档页数:13
半导体物理第五章习
题答案
第5章 非平衡载流子
1. 一个n 型半导体样品的额外空穴密度为1013cm -3,已知空穴寿命为100μs ,计
算空穴的复合率。
解:复合率为单位时间单位体积内因复合而消失的电子-空穴对数,因此
13
17306101010010
U cm s ρτ--===⋅⨯ 2. 用强光照射n 型样品,假定光被均匀吸收,产生额外载流子,产生率为g p ,
空穴寿命为τ,请
①写出光照开始阶段额外载流子密度随时间变化所满足的方程;
②求出光照下达到稳定状态时的额外载流子密度。
解:⑴光照下,额外载流子密度∆n =∆p ,其值在光照的开始阶段随时间的变化决定于产生和复合两种过程,因此,额外载流子密度随时间变化所满足的方程由产生率g p 和复合率U 的代数和构成,即
()p d p p g dt τ
=- ⑵稳定时额外载流子密度不再随时间变化,即
()0d p dt
=,于是由上式得 0p p p p g τ∆=-=
3. 有一块n 型硅样品,额外载流子寿命是1μs ,无光照时的电阻率是10Ω⋅cm 。
今用光照射该样品,光被半导体均匀吸收,电子-空穴对的产生率是
1022/cm 3⋅s ,试计算光照下样品的电阻率,并求电导中少数载流子的贡献占多大比例?
解:光照被均匀吸收后产生的稳定额外载流子密度
226163101010 cm p p n g τ-∆=∆==⨯=-
取21350/()n cm V s μ=⋅,2500/()p cm V s μ=⋅,则额外载流子对电导率的贡献
1619()10 1.610(1350500) 2.96 s/cm n p pq σμμ-=∆+=⨯⨯⨯+=
无光照时001
0.1/s cm σρ==,因而光照下的电导率
0 2.960.1 3.06/s cm σσσ=+=+=
相应的电阻率 1
10.333.06
cm ρσ===Ω⋅ 少数载流子对电导的贡献为:p p p p q p pq pq g σμμτμ=≈=
代入数据:16190()10 1.6105000.8/p p p p p q pq s cm σμμ-=+∆≈∆=⨯⨯⨯=
∴00.80.26263.06
p
σσσ===+﹪ 即光电导中少数载流子的贡献为26﹪
4.一块半导体样品的额外载流子寿命τ =10μs ,今用光照在其中产生非平衡载流子,问光照突然停止后的20μs 时刻其额外载流子密度衰减到原来的百分之几?
解:已知光照停止后额外载流子密度的衰减规律为
0()t P t p e τ-= 因此光照停止后任意时刻额外载流子密度与光照停止时的初始密度之比即为 0
()t P t e P τ-= 当520210t s s μ-==⨯时
202100(20)0.13513.5P e e P --====﹪ 5. 光照在掺杂浓度为1016cm -3的n 型硅中产生的额外载流子密度为∆n=∆p=
1016cm -3。计算无光照和有光照时的电导率。
解:根据新版教材图4-14(a )查得N D =1016cm -3的n 型硅中多子迁移率
21100/()n cm V s μ=⋅
少子迁移率
2500/()p cm V s μ=⋅
设施主杂质全部电离,则无光照时的电导率
16190010 1.6101100 1.76 s/cm n n q σμ-==⨯⨯⨯=
有光照时的电导率
14190() 1.7610 1.610(1100400) 1.784 s/cm n p nq σσμμ-=+∆+=+⨯⨯⨯+=
6.画出p 型半导体在光照(小注入)前后的能带图,标出原来的费米能级和光
照时的准费米能级。
光照前能带图 光照后(小注入)能带图
注意细节:
① p 型半导体的费米能级靠近价带;
② 因为是小注入,∆p <
必须在E F 之下,因为p 毕竟大于p 0
③ 即便是小注入,p 型半导体中也必是∆n >>n 0,故E Fn 要远比E F 更接近导带,
但因为是小注入,∆n <
上述带色字所强调的两个细节学生容易忽略,要多加关注。
7. 光照在施主浓度N D =1015cm -3的n 型硅中产生额外载流子∆n=∆p=1014cm -3。试
计算这种情况下准费米能级的位置,并和原来的费米能级作比较。
E V E F
E Fn
E Fp
E C
解:设杂质全部电离,则无光照时0D n N = 由0i F
E E kT i n n e --=得光照前
15
010
10ln 0.026ln 0.2891.510F i i i i n E E kT E E n =+=+=+⨯eV 光照后1530 1.110n n n cm -=+=⨯,这种情况下的电子准费米能级
15
101.110ln 0.026ln 0.291 eV 1.510
Fn i i i i n E E kT E E n ⨯=+=+=+⨯ 空穴准费米能级
141010ln 0.026ln 0.229 eV 1.510
F p i i i i p E E kT E E n ==-=-⨯- 与E F 相比,电子准费米能级之差0.002 eV Fn F E E -=,相差甚微;而空穴准费米能级之差0.518 eV F Fp E E -=,即空穴准费米能级比平衡费米能级下降了0.52eV 。由此可见,对n 型半导体,小注入条件下电子准费米能级相对于热平衡费米能级的变化很小,但空穴准费米能级变化很大。
8. 在一块p 型半导体中,有一种复合-产生中心,小注入时,被这些中心俘获
的电子发射回导带的过程和它与空穴复合的过程具有相同的几率。试求这种复合-产生中心的能级位置,并说明它能否成为有效的复合中心?
解:用E T 表示该中心的能级位置,参照参考书的讨论,知单位时间单位体积中由E T 能级发射回导带的电子数应等于E T 上俘获的电子数n T 与电子的发射几率S -之积(S -=r n n 1),与价带空穴相复合的电子数则为r p pn T ;式中,r p p 可视为E T 能级上的电子与价带空穴相复合的几率。由题设条件知二者相等,即
1n p r n r p = 式中1C T
E E kT C n N e --=。对于一般复合中心,n p r r ≈或相差甚小,因而可认为 n 1=
p ;再由小注入条件p =(p 0+∆p )≈p 0,即得
1
0n p