华南理工大学高等数学统考试卷下1998bk
- 格式:doc
- 大小:152.00 KB
- 文档页数:3
对弧长的曲线积分1、计算C,其中曲线C是y =02x a ≤≤的一段弧()0a >。
解:C 的参数方程为22cos 022cos sin x a y a θπθθθ⎧=≤≤⎨=⎩原式222202cos 4cos 4a a d a ππθθ===⎰⎰2、计算4433L x y ds ⎛⎫+ ⎪⎝⎭⎰,其中L 星形线33cos ,sin x a t y a t ==在第一象限的弧02t π⎛⎫≤≤ ⎪⎝⎭。
解:原式()47766244333200sin cos cos sin 3cos sin 36t ta t t a t tdt a a ππ⎡⎤-=+==⎢⎥⎣⎦⎰ 3、计算xyzds Γ⎰,其中Γ为折线ABC ,这里,,A B C 依次为点()()()0,0,0,1,2,3,1,4,3。
解:AB 段参数方程2013x t y t t z t=⎧⎪=≤≤⎨⎪=⎩,BC 段参数方程122013x y t t z =⎧⎪=+≤≤⎨⎪=⎩原式()11301212ABBCxyzds xyzds dt t dt =+=++⎰⎰⎰⎰11420012618t t ⎤⎡⎤=++=⎣⎦⎥⎦ 4、计算()22xy ds Γ+⎰,其中Γ为螺旋线cos ,sin ,x t t y t t z t ===上相应于t 从0到1的弧。
解:方法一 原式11t t ==⎰⎰)(()2111222000111222222t dt t t t dt ⎫'⎡=+=+-+⎣⎰⎰100t =-⎰⎰原式(100111ln 222t ⎡⎤=-=-+⎢⎥⎣⎦⎰122=- 方法二、原式11tt ==⎰⎰)001112222t dt ===⎰⎰⎰2101112u +-=⎰(1101111222u ⎡=+--⎢⎣⎰⎰(10011ln 122u ⎡⎤=-+⎢⎥⎣⎦⎰(011ln 222=-+⎰原式(1ln 24= 方法三、原式11t t ==⎰⎰因为422234t t '==(22'==(()ln 1t '⎛⎫+=+=所以(11ln 42t t '⎫+=⎪⎭原式((11111ln ln 14222t ⎤==-++⎥⎦5、计算22Lx y ds +⎰,其中22:0L x y ax a +=>解:22cos x y ax r a θ+=⇒=,曲线L 的参数方程为2cos 22sin cos x a y a θππθθθ⎧=-≤≤⎨=⎩原式222202cos 2cos 2a ad a πππθθθ-===⎰⎰6、计算22x y Leds +⎰,其中L 为圆周222x y a +=,直线,0y x y ==在第一象限内所围成的扇形的边界。
,考试作弊将带来严重后果!华南理工大学期末考试《高等数学(下)》试卷A15分,每小题3分)若(),z f x y =在点()00,x y 处可微,则下列结论错误的是 () )(),z f x y =在点()00,x y 处连续; ()(),,,x y f x y f x y 在点()00,x y 处连续; ()(),,,x y f x y f x y 在点()00,x y 处存在;曲面(),z f x y =在点()()0000,,,x y f x y 处有切平面二重极限22400lim x y xy x y →→+值为( ))0; (B) 1; (C)12; (D)不存在 已知曲面()22:10z x yz ∑=--≥,则222dS ∑=())2π; (B) π; (C) 1; (D)12π 已知直线34:273x y zL ++==--和平面:4223x y z ∏--=,则( ) )L 在∏内; (B) L 与∏平行,但L 不在∏内;L 与∏垂直; (D) L 与∏不垂直,L 与∏不平行(斜交)、 用待定系数法求微分方程232y y y x '''++=的一个特解时,应设特解的形式y = ( ) (A) 2ax ;(B )2ax bx c ++;(C )2()x ax bx c ++;(D )22()x ax bx c ++(本大题共15分,每小题3本分). arctanxz y=,则dz = . 曲线L 为从原点到点(1,1)的直线段,则曲线积分L⎰的值等于3. 交换积分次序后,ln 1(,)e x dx f x y dy =⎰⎰4. 函数22z x xy y =-+在点(1,1)-沿方向{}2,1l =的方向导数为 5. 曲面23z z e xy -+=在点(1,2,0)处的法线方程是三、(本题7分)计算二重积分Dxyd σ⎰⎰,其中D 是由抛物线2y x =及直线2y x =-所围成的闭区域四、(本题7分)计算三重积分zdv Ω⎰⎰⎰,其中Ω是由柱面221x y +=及平面0,1z z ==所围成的闭区域五、(本题7分)计算xdydz ydzdx zdxdy ∑++⎰⎰,其中∑为旋转抛物面()221z x y z =+≤的上侧六、(本题7分)计算()()3133xy xy Lye x y dx xe x y dy +-+++-+⎰,其中L 为从点(),0a -沿椭圆y =-(),0a 的一段曲线七、(本题6分)设函数()22220,0,0x y f x y x y +≠=+=⎩,证明:1、(),f x y 在点()0,0处偏导数存在,2、(),f x y 在点()0,0处不可微八、(本题7分)设,,y z xf xy f x ⎛⎫= ⎪⎝⎭具有连续二阶偏导数,求2,z z y y x ∂∂∂∂∂九、(本题7分)设x y e =是微分方程()xy p x y x '+=的一个解,求此微分方程的通解十、(本题8分)在第一卦限内作椭球面2222221x y z a b c++=的切平面,使该切平面与三个坐标平面围成的四面体的体积最小,求切点的坐标十一、(非化工类做,本题7分)求幂级数()321111321nn x x x n +-++-++的收敛域及其和函数解:收敛域[1,1]-上()()321111321nn S x x x x n +=-++-++()()()21,00,arctan 1S x S S x x x '===+ 十二、(非化工类做,本题7分)设函数()f x 以2π为周期,它在[,]ππ-上的表达式为()1,00,0,,1,0x f x x x πππ<<⎧⎪=±⎨⎪--<<⎩求()f x 的Fourier 级数及其和函数在x π=-处的值解:()021120,sin n n n a b nxdx n πππ⎡⎤--⎣⎦===⎰ ()f x 的Fourier 级数为411sin sin 3sin 535x x x π⎡⎤+++⎢⎥⎣⎦和函数在x π=-处的值为0十一、(化工类做,本题7分)已知直线1210:320x y L x z +-=⎧⎨+-=⎩和212:123y z L x +--== 证明:12//L L ,并求由1L 和2L 所确定的平面方程十二、(化工类做,本题7分)设曲线积分()2Lxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ连续可导,且()00ϕ=,计算()()()1,120,0xy dx y x dy ϕ+⎰一1B 2D3B 4B5B二122ydx xdyx y-+21e - 310(,)ye e dyf x y dx ⎰4 5-512,021x y z --== 三解:2221458y y I dy xydx +-==⎰⎰四、解:11201,.22DI z dz or d zdz πππσ===⎰⎰⎰⎰五、解:32xyD I dv dxdy πΩ=-+=-⎰⎰⎰⎰⎰六、解:4(31)22aaDI dxdy x dx ab a π-=++=+⎰⎰⎰七、解:()()()0,00,00,0lim0x x f x f f x →-==,()()()00,0,00,0lim 0y y f y f f y→-==,0,00,0limx y f x y f x f y∆→∆→∆∆-∆-∆22200lim()x y x yx y ∆→∆→∆∆=∆+∆极限不存在故不可微八解:22212111222,2z z y x f f xf x yf f y y x x ∂∂'''''''=+=+-∂∂∂ 九、解:()()1x xx e p x e -=,求10xx e y y e-'+=得x x e y ce -+=从而通解为xx e x y ce e -+=+十解:设切点()000,,x y z ,切平面方程为0002221xx yy zz a b c++=,四面体体积为2220006a b c V x y z =令2222221x y z F xyz a b c λ⎛⎫=+++- ⎪⎝⎭2200x y z x F yz a F F F λλ⎧=+=⎪⎨⎪===⎩()000,,x y z =⎝⎭ 十一、证:{}{}121,2,3,1,2,3s s =--=-,故12//L L由这两条直线所确定的平面方程为210x y +-=十二解:()()22,,xy y x x x ϕϕ'==()()()1,120,012xy dx y x dy ϕ+=⎰1.产品成本是指为制造一定数量、一定种类的产品而发生的以货币表现的()。
华南理工大学网络教育平台-*高等数学B(下)-随堂练习参考答案2013-4-101.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:4.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.,则的定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:6.下列函数为同一函数的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:9.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:10.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:11.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:12.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:13.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:14.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:15.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:16.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:17.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:A问题解析:18.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:19.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:20.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析21., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:22., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:23.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:24.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:25.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:26.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:27.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:28.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:29.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:30.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:31.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:32.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:33.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:34.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:35.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:36.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:37.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:38.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:39.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:40.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:41.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:42.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:43.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:44.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:45.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:46.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:47.设函数在点的偏导数存在,则在点()(A)连续(B)可微(C)偏导数连续(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:D问题解析:48.设函数在点处可导(指偏导数存在)与可微的关系是()(A)可导必可微(B)可微必可导(C)两者等价(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:B问题解析:49.设, 则既是的驻点,也是的极小值点.答题:对. 错. (已提交)参考答案:对问题解析:50.函数的驻点()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:51.函数是()(A)非驻点(B)驻点但不是极值点(C)驻点且是极大值点(D)驻点且是极小值点答题: A. B. C. D. (已提交)参考答案:D问题解析:52.设二元函数则必有()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:53.若()(A) 0 (B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:54.设且三个积分区域之间有关系,则有()答题: A. B. C. D. (已提交)参考答案:A问题解析:55.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:56.若,其中,则()答题: A. B. C. D. (已提交)参考答案:B问题解析:57.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:58.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:59.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:60.()(A)(B) 2 (C) 4 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:61.()(A) 1 (B) -1 (C) 2 (D)-2答题: A. B. C. D. (已提交)参考答案:C问题解析:62.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:63.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:64.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:65.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:66.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C67.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:68.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:69.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:70.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:71.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:72.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:73.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:74.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:75.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:76.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:77.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:78.()(A)( B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:79.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:80.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:81.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:82.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:83.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:84.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:85.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:86.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:87.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:88.()(A)5 (B)4 (C)3 (D)2答题: A. B. C. D. (已提交)参考答案:D问题解析:89.下列方程为二阶方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:90.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:91.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)问题解析:92.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:93.下列属变量可分离的微分方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:94.下列微分方程中不是线性微分方程是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:95.下列微分方程中属于一阶线性微分方程是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:96.下列方程为一阶线性方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)问题解析:97.方程()(A)变量可分离方程(B)齐次方程(C)一阶线性方程(D)不属于以上三类方程答题: A. B. C. D. (已提交)参考答案:C问题解析:98.方程是()(A)一阶线性方程(B)齐次方程(C)变量可分离方程(D)不属于以上三类方程答题: A. B. C. D. (已提交)参考答案:A问题解析:99.下列微分方程中属于一阶齐次方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:100.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:101.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)问题解析:102.微分方程的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:103.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:104.( )(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:105.为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:106.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)问题解析:107.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:108.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:109.微分方程的通解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:110.微分方程的特解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:111.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:112.微分方程的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:113.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:114.的特解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:115.的通解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:116.的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:117.的特解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:118.则下列求偏导数的四个步骤中计算正确的有()答题: A. B. C. D. >> (已提交)参考答案:ABCD119.,则下列求全微分的四个步骤中计算正确的有()答题: A. B. C. D. >> (已提交)参考答案:AB问题解析:120.已知,则下列求全微分的四个步骤中计算正确的有()答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:121.所确定,其中具有连续的偏导数.试证明:则下面证明过程正确的步骤有()(A)第一步:设,则(B)第二步:(C)第三步:(D)第四步:答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:122.,则下列计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:123.,则下列计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:124.,则下列计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ACD问题解析:125.设则计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:AB126.()答题: A. B. C. D. >> (已提交)参考答案:ACD问题解析:127.计算正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:128.()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:129.答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:130.已知下列步骤正确的有()答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:131.()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:132.下面求的步骤正确的有()答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:133.求解微分方程通解的正确步骤有( )答题: A. B. C. D. >> (已提交)参考答案:ABC问题解析:134.已知()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:135.()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:136.求微分方程正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:AB问题解析:137.()答题: A. B. C. D. >> (已提交)参考答案:AB问题解析:138.求微分方程的特解,则正确的步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:139.求微分方程满足条件特解的正确步骤有( )答题: A. B. C. D. >> (已提交)参考答案:ABC140.求微分方程的通解的正确步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:141.求微分方程通解的正确步骤有()答题: A. B. C. D. >> (已提交)参考答案:ABCD问题解析:142.答题:对. 错. (已提交)参考答案:×问题解析:143.答题:对. 错. (已提交)参考答案:×问题解析:144.答题:对. 错. (已提交)参考答案:×问题解析:145.答题:对. 错. (已提交)参考答案:×问题解析:146.函数答题:对. 错. (已提交)参考答案:×问题解析:147.答题:对. 错. (已提交)参考答案:×问题解析:148.若的偏导数存在, 则可微.答题:对. 错. (已提交)参考答案:×问题解析:149.若的偏导数存在, 则连续.答题:对. 错. (已提交)参考答案:×问题解析:150.若可微,则存在.答题:对. 错. (已提交)参考答案:√问题解析:151.若可微,则连续.答题:对. 错. (已提交)参考答案:√问题解析:152.若连续,则可微.答题:对. 错. (已提交)参考答案:×问题解析:153.若连续,则偏导数存在.答题:对. 错. (已提交)参考答案:×问题解析:154.若是的极值点,则是的驻点.答题:对. 错. (已提交)参考答案:×155.若是的极值点,且函数在点的偏导数存在,则是的驻点.答题:对. 错. (已提交)参考答案:√问题解析:156.二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. (已提交)参考答案:×问题解析:157.当时,二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. (已提交)参考答案:√问题解析:158.在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. (已提交)参考答案:×问题解析:159.在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. (已提交)参考答案:√问题解析:160.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:√问题解析:161.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:×问题解析:162.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:×问题解析:163.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:√问题解析:164.若函数关于是奇函数,则答题:对. 错. (已提交)参考答案:×问题解析:165.若函数关于是偶函数,则答题:对. 错. (已提交)参考答案:×问题解析:166.答题:对. 错. (已提交)参考答案:√问题解析:167.答题:对. 错. (已提交)参考答案:×问题解析:168.答题:对. 错. (已提交)参考答案:√问题解析:169.答题:对. 错. (已提交)参考答案:×问题解析:170.答题:对. 错. (已提交)参考答案:√问题解析:171.答题:对. 错. (已提交)参考答案:×问题解析:172.是常微分方程.答题:对. 错. (已提交)参考答案:×问题解析:173.是常微分方程.答题:对. 错. (已提交)参考答案:√问题解析:174.微分方程阶数为3.答题:对. 错. (已提交)参考答案:×问题解析:175.微分方程阶数为2答题:对. 错. (已提交)参考答案:√问题解析:176.微分方程是一阶微分方程.答题:对. 错. (已提交)参考答案:√问题解析:177.函数答题:对. 错. (已提交)参考答案:√问题解析:178.函数答题:对. 错. (已提交)参考答案:√问题解析:179.函数答题:对. 错. (已提交)参考答案:×问题解析:180.答题:对. 错. (已提交)参考答案:√问题解析:181.答题:对. 错. (已提交)参考答案:×问题解析:182.微分方程是变量可分离微分方程.答题:对. 错. (已提交)参考答案:√问题解析:183.微分方程是变量可分离微分方程.答题:对. 错. (已提交)参考答案:√问题解析:184.微分方程是一阶线性微分方程.答题:对. 错. (已提交)参考答案:×问题解析:185.答题:对. 错. (已提交)参考答案:×问题解析:186.答题:对. 错. (已提交)参考答案:√问题解析:187.微分答题:对. 错. (已提交)参考答案:×问题解析:188.微分答题:对. 错. (已提交)参考答案:√问题解析:189.答题:对. 错. (已提交)参考答案:×问题解析:190.微分方程答题:对. 错. (已提交)参考答案:√问题解析:。
华南理工大学网络教育平台-*高等数学B(下)-随堂练习参考答案2013-4-10 1.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:2.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:3.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:4.函数定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:5.,则的定义域为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:6.下列函数为同一函数的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:7.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:9.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:10.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:11.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:12.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:13.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:14.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:15.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:16.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:17.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:A问题解析:18.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:19.(A)(B)(C)(D)参考答案:C问题解析:20.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析21., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:22., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:23.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:24.若,则(A)(B)(C)(D)参考答案:B问题解析:25.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:26.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:27.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:28.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:29.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:30.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:31.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:32.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:33.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:34.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:35.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:36.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:37.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:38.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:39.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:40.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:41.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:42.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:43.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:44.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:45.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:46.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:47.设函数在点的偏导数存在,则在点()(A)连续(B)可微(C)偏导数连续(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:D问题解析:48.设函数在点处可导(指偏导数存在)与可微的关系是()(A)可导必可微(B)可微必可导(C)两者等价(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:B问题解析:49.设, 则既是的驻点,也是的极小值点.答题:对. 错. (已提交)参考答案:对问题解析:50.函数的驻点()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:51.函数是()(A)非驻点(B)驻点但不是极值点(C)驻点且是极大值点(D)驻点且是极小值点答题: A. B. C. D. (已提交)参考答案:D问题解析:52.设二元函数则必有()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:53.若()(A) 0 (B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:54.设且三个积分区域之间有关系,则有()答题: A. B. C. D. (已提交)参考答案:A问题解析:55.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:56.若,其中,则()答题: A. B. C. D. (已提交)参考答案:B问题解析:57.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:58.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:59.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:60.()(A)(B) 2 (C) 4 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:61.()(A) 1 (B) -1 (C) 2 (D)-2答题: A. B. C. D. (已提交)参考答案:C问题解析:62.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:63.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:64.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:65.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:66.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C67.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:68.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:69.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:70.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:71.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:72.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:73.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:74.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:75.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:76.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:77.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:78.()(A)( B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:79.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:80.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:81.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:82.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:83.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:84.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:85.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:86.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:87.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:88.()(A)5 (B)4 (C)3 (D)2答题: A. B. C. D. (已提交)参考答案:D问题解析:89.下列方程为二阶方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:90.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:91.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:92.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:93.下列属变量可分离的微分方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:94.下列微分方程中不是线性微分方程是()(A)(B)(C)(D)参考答案:D问题解析:95.下列微分方程中属于一阶线性微分方程是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:96.下列方程为一阶线性方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:97.方程()(A)变量可分离方程(B)齐次方程(C)一阶线性方程(D)不属于以上三类方程答题: A. B. C. D. (已提交)参考答案:C问题解析:98.方程是()(A)一阶线性方程(B)齐次方程(C)变量可分离方程(D)不属于以上三类方程答题: A. B. C. D. (已提交)参考答案:A问题解析:99.下列微分方程中属于一阶齐次方程的是()(A)(B)(C)(D)参考答案:B问题解析:100.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:101.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:102.微分方程的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:103.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:104.( )(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:105.为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:106.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:107.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:108.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:109.微分方程的通解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:110.微分方程的特解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:111.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:112.微分方程的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:113.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:114.的特解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:115.的通解是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:116.的通解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:117.的特解为()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:118.则下列求偏导数的四个步骤中计算正确的有()答题: A. B. C. D. (已提交)参考答案:ABCD119.,则下列求全微分的四个步骤中计算正确的有()答题: A. B. C. D. (已提交)参考答案:AB问题解析:120.已知,则下列求全微分的四个步骤中计算正确的有()答题: A. B. C. D. (已提交)参考答案:ABC问题解析:121.所确定,其中具有连续的偏导数.试证明:则下面证明过程正确的步骤有()(A)第一步:设,则(B)第二步:(C)第三步:(D)第四步:答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:122.,则下列计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ABC问题解析:123.,则下列计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:124.,则下列计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ACD问题解析:125.设则计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:AB126.()答题: A. B. C. D. (已提交)参考答案:ACD问题解析:127.计算正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:128.()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:129.答题: A. B. C. D. (已提交)参考答案:ABC问题解析:130.已知下列步骤正确的有()答题: A. B. C. D. (已提交)参考答案:ABC问题解析:131.()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:132.下面求的步骤正确的有()答题: A. B. C. D. (已提交)参考答案:ABC问题解析:133.求解微分方程通解的正确步骤有( )答题: A. B. C. D. (已提交)参考答案:ABC问题解析:134.已知()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:135.()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:136.求微分方程正确的步骤有()答题: A. B. C. D. (已提交)参考答案:AB问题解析:137.()答题: A. B. C. D. (已提交)参考答案:AB问题解析:138.求微分方程的特解,则正确的步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:139.求微分方程满足条件特解的正确步骤有( )答题: A. B. C. D. (已提交)参考答案:ABC140.求微分方程的通解的正确步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:141.求微分方程通解的正确步骤有()答题: A. B. C. D. (已提交)参考答案:ABCD问题解析:142.答题:对. 错. (已提交)参考答案:×问题解析:143.答题:对. 错. (已提交)参考答案:×问题解析:144.答题:对. 错. (已提交)参考答案:×问题解析:145.答题:对. 错. (已提交)参考答案:×问题解析:146.函数答题:对. 错. (已提交)参考答案:×问题解析:147.答题:对. 错. (已提交)参考答案:×问题解析:148.若的偏导数存在, 则可微.答题:对. 错. (已提交)参考答案:×问题解析:149.若的偏导数存在, 则连续.答题:对. 错. (已提交)参考答案:×问题解析:150.若可微,则存在.答题:对. 错. (已提交)参考答案:√问题解析:151.若可微,则连续.答题:对. 错. (已提交)参考答案:√问题解析:152.若连续,则可微.答题:对. 错. (已提交)参考答案:×问题解析:153.若连续,则偏导数存在.答题:对. 错. (已提交)参考答案:×问题解析:154.若是的极值点,则是的驻点.答题:对. 错. (已提交)参考答案:×155.若是的极值点,且函数在点的偏导数存在,则是的驻点.答题:对. 错. (已提交)参考答案:√问题解析:156.二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. (已提交)参考答案:×问题解析:157.当时,二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. (已提交)参考答案:√问题解析:158.在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. (已提交)参考答案:×问题解析:159.在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. (已提交)参考答案:√问题解析:160.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:√问题解析:161.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:×问题解析:162.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:×问题解析:163.若积分区域关于轴对称,则答题:对. 错. (已提交)参考答案:√问题解析:164.若函数关于是奇函数,则答题:对. 错. (已提交)参考答案:×问题解析:165.若函数关于是偶函数,则答题:对. 错. (已提交)参考答案:×问题解析:166.答题:对. 错. (已提交)参考答案:√问题解析:167.答题:对. 错. (已提交)参考答案:×问题解析:168.答题:对. 错. (已提交)参考答案:√问题解析:169.答题:对. 错. (已提交)参考答案:×问题解析:170.答题:对. 错. (已提交)参考答案:√问题解析:171.答题:对. 错. (已提交)参考答案:×问题解析:172.是常微分方程.答题:对. 错. (已提交)参考答案:×问题解析:173.是常微分方程.答题:对. 错. (已提交)参考答案:√问题解析:174.微分方程阶数为3.答题:对. 错. (已提交)参考答案:×问题解析:175.微分方程阶数为2答题:对. 错. (已提交)参考答案:√问题解析:176.微分方程是一阶微分方程.答题:对. 错. (已提交)参考答案:√问题解析:177.函数答题:对. 错. (已提交)参考答案:√问题解析:178.函数答题:对. 错. (已提交)参考答案:√问题解析:179.函数答题:对. 错. (已提交)参考答案:×问题解析:180.答题:对. 错. (已提交)参考答案:√问题解析:181.答题:对. 错. (已提交)参考答案:×问题解析:182.微分方程是变量可分离微分方程.答题:对. 错. (已提交)参考答案:√问题解析:183.微分方程是变量可分离微分方程.答题:对. 错. (已提交)参考答案:√问题解析:184.微分方程是一阶线性微分方程.答题:对. 错. (已提交)参考答案:×问题解析:185.答题:对. 错. (已提交)参考答案:×问题解析:186.答题:对. 错. (已提交)参考答案:√问题解析:187.微分答题:对. 错. (已提交)参考答案:×问题解析:188.微分答题:对. 错. (已提交)参考答案:√问题解析:189.答题:对. 错. (已提交)参考答案:×问题解析:190.微分方程答题:对. 错. (已提交)参考答案:√问题解析:。
高等数学下册(01、02、03重考)试卷2007.1.13姓名: 学院与专业: 学号:一、单项选择题[共20分]1、[4分]设y z x y f x ⎛⎫=⋅⋅ ⎪⎝⎭,且()f u 可导,则z z x y x y ∂∂+∂∂为( ). (A) 2xy (B) ()2x y z + (C) ()2x y + (D) 2z2、[4分]从点()2,1,1P --到一个平面引垂线,垂足为点()0,2,5M ,则此平面方程是( ).(A) 236360x y z +-+= (B) 236360x y z --+=(C) 236360x y z ---= (D) 236360x y z -++=3、[4分]微分方程1x y y e ''-=+的一个特解应具有形式( ).(A) x ae b + (B) x axe b + (C) x ae bx + (D) x axe bx +4、[4分]若平面曲线L 为下半圆周y =()22Lx y ds +=⎰(A) π (B) 2π (C) 3π (D) 4π5.[4分]累次积分1120sin ()x dx y dy =⎰⎰. (A) 1 (B) cos1 (C)1cos12- (D) 12二、填空题[共20分]1、[4分]向量a 与向量{}2,1,2-平行,2a =则a .DSMT4 = .2、[4分]x z xy y=+,则dz = . 3、[4分] 设L 为抛物线2x y =上由点()4,2A 到点()4,2B -的一段弧,则22Lxydx x dy +=⎰ . 4、[4分] 曲面23z z e xy -+=在点()1,2,0处的切平面方程是5、[4分]设221233,3,3x y y x y x e ==+=++都是方程()()2222x x y x y '''---+ ()2266x y x -=-的解,则方程的通解为 .三、[7分] 设22,y z xf x x ⎛⎫= ⎪⎝⎭,其中f 具有二阶连续偏导数,求2z x y ∂∂∂. 四、[7分] 求从原点到曲面()22:1x y z ∑--=的最短距离五、[8分]画出积分区域,并计算二重积分,D D σ⎰⎰.为由两条抛物线所围成的闭区域六、[8分] 计算zdxdydz Ω⎰⎰⎰,其中Ω.是由柱面221x y +=及平面0,1z z ==围成的区域]七、[8分]计算22∑,其中∑的方程为()2290z x y z =--≥八、[8分] 求()()2212LI xy y dx x y dy =---+⎰,其中L 是222x y y +=上从点()0,0A 到点()1,1B 的(劣)弧九、计算()()()222x y dydz y z dzdx z x dxdy ∑+++++⎰⎰,其中∑为半球面z =的上侧十、[6分] 求微分方程ln xy y x x '+=的通解.。
华南理工大学网络教育专科高等数学B〔下〕第二学期(单项选择题) 函数定义域为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:2.(单项选择题) 函数定义域为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:3.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:4.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:5.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:6.(单项选择题)〔A〕〔B〕0 〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:7.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:8.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:9.(单项选择题) , 则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:10.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:11.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:12.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:13.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:14.(单项选择题) 假设,则〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:15.(单项选择题) 假设则dz=〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:16.(单项选择题) 假设,则dz=〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:17.(单项选择题) 假设,则dz=〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:18.(单项选择题) 假设,则dz=〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:19.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:20.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:21.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:22.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:23.(单项选择题) 假设,则〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:24.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:25.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:26.(单项选择题)〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:27.(单项选择题) 设函数在点的偏导数存在,则在点〔〕〔A〕连续〔B〕可微〔C〕偏导数连续〔D〕以上结论都不对答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:28.(单项选择题) 设, 则既是的驻点,也是的极小值点.答题: A. B. C.问题解析:29.(单项选择题) 〔〕〔A〕〔B〕 2 〔C〕 4 〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:30.(单项选择题) 假设〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:31.(单项选择题) 等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:32.(单项选择题)〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:33.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:34.(单项选择题)〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:35.(单项选择题)〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:36.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:37.(单项选择题) 设〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:38.(单项选择题) 设〔〕〔A〕〔B〕〔C〕〔D〕A. B. C.39.(单项选择题) 设〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:40.(单项选择题) 设〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:41.(单项选择题) 应等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:42.(单项选择题) 应等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:43.(单项选择题) 等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:44.(单项选择题) 等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:45.(单项选择题) 交换二次积分等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:46.(单项选择题) 交换二次积分等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:47.(单项选择题) 交换二次积分等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:48.(单项选择题) 交换二次积分等于〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:49.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:50.(单项选择题) 〔〕〔A〕1 〔B〕2 〔C〕3 〔D〕4答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:51.(单项选择题) 以下方程为二阶方程的是〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:52.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:53.(单项选择题) 以下属变量可别离的微分方程的是〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:54.(单项选择题) 以下方程为一阶线性方程的是〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:55.(单项选择题) 方程〔〕〔A〕变量可别离方程〔B〕齐次方程〔C〕一阶线性方程〔D〕不属于以上三类方程答题: A. B. C. D. 〔已提交〕参考答案:C问题解析:56.(单项选择题) 以下微分方程中属于一阶齐次方程的是〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:57.(单项选择题) 微分方程的通解为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:58.(单项选择题) ( )〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:59.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:60.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:A问题解析:61.(单项选择题) 微分方程的通解为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:62.(单项选择题) 〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕问题解析:63.(单项选择题) 的通解为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:D问题解析:64.(单项选择题) 的特解为〔〕〔A〕〔B〕〔C〕〔D〕答题: A. B. C. D. 〔已提交〕参考答案:B问题解析:65.(多项选择题) 则以下求偏导数的四个步骤中计算正确的有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:66.(多项选择题) 已知,则以下求全微分的四个步骤中计算正确的有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABC问题解析:67.(多项选择题) 所确定,其中具有连续的偏导数.试证明:则下面证明过程正确的步骤有〔〕〔A〕第一步:设,则〔B〕第二步:〔C〕第三步:〔D〕第四步:答题: A. B. C. D. 〔已提交〕问题解析:68.(多项选择题) ,则以下计算正确的步骤有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:69.(多项选择题) ,则以下计算正确的步骤有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ACD问题解析:70.(多项选择题)〔〕答题: A. B. C. D. 〔已提交〕参考答案:ACD问题解析:71.(多项选择题) 计算正确的步骤有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:72.(多项选择题) 已知步骤正确的有〔〕答题: A. B. C. D. 〔已提交〕参考答案:AB问题解析:73.(多项选择题) 〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:74.(多项选择题) 〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABC问题解析:75.(多项选择题) 〔〕答题: A. B. C.问题解析:76.(多项选择题) 已知〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:77.(多项选择题) 〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:78.(多项选择题) 〔〕答题: A. B. C. D. 〔已提交〕参考答案:AB问题解析:79.(多项选择题) 求微分方程的通解的正确步骤有〔〕答题: A. B. C. D. 〔已提交〕参考答案:ABCD问题解析:80.(多项选择题) 求微分方程通解的正确步骤有〔〕答题: A. B. C.问题解析:81.(判断题) 假设的偏导数存在, 则可微. 答题:对. 错. 〔已提交〕参考答案:×问题解析:82.(判断题) 假设的偏导数存在, 则连续. 答题:对. 错. 〔已提交〕参考答案:×问题解析:83.(判断题) 假设的偏导数连续,则可微. 答题:对. 错. 〔已提交〕参考答案:√问题解析:84.(判断题) 假设可微,则存在.答题:对. 错. 〔已提交〕参考答案:√问题解析:85.(判断题) 假设可微,则连续.答题:对. 错. 〔已提交〕参考答案:√问题解析:86.(判断题) 假设连续,则可微.答题:对. 错. 〔已提交〕参考答案:×问题解析:87.(判断题) 假设连续,则偏导数存在.答题:对. 错. 〔已提交〕参考答案:×问题解析:88.(判断题) 假设是的极值点,则是的驻点.答题:对. 错. 〔已提交〕参考答案:×问题解析:89.(判断题) 假设是的极值点,且函数在点的偏导数存在,则是的驻点.答题:对. 错. 〔已提交〕参考答案:√问题解析:90.(判断题) 当时,二重积分表示以曲面为顶,以区域为底的曲顶柱体的体积.答题:对. 错. 〔已提交〕参考答案:√问题解析:91.(判断题) 在有界闭区域D上的两曲面围成的体积可表示为.答题:对. 错. 〔已提交〕参考答案:×问题解析:92.(判断题) 假设积分区域关于轴对称,关于是奇函数,则答题:对. 错. 〔已提交〕参考答案:√问题解析:93.(判断题) 假设积分区域关于轴对称,则答题:对. 错. 〔已提交〕参考答案:√问题解析:94.(判断题) 假设积分区域关于轴对称,则答题:对. 错. 〔已提交〕参考答案:√问题解析:95.(判断题) 假设积分区域关于轴对称,则答题:对. 错. 〔已提交〕参考答案:×问题解析:96.(判断题) 假设函数关于是奇函数,则答题:对. 错. 〔已提交〕参考答案:×问题解析:97.(判断题)答题:对. 错. 〔已提交〕参考答案:√问题解析:98.(判断题)答题:对. 错. 〔已提交〕参考答案:√问题解析:99.(判断题)答题:对. 错. 〔已提交〕参考答案:√问题解析:100.(判断题) 微分方程阶数为3. 答题:对. 错. 〔已提交〕参考答案:×问题解析:101.(判断题) 微分方程阶数为2 答题:对. 错. 〔已提交〕参考答案:√问题解析:102.(判断题) 函数答题:对. 错. 〔已提交〕参考答案:√问题解析:103.(判断题) 函数答题:对. 错. 〔已提交〕参考答案:×问题解析:104.(判断题)答题:对. 错. 〔已提交〕参考答案:√问题解析:105.(判断题)答题:对. 错. 〔已提交〕问题解析:106.(判断题) 微分方程是变量可别离微分方程.答题:对. 错. 〔已提交〕参考答案:√问题解析:107.(判断题) 微分方程是一阶线性微分方程. 答题:对. 错. 〔已提交〕参考答案:×问题解析:108.(判断题) 微分答题:对. 错. 〔已提交〕参考答案:√问题解析:End。
《高等数学》(下册)测试题一一、选择题(每小题3分,本大题共15分)(在括号中填上所选字母)1.设有直线3210:21030x y z L x y z +++=⎧⎨--+=⎩ 及平面:4220x y z π-+-=,则直线L ( A )A .平行于平面π;B .在平面π上;C .垂直于平面π;D .与平面π斜交.2.二元函数22,(,)(0,0)(,)0, (,)(0,0)xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点(0,0)处( C )A .连续、偏导数存在;B .连续、偏导数不存在;C .不连续、偏导数存在;D .不连续、偏导数不存在.3.设()f x 为连续函数,1()d ()d ttyF t y f x x =⎰⎰,则(2)F '=( B )A .2(2)f ;B .(2)f ;C .(2)f -D .0.4.设∑是平面132=++z yx 由0≥x ,0≥y ,0≥z 所确定的三角形区域,则曲面积分(326)d x y z S ∑++⎰⎰=( D )A .7;B .221; C .14; D .21. 5.微分方程e 1x y y ''-=+的一个特解应具有形式( B )A .e x a b +;B .e x ax b +;C .e x a bx +;D .e x ax bx +.二、填空题(每小题3分,本大题共15分)1.设一平面经过原点及点(6,3,2)-,且与平面428x y z -+=垂直,则此平面方程为2230x y z +-=; 2.设arctan1x yz xy-=+,则d |z =24dx dy-; 3.设L 为122=+y x 正向一周,则2e d x Ly =⎰ 0 ;4.设圆柱面322=+y x ,与曲面xy z =在),,(000z y x 点相交,且它们的交角为π6,则正数=0Z 32; 5.设一阶线性非齐次微分方程)()(x Q y x P y =+'有两个线性无关的解21,y y ,若12y y αβ+也是该方程的解,则应有=+βα 1 .三、(本题7分)设由方程组e cos e sin uux vy v⎧=⎪⎨=⎪⎩确定了u ,v 是x ,y 的函数,求x u ∂∂及x v ∂∂与yv∂∂. 解:方程两边取全微分,则e cos e sin e sin e cos u uu udx vdu vdvdy vdu vdv⎧=-⎪⎨=+⎪⎩ 解出2222cos e sin ,,e sin e cos u uu u xdx ydy du e vdx vdy x y du dv xdy ydx dv vdx vdy x y ----+⎧=+=⎪+⎪⎨-⎪=-+=⎪+⎩从而222222,,u x v y v x x x y x x y y x y∂∂-∂===∂+∂+∂+ 四、(本题7分)已知点)1,1,1(A 及点)1,2,3(-B ,求函数()3ln 32u xy z =-在点A 处沿AB 方向的方向导数.解:{}2122,1,2,,,333AB AB ⎧⎫=-=-⎨⎬⎩⎭2333336,,323232y x z gradu xy z xy z xy z ⎧⎫-=⎨⎬---⎩⎭,{}3,3,6A gradu =- 从而{}212,,3,3,62147333u AB ∂⎧⎫=-⋅-=++=⎨⎬∂⎩⎭五、(本题8分)计算累次积分24112211d e d d e d x xyy x x y x y y y+⎰⎰⎰).解:依据上下限知,即分区域为1212,:12,1:24,2xD D D D x y D x y =⋃≤≤≤≤≤≤≤≤ 作图可知,该区域也可以表示为2:12,2D y y x y ≤≤≤≤从而()2242222112112111d e d d e d d e d e e d xxxy y y y yx y x y x y y x y y y y +==-⎰⎰⎰⎰⎰⎰()()2222211e e2e e e e yy e =-=---=六、(本题8分)计算d d d I z x y z Ω=⎰⎰⎰,其中Ω是由柱面122=+y x 及平面1,0==z z 围成的区域.解:先二后一比较方便,111220122zD z I zdz dxdy z dz πππ⋅==⋅⋅==⎰⎰⎰⎰七.(本题8分)计算32()d x y z S ++∑⎰⎰,其中∑是抛物面222y x z +=被平面2=z 所截下的有限部分.解:由对称性322d 0,d d x S y S x S ==∑∑∑⎰⎰⎰⎰⎰⎰从而223222()d ()d ()d 2x y x y z S z S x y S +++=+=+∑∑∑⎰⎰⎰⎰⎰⎰222220(2D x y d rr πθπ=+==⎰⎰⎰⎰⎰(40411315t ππ⎛⎫=+-=+ ⎪ ⎪⎝⎭⎰八、(本题8分)计算22222(4cos )d cos d L x x x x x x y y y y y+-⎰,L 是点ππ(,)22A 到点(π,2π)B 在上半平面)0(>y 上的任意逐段光滑曲线.解:在上半平面)0(>y 上2223222322cos cos sin Q x x x x x x x x y y y y y y ⎛⎫∂∂=-=-+ ⎪∂∂⎝⎭223223222(4cos )0cos sin P x x x x x x Qx y y y y y y y y x∂∂∂=+=-+=∂∂∂且连续, 从而在上半平面)0(>y 上该曲线积分与路径无关,取π(π,)2C22222222424415(4cos )d cos d 12L AC CB x x x x y y y πππππππππ=+=+-=-⎰⎰⎰⎰⎰ 九、(本题8分)计算222()d d ()d d ()d d x y y z y z z x z x x y +++++∑⎰⎰,其中∑为半球面221y x z --=上侧.解:补1:0z ∑=取下侧,则构成封闭曲面的外侧11222()d d ()d d ()d d x y y z y z z x z x x y ∑+∑∑+++++=-∑⎰⎰⎰⎰⎰⎰()122223211133132D D x y dv x dxdy dv x dxdy dxdy πΩ∑Ω+=++-=+=⋅⋅+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2113400011922244d r dr r πππθππ=+=+⋅=⎰⎰ 十、(本题8分)设二阶连续可导函数)(x f y =,t s x =适合042222=∂∂+∂∂syt y ,求)(x f y =.解:21,y s y f f t t s t∂-∂''=⋅=⋅∂∂222223222211,y s s s y f f f f f t t t t t s s t t ∂∂--∂∂⎛⎫⎛⎫⎛⎫'''''''==+⋅== ⎪ ⎪ ⎪∂∂∂∂⎝⎭⎝⎭⎝⎭ 由已知222223222440,0,y y s s f f f t s t t t∂∂-⎛⎫'''''+=⇒+⋅+= ⎪∂∂⎝⎭即()()()()()()()2221420,40,4x f x xf x x f x x f x c '⎡⎤'''''++=+=+=⎣⎦()()1122,arctan 422c c xf x f x c x '==++ 十一、(本题4分)求方程的x y y 2cos 4=+''通解. 解:解:对应齐次方程特征方程为21,240,2r r i +==±非齐次项()cos2,f x x =,与标准式()()()cos sin x m l f x e P x x P x x αββ=+⎡⎤⎣⎦ 比较得{}max ,0,2n m l i λ===,对比特征根,推得1k =,从而特解形式可设为()()*12cos sin cos 2sin 2,k xn n y x Q x x Q x x e ax x bx x αββ=+=+⎡⎤⎣⎦**(2)cos2(2)sin 2,(44)sin 2(44)cos2y a bx x b ax x y a bx x b ax x '''=++-=--+-代入方程得14sin 24cos 2cos 2,0,4a xb x x a b -+=⇒==121cos 2sin 2sin 24y c x c x x x =+++十二、(本题4分)在球面2222a z y x =++的第一卦限上求一点M ,使以M 为一个顶点、各面平行于坐标面的球内接长方体的表面积最小.解:设点M 的坐标为(),,x y z ,则问题即8V xyz =在22220x y z a ++-=求最小值。
《高等数学》(下册)测试题三一、填空题1.若函数22(,)22f x y x ax xy y =+++在点(1,1)-处取得极值,则常数a =5-. 2.设1()e d x yxf x y =⎰,则1()f x dx =⎰12e -. 3.设S 是立方体1,,0≤≤z y x 的边界外侧,则曲面积分567d d d d d d sx y z y z x z x y ++=⎰⎰Ò 3 . 4.设幂级数nnn a x ∞=∑的收敛半径为3,则幂级数11(1)n n n na x ∞+=-∑的收敛区间为()2,4-.5.微分方程2434exy y y x -'''+-=用待定系数法确定的特解(系数值不求)的形式为()24e x y x ax bx c -=++.二、选择题1.函数22222222sin 2(),0,(,)0,2,x y x y f x y x yx y ⎧++≠⎪=+⎨⎪+=⎩在点(0,0)处( D ).(A )无定义; (B )无极限;(C )有极限但不连续; (D )连续. 2.设sec(1)z xy =-,则zx∂=∂( B ). (A )sec(1)tan(1)xy xy --; (B )sec(1)tan(1)y xy xy --; (C )2tan (1)y xy -; (D )2tan (1)y xy --.3.两个圆柱体222x y R +≤,222x z R +≤公共部分的体积V 为( B ).(A)02d Rx y ⎰; (B)08d Rx y ⎰;(C)d RRx y -⎰; (D)4d R Rx y -⎰.4.若0n a ≥,1nn kk S a==∑,则数列{}n S 有界是级数收敛的( A ).(A )充分必要条件; (B )充分条件,但非必要条件; (C )必要条件,但非充分条件; (D )既非充分条件,又非必要条件.5.函数sin y C x =-(C 为任意常数)是微分方程22d sin d yx x=的( C ).(A )通解; (B )特解; (C )是解,但既非通解也非特解; (D )不是解. 三、求曲面e e4x y zz+=上点0(ln 2,ln 2,1)M 处的切平面和法线方程.解:{}{}022M 11e ,e ,e e 2,2,4ln 2//1,1,2ln 2xy x y z z z zx y n z z z z ⎧⎫=--=--⎨⎬⎩⎭r 切平面为()ln 2ln 22ln 212ln 20x y z x y z -+---=+-= 法线为1ln 2ln 22ln 2z x y --=-=-四、求通过直线 0:20x y L x y z +=⎧⎨-+-=⎩的两个互相垂直的平面,其中一个平面平行于直线1:L x y z ==.解:设过直线L 的平面束为()20,x y z x y λ-+-++= 即()(){}1120,1,1,1x y z n λλλλ+--+-==+-r第一个平面平行于直线1:L x y z ==,即有{}{}111,1,11,1,1210,2n s λλλλ⋅=+-⋅=+==-r r从而第一个平面为{}1111120,324,1,3,223x y z x y z n ⎛⎫⎛⎫--++-=-+==- ⎪ ⎪⎝⎭⎝⎭r 第二个平面要与第一个平面垂直,也即{}{}11,3,21,1,11332260,3n n λλλλλλ⋅=-⋅+-=+-++=-+==r r从而第二个平面为4220x y z ++-=五、求微分方程430y y y '''-+=的解,使得该解所表示的曲线在点(0,2)处与直线2240x y -+=相切.解:直线2240x y -+=为2,1y x k =+=,从而有定解条件()()01,02y y '==, 特征方程为()()212430,310,3,1r r r r r r -+=--===方程通解为312xx y c ec e =+,由定解的初值条件122c c +=3123x x y c e c e '=+,由定解的初值条件1231c c +=从而1215,22c c =-=,特解为31522x x y e e =-+ 六、设函数()f u 有二阶连续导数,而函数(e sin )xz f y =满足方程22222e xz z z x y∂∂+=∂∂ 试求出函数()f u .解:因为()()()()222sin ,sin sin xx x z z f u e y f u e y f u e y x x∂∂''''==+∂∂ ()()()()222cos ,cos (sin )xx x z z f u e y f u e y f u e y y y∂∂''''==+-∂∂ ()()222222()e ,()0x x z zf u e f u f u f u x y∂∂''''+==⇒-=∂∂ 特征方程为()2121210,1,1,uur r r f u c e c e --===-=+ 七、计算曲面积分222(cos cos cos )dS xy yx z αβγ∑++⎰⎰Ò, 其中∑是球体2222x y z z ++≤与锥体z ≥Ω的表面,cos α,cos β,cos γ是其外法线方向的方向余弦.解:两表面的交线为222222122122,0,1,1x y z z x y z z z z z z ⎧++=⎧+=⎪⇒===⇒⎨⎨==⎩⎪⎩原式()222xy z dv Ω=++⎰⎰⎰,投影域为22:1D x y +≤,用柱坐标:02,01,1r r z θπΩ≤≤≤≤≤≤原式)()2111122222rrd rdr rz dz r r z zπθπ=+=+⎰⎰⎰()(12220211r r r r dr π⎡⎤=+-⎢⎥⎣⎦⎰()()()113134220013122t t dt r r r dr ππ⎡⎤=--+-+--⎢⎥⎣⎦⎰⎰()()11532452200221113125345t t r r r ππ⎡⎤⎛⎫=--⋅-+-- ⎪⎢⎥⎝⎭⎣⎦21181127022154551010πππππ⎡⎤⎛⎫=--+--=+= ⎪⎢⎥⎣⎦⎝⎭另解:用球坐标:02,0,02cos 4πθπϕρϕΩ≤≤≤≤≤≤原式()2cos 24222000sin 2cos sin d d d πϕπθϕρϕρϕρϕρ=+⎰⎰⎰()2cos 443302sin 2cos sin d d πϕπϕρϕρϕϕρ=+⎰⎰()545735022cos cos 2cos cos 5d ππϕϕϕϕ⎛⎫=--+ ⎪⎝⎭⎰1684579494216555658t t t t dt ππ⎛⎛⎫=-=⋅-⋅ ⎪⎭⎝6831161010t t π⎛=- ⎝2710π=八、试将函数2()e d xt f x t -=⎰展成x 的幂级数(要求写出该幂级数的一般项并指出其收敛区间). 解:()220n=01()e d d n!n xxt n f x t t t ∞-⎛⎫-==⎪ ⎪⎝⎭∑⎰⎰()()()21n=01,,!21nn x x n n ∞+-=∈-∞+∞+∑九、判断级数)0,0(1>>∑∞=βαβαn nn 的敛散性.解:()11lim lim 1n n n n n nu n u n ααβρββ++→∞→∞==⋅=+ 当01,1βρ<<<,级数收敛;当1,1βρ>>,级数发散; 当1,1βα=>时级数收敛;当1,01βα=<≤时级数发散十、计算曲线积分222(1e )d (e 1)d y y Lx x x y ++-⎰,其中L 为22(2)4x y -+=在第一象限内逆时针方向的半圆弧.解:再取1:0,:04L y x =→,围成半圆的正向边界 则 原式11222(1e )d (e 1)d y y L L L x x x y +=-++-⎰⎰()44200101122D dxdy x dx x x ⎛⎫=-+=-+=- ⎪⎝⎭⎰⎰⎰十一、求曲面S :222124x z y ++=到平面π:2250x y z +++=的最短距离.解:问题即求d =在约束222124x z y ++=下的最小值 可先求()()22,,9225f x y z d x y z ==+++在约束222124x z y ++=下的最小值点 取()()2222,,225124x z L x y z x y z y λ⎛⎫=++++++- ⎪⎝⎭()()42250,422520,x y L x y z x L x y z y λλ=++++==++++=()22222250,1224z z x z L x y z y λ=++++=++=0λ≠时212,41,,12x y z y y x z ====±==±,211521151111,,13,1,,123233d d +++---+⎛⎫⎛⎫==---== ⎪ ⎪⎝⎭⎝⎭这也说明了0λ=是不可能的,因为平面与曲面最小距离为13。
华南理工大学网络教育专科高等数学B(下)第二学期(单选题)函数定义域为()(A) (B)(C)(D)答题: A. B。
C. D。
(已提交)参考答案:D问题解析:2.(单选题) 函数定义域为()(A)(B)(C)(D)答题: A. B. C. D。
(已提交)参考答案:B问题解析:3。
(单选题)(A)(B)(C)(D)答题: A。
B. C。
D. (已提交)参考答案:A问题解析:4。
(单选题)(A)(B)(C)(D)答题: A。
B。
C. D。
(已提交)参考答案:C问题解析:5。
(单选题)(A) (B) (C)(D)答题: A. B。
C。
D. (已提交)参考答案:A问题解析:6。
(单选题)(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:7.(单选题)(A) (B)(C)(D)答题: A。
B. C。
D。
(已提交)参考答案:A问题解析:8.(单选题)(A)(B)(C)(D)答题: A。
B. C. D. (已提交)参考答案:C问题解析:9.(单选题) , 则(A)(B) (C)(D)答题: A. B。
C. D. (已提交)参考答案:B问题解析:10.(单选题) 若,则(A)(B) (C)(D)答题: A. B。
C. D。
(已提交)参考答案:A问题解析:11.(单选题)若, 则(A)(B) (C)(D)答题: A。
B. C。
D。
(已提交)参考答案:B问题解析:12。
(单选题)若,则(A)(B) (C)(D)答题: A。
B. C。
D. (已提交)参考答案:C问题解析:13。
(单选题)若,则(A) (B)(C)(D)答题: A. B. C。
D。
(已提交)参考答案:B问题解析:14。
(单选题) 若,则(A)(B)(C)(D)答题: A. B。
C。
D. (已提交)参考答案:A问题解析:15.(单选题)若则dz=()(A)(B)(C)(D)答题: A。
一九九八年高考数学试题及答案
1. 已知函数f(x) = 2x^2 - 4x + 3,求f(x)的最小值。
答案:函数f(x)的最小值为1。
2. 计算下列极限:lim(x→0) [(x^2 + 1) / (x^2 + x + 1)]。
答案:极限值为1。
3. 求以下不定积分:∫(3x^2 - 2x + 1) dx。
答案:积分结果为x^3 - x^2 + x + C。
4. 已知向量a = (1, 2),b = (3, -1),求向量a与向量b的点积。
答案:向量a与向量b的点积为-1。
5. 已知双曲线方程为x^2/a^2 - y^2/b^2 = 1,其中a = 2,b = 3,求双曲线的渐近线方程。
答案:双曲线的渐近线方程为y = ±(3/2)x。
6. 计算以下定积分:∫[0, π] sin(x) dx。
答案:定积分的值为2。
7. 已知等差数列{an}的首项a1 = 1,公差d = 2,求该数列的第10项。
答案:该数列的第10项为19。
8. 求以下二阶导数:y = x^3 - 3x^2 + 2x。
答案:二阶导数为6x - 6。
9. 已知抛物线方程为y = ax^2 + bx + c,且抛物线通过点(1, 1)和
(-1, 3),求a的值。
答案:a的值为1。
10. 计算以下概率:从5个红球和3个蓝球中随机抽取3个球,求抽到至少一个蓝球的概率。
答案:抽到至少一个蓝球的概率为7/12。
结束语:以上为一九九八年高考数学试题及答案,希望对同学们的复习有所帮助。
1.函数定义域为()(A)(B)(C)(D)参考答案:C问题解析:2.函数定义域为()(A)(B)(C)(D)参考答案:D问题解析:3.函数定义域为()(A)(B)(C)(D)参考答案:C问题解析:4.函数定义域为()(A)(B)(C)(D)参考答案:B问题解析:5.,则的定义域为()(A)(B)(C)(D)参考答案:C问题解析:6.下列函数为同一函数的是()(A)(B)(C)(D)参考答案:D问题解析:7.(A)(B)(C)(D)参考答案:A问题解析:8.(A)(B)(C)(D)参考答案:B问题解析:9.(A)(B)(C)(D)参考答案:D问题解析:10.(A)(B)(C)(D)参考答案:C问题解析:11.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:12.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:13.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:14.(A)(B)0 (C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:15.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:16.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:17.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:A问题解析:18.(A)(B)(C) 0 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:19.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:20.(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:21., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:22., 则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:23.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:24.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:25.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:26.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:27.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:28.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:29.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:30.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:31.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:32.若,则(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:33.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:34.若则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:35.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:36.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:37.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:38.若,则dz=()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:39.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:40.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:41.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:42.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:43.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:44.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:45.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:46.若,则()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:47.设函数在点的偏导数存在,则在点()(A)连续(B)可微(C)偏导数连续(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:D问题解析:48.设函数在点处可导(指偏导数存在)与可微的关系是()(A)可导必可微(B)可微必可导(C)两者等价(D)以上结论都不对答题: A. B. C. D. (已提交)参考答案:B问题解析:49.设, 则既是的驻点,也是的极小值点.答题: A. B. C. D. (已提交)参考答案:B问题解析:50.函数的驻点()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:51.函数是()(A)非驻点(B)驻点但不是极值点(C)驻点且是极大值点(D)驻点且是极小值点答题: A. B. C. D. (已提交)参考答案:D问题解析:52.设二元函数则必有()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:53.若()(A) 0 (B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:54.设且三个积分区域之间有关系,则有()答题: A. B. C. D. (已提交)参考答案:A问题解析:55.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:56.若,其中,则()答题: A. B. C. D. (已提交)参考答案:B问题解析:57.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:58.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:59.若()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:60.()(A)(B) 2 (C) 4 (D)答题: A. B. C. D. (已提交)参考答案:B问题解析:61.()(A) 1 (B) -1 (C) 2 (D)-2答题: A. B. C. D. (已提交)参考答案:C问题解析:62.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:63.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:64.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:65.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:66.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:67.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:68.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:69.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:70.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:71.()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:72.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:73.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:74.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:75.设()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:76.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:77.应等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:78.()(A)( B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:79.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:80.等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:81.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:D问题解析:82.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:83.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:84.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:85.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:86.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:A问题解析:87.交换二次积分等于()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:C问题解析:88.()(A)5 (B)4 (C)3 (D)2答题: A. B. C. D. (已提交)参考答案:D问题解析:89.下列方程为二阶方程的是()(A)(B)(C)(D)答题: A. B. C. D. (已提交)参考答案:B问题解析:。
1998年普通高等学校招生全国统一考试数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试120分钟.第Ⅰ卷(选择题共65分)一.选择题:本大题共15小题;第1—10题每小题4分,第11— 15题每小题5分,共65分.在每小题给出的四个选项中,只有一项是符合题目要求的(1) sin600º( )(A)21 (B) -21(C) 23 (D) -23(2) 函数y =a |x |(a >1)的图像是( )(3) 曲线的极坐标方程ρ=4sin θ化成直角坐标方程为( )(A) x 2+(y +2)2=4 (B) x 2+(y -2)2=4 (C) (x -2)2+y 2=4 (D) (x +2)2+y 2=4 (4) 两条直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0垂直的充要条件是( )(A) A 1A 2+B 1B 2=0 (B) A 1A 2-B 1B 2=0 (C)12121-=B B A A (D) 12121=A A BB (5) 函数f (x )=x1( x ≠0)的反函数f -1(x )= ( ) (A) x (x ≠0) (B) x 1(x ≠0) (C) -x (x ≠0) (D) -x1(x ≠0)(6) 已知点P (sin α-cos α,tg α)在第一象限,则在)20[π,内α的取值是 ( )(A) (432ππ,)∪(45ππ,) (B) (24ππ,)∪(45ππ,) (C) (432ππ,)∪(2345ππ,) (D) (24ππ,)∪(ππ,43) (7) 已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面展开图扇形的圆心角为 ( )(A) 120º (B) 150º (C) 180º (D) 240º (8) 复数-i 的一个立方根是i ,它的另外两个立方根是( )(A)2123± i (B) -2123± i (C) ±2123+ i (D) ±2123-i (9) 如果棱台的两底面积分别是S ,S ′,中截面的面积是S 0,那么( )(A) 2S S S '+=0 (B) S 0=S S '(C) 2 S 0=S +S ′ (D) S S S '=22(10) 向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图像如下图所示,那么水瓶的形状是( )(11) 3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有( )(A) 90种 (B) 180种 (C) 270种 (D) 540种(12) 椭圆31222y x +=1的焦点为F 1和F 2,点P 在椭圆上,如果线段PF 1的中点在y 轴上,那么|P F 1|是|P F 2|的( )(A) 7倍 (B) 5倍 (C) 4倍 (D) 3倍 (13) 球面上有3个点,其中任意两点的球面距离都等于大圆周长的61,经过这3个点的小圆的周长为4π,那么这个球的半径为( )(A) 43 (B)23 (C) 2 (D) 3(14) 一个直角三角形三内角的正弦值成等比数列,其最小内角为( )(A) arccos215- (B) arcsin215- (C) arccos251- (D) arcsin 251-(15) 在等比数列{a n }中,a 1>1,且前n 项和S n 满足∞→n lim S n =11a ,那么a 1的取值范围是( ) (A)(1,+∞) (B)(1,4) (C) (1,2) (D)(1,2)第Ⅱ卷(非选择题共85分)二、填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.设圆过双曲线116922=-y x 的一个顶点和一个焦点,圆心在此双曲线上,则圆心到双曲线中心的距离是_________17.(x +2)10(x 2-1)的展开式中x 10的系数为____________(用数字作答)18.如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条件____________时,有A 1 C ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)19.关于函数f (x )=4sin(2x +3π)(x ∈R ),有下列命题: ①由f (x 1)= f (x 2)=0可得x 1-x 2必是π的整数倍; ②y =f (x )的表达式可改写为y =4cos(2x -6π); ③y =f (x )的图像关于点(-6π,0)对称; ④y =f (x )的图像关于直线x =-6π对称.其中正确的命题的序号是_______ (注:把你认为正确的命题的序号都.填上.) 三、解答题:本大题共6小题;共69分.解答应写出文字说明,证明过程或演算步骤. (20)(本小题满分10分)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,设a +c =2b ,A -C=3π.求sin B 的值. 以下公式供解题时参考: sin θ+sin ϕ =2sin2ϕθ+cos2ϕθ-, sin θ-sin ϕ=2cos2ϕθ+sin2ϕθ-,cos θ+cos ϕ=2cos 2ϕθ+cos 2ϕθ-, cos θ-cos ϕ=-2sin 2ϕθ+sin 2ϕθ-.(21)(本小题满分11分)如图,直线l1和l2相交于点M,l1⊥l2,点N∈l1.以A,B为端点的曲线段C上的任一点到l2的距离与到点N的距离相等.若△AMN为锐角三角形,|AM|=17,|AN|=3,且|BN|=6.建立适当的坐标系,求曲线段C的方程.(22)(本小题满分12分)如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体沉淀箱,污水从A孔流入,经沉淀后从B孔流出.设箱体的长度为a米,高度为b米.已知流出的水中该杂质的质量分数与a,b的乘积ab成反比.现有制箱材料60平方米.问当a,b各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A、B孔的面积忽略不计).(23)(本小题满分12分)已知斜三棱柱ABC -A 1 B 1 C 1的侧面A 1 ACC 1与底面ABC 垂直,∠ABC =90º,BC =2,AC=23,且AA 1 ⊥A 1C ,AA 1= A 1 C .Ⅰ.求侧棱A 1A 与底面ABC 所成角的大小;Ⅱ.求侧面A 1 ABB 1 与底面ABC 所成二面角的大小; Ⅲ.求顶点C 到侧面A 1 ABB 1的距离.(24)(本小题满分12分)设曲线C 的方程是y =x 3-x ,将C 沿x 轴、y 轴正向分别平行移动t 、s 单位长度后得曲线C 1.Ⅰ.写出曲线C 1的方程; Ⅱ.证明曲线C 与C 1关于点A (3t ,2s)对称; Ⅲ.如果曲线C 与C 1有且仅有一个公共点,证明s =43t -t 且t ≠0.(25)(本小题满分12分)已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145. Ⅰ.求数列{b n }的通项b n ; Ⅱ.设数列{a n }的通项a n =log a (1+nb 1)(其中a >0,且a ≠1),记S n 是数列{a n }的前n 项和.试比较S n 与31log a b n +1的大小,并证明你的结论.1998年普通高等学校招生全国统一考试数学试题(理工农医类)参考答案一、选择题(本题考查基本知识和基本运算.)1.D 2.B 3.B 4.A 5.B 6.B 7.C 8.D 9.A 10.B 11.D 12.A 13.B 14.B 15.D 二、填空题(本题考查基本知识和基本运算.)16.31617.179 18.AC ⊥BD ,或任何能推导出这个条件的其他条件.例如ABCD 是正方形,菱形等 19.②,③ 三、解答题20.本小题考查正弦定理,同角三角函数基本公式,诱导公式等基础知识,考查利用三角公式进行恒等变形的技能及运算能力.解:由正弦定理和已知条件a +c =2b 得 sin A +sin C =2sin B .由和差化积公式得2sin 2C A +cos 2CA -=2sinB . 由A +B +C =π 得 sin 2C A +=cos 2B,又A -C =3π 得 23cos 2B=sin B ,所以23cos 2B =2sin 2B cos 2B. 因为0<2B <2π,cos 2B≠0, 所以sin2B =43, 从而cos2B =4132sin 12=-B所以sinB=83941323=⨯.21.本小题主要考查根据所给条件选择适当的坐标系,求曲线方程的解析几何的基本思想.考查抛物线的概念和性质,曲线与方程的关系以及综合运用知识的能力.解法一:如图建立坐标系,以l 1为x 轴,MN 的垂直平分线为y 轴,点O 为坐标原点.依题意知:曲线段C 是以点N 为焦点,以l 2为准线的抛物线的一段,其中A ,B 分别为C 的端点.设曲线段C 的方程为y 2=2px (p >0),(x A ≤x ≤x B ,y >0),其中x A ,x B 分别为A ,B 的横坐标,p =|MN |. 所以 M (2p -,0),N (2p,0). 由|AM |= 17 ,|AN |=3 得(x A +2p )2+2px A =17, ① (x A -2p)2+2px A =9. ②由①,②两式联立解得x A =p4.再将其代入①式并由p >0解得 ⎩⎨⎧==⎩⎨⎧==.2,2;1,4AA x p x p 或 因为ΔAMN 是锐角三角形,所以2p> x A ,故舍去⎩⎨⎧==22Ax p所以p =4,x A =1.由点B 在曲线段C 上,得x B =|BN |-2p=4. 综上得曲线段C 的方程为y 2=8x (1≤x ≤4,y >0).解法二:如图建立坐标系,分别以l 1、l 2为x 、y 轴,M 为坐标原点. 作AE ⊥ l 1,AD ⊥ l 2,BF ⊥ l 2,垂足分别为E 、D 、F . 设A (x A ,y A )、B (x B ,y B )、N (x N ,0).依题意有x A =|ME |=|DA |=|AN |=3, y A =|DM |=2222=-DAAM,由于ΔAMN 为锐角三角形,故有 x N =|ME |+|EN | =|ME |+22AE AN -=4x B =|BF |=|BN |=6.设点P (x ,y )是曲线段C 上任一点,则由题意知P 属于集合{(x ,y )|(x -x N )2+y 2=x 2,x A ≤x ≤x B ,y >0}.故曲线段C 的方程为y 2=8(x -2)(3≤x ≤6,y >0).22.本小题主要考查综合应用所学数学知识、思想和方法解决实际问题的能力,考查建立函数关系、不等式性质、最大值、最小值等基础知识.解法一:设y 为流出的水中杂质的质量分数,则y =abk,其中k >0为比例系数.依题意,即所求的a ,b 值使y 值最小.根据题设,有4b +2ab +2a =60(a >0,b >0), 得 b =aa+-230(0<a <30). ① 于是 y =ab k=aaa k +-230226432+-+-=a a k ⎪⎭⎫ ⎝⎛+++-=264234a a k≥()2642234+⋅+-a a k18k =, 当a +2=264+a 时取等号,y 达到最小值. 这时a =6,a =-10(舍去). 将a =6代入①式得b =3.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 解法二:依题意,即所求的a ,b 的值使ab 最大. 由题设知 4b +2ab +2a =60(a >0,b >0),即 a +2b +ab =30(a >0,b >0). 因为 a +2b ≥2ab 2, 所以 ab 22+ab ≤30, 当且仅当a =2b 时,上式取等号. 由a >0,b >0,解得0<ab ≤18.即当a =2b 时,ab 取得最大值,其最大值为18. 所以2b 2=18.解得b =3,a =6.故当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小.23.本小题主要考查直线与直线、直线与平面、平面与平面的位置关系,棱柱的性质,空间的角和距离的概念,逻辑思维能力、空间想象能力及运算能力.Ⅰ.解:作A 1D ⊥AC ,垂足为D ,由面A 1ACC 1⊥面ABC ,得A 1D ⊥面ABC ,所以∠A 1AD 为A 1A 与面ABC 所成的角. 因为AA 1⊥A 1C ,AA 1=A 1C , 所以∠A 1AD =45º为所求.Ⅱ.解:作DE ⊥AB ,垂足为E ,连A 1E ,则由A 1D ⊥面ABC ,得A 1E ⊥AB . 所以∠A 1ED 是面A 1ABB 1与面ABC 所成二面角的平面角. 由已知,AB ⊥BC ,得ED ∥BC . 又D 是AC 的中点,BC =2,AC =23, 所以DE =1,AD =A 1D =3, tg ∠A 1ED =DEDA 1=3. 故∠A 1ED =60º为所求.Ⅲ.解法一:由点C 作平面A 1ABB 1的垂线,垂足为H ,则CH 的长是C 到平面A 1ABB 1的距离.连结HB ,由于AB ⊥BC ,得AB ⊥HB . 又A 1E ⊥AB ,知HB ∥A 1E ,且BC ∥ED , 所以∠HBC =∠A 1ED =60º 所以CH =BC sin60º=3为所求. 解法二:连结A 1B .根据定义,点C 到面A 1ABB 1的距离,即为三棱锥C -A 1AB 的高h . 由ABC A AB A C V V --=11锥锥得D A S h S ABC B AA 131311∆∆=, 即 322312231⨯⨯=⨯h 所以3=h 为所求.24.本小题主要考查函数图像、方程与曲线,曲线的平移、对称和相交等基础知识,考查运动、变换等数学思想方法以及综合运用数学知识解决问题的能力.Ⅰ.解:曲线C 1的方程为y =(x -t )3-(x -t )+s .Ⅱ.证明:在曲线C 上任取一点B 1(x 1,y 1).设B 2(x 2,y 2)是B 1关于点A 的对称点,则有2221t x x =+, 2221sy y =+. 所以 x 1=t -x 2, y 1=s -y 2.代入曲线C 的方程,得x 2和y 2满足方程:s -y 2=(t -x 2)3-(t -x 2),即 y 2=(x 2-t )3-(x 2-t )+ s , 可知点B 2(x 2,y 2)在曲线C 1上.反过来,同样可以证明,在曲线C 1上的点关于点A 的对称点在曲线C 上. 因此,曲线C 与C 1关于点A 对称.Ⅲ.证明:因为曲线C 与C 1有且仅有一个公共点,所以,方程组⎪⎩⎪⎨⎧+---=-=st x t x y xx y )()(33有且仅有一组解.消去y ,整理得3tx 2-3t 2x +(t 3-t -s )=0, 这个关于x 的一元二次方程有且仅有一个根. 所以t ≠0并且其根的判别式Δ=9t 4-12t (t 3-t -s )=0.即 ⎩⎨⎧=--≠.0)44(,03s t t t t所以 t t s -=43且 t ≠0. 25.本小题主要考查等差数列基本概念及其通项求法,考查对数函数性质,考查归纳、推理能力以及用数学归纳法进行论证的能力.解:Ⅰ.设数列{b n }的公差为d ,由题意得⎪⎩⎪⎨⎧=-+=.1452)110(1010,111d b b 解得⎩⎨⎧==.3,11d b 所以 b n =3n -2.Ⅱ.由b n =3n -2,知S n =log a (1+1)+ log a (1+41)+…+ log a (1+231-n ) = log a [(1+1)(1+41)……(1+231-n )], 31log a b n +1= log a 313+n . 因此要比较S n 与31log a b n +1的大小,可先比较(1+1)(1+41)……(1+231-n )与313+n 的大小.取n =1有(1+1)>3113+⋅,取n =2有(1+1)(1+41)>3123+⋅, ……由此推测(1+1)(1+41)……(1+231-n )>313+n . ① 若①式成立,则由对数函数性质可断定:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1.下面用数学归纳法证明①式.(ⅰ)当n =1时已验证①式成立.(ⅱ)假设当n =k (k ≥1)时,①式成立,即(1+1)(1+41)……(1+231-k )>313+k . 那么,当n =k +1时,(1+1)(1+41)……(1+231-k )(1+()2131-+k )>313+k (1+131+k ) =13133++k k (3k +2). 因为()[]333343231313+-⎥⎦⎤⎢⎣⎡+++k k k k ()()()()22313134323+++-+=k k k k()013492>++=k k , 所以13133++k k (3k +2)>().1134333++=+k k 因而(1+1)(1+41)……(1+231-k )(1+131+k )>().1133++k 这就是说①式当n=k +1时也成立.由(ⅰ),(ⅱ)知①式对任何正整数n 都成立.由此证得:当a >1时,S n >31log a b n +1. 当0<a <1时,S n <31log a b n +1.。
1998年普通高等学校招生全国统一考试 数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟. 第Ⅰ卷(选择题共65分)一、 选择题:本大题共15小题;第(1) (10)题每小题4分,第(11) (15)题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)设集合M={x │0≤x<2},集合N={x │x 2-2x-3<0},集合M ∩N 为 (A){x │0≤x<1} (B){x │0≤x<2} (C){x │0≤x ≤1} (D){x │0≤x ≤2} [Key] B(2)如果直线ax+2y+2=0与直线3x-y-2=0平行,那么系数a 为32)(23)(6)(3)(D C B A ---[Key] B(3)函数)x 31x 21(tg y -=在一个周期内的图象是[Key] A(4)已知三棱锥D-ABC 的三个则面与底面全等,且AB=AC=3,BC=2,则BC 为棱,以面BCD 与面BCA 为面的二面角的大小是32)D (2)C (31arccos)B (33arccos)A (ππ[Key] C(5)函数x2cos )x 23sin(y +-π=的最小正周期是 ππππ4)D (2)C ()B (2)A ([Key] B(6)满足arccos(1-x)≥arccosx 的x 的取值范围是]1,21)[(]21,0)[(]0,21)[(]21,1)[(D C B A --[Key] D(7)将y=2x 的图象(A)先向左平行移动1个单位 (B)先向右平行移动1个单位 (C)先向上平行移动1个单位 (D)先向下平行移动1个单位 再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象.[Key] D(8)长方体一个顶点上三条棱的长分别是3,4,5,且它的八个顶点都在同一个球面上,这个球的表面积是ππππ200)(50)(225)(220)(D C B A[Key] C(9)曲线的参数方程⎪⎩⎪⎨⎧-=-=2111t y tx (t 是参数,t ≠0),它的普通方程是 11)(1)1(1)()1()2()(1)1()1)((2222+-=--=--==--x xy D x y C x x x y B y x A[Key] B(10)函数y=cos 2x-3cosx+2的最小值为6)(41)(0)(2)(D C B A -[Key] B(11)椭圆C 与14)2(9)3(22=-+-y x 椭圆关于直线x+y=0对称,椭圆C 的方程是 (A) 19)3(4)2(22=+++y x (B) 14)3(9)2(22=-+-y x(C) 14)3(9)2(22=+++y x (D) 19)3(4)2(22=-+-y x[Key] A(12)圆台上、下底面积分别为π、4π,侧面积为6π,这个圆台的体积是337)(637)(32)(332)(ππππD C B A[Key] D(13)定义在区间(-∞,+∞)的奇函数f(x)为增函数;偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合.设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b); ②f(b)-f(-a)<g(a)-g(-b); ③f(a)-f(-b)>g(b)-g(-a); ④f(a)-f(-b)<g(b)-g(-a), 其中成立的是(A)①与④ (B)②与③ (C)①与③ (D)②与④ [Key] C(14)不等式组⎪⎩⎪⎨⎧+->+->x x x x x 22330的解集是(){}20<<x x A (){}5.20<<x x B (){}60<<x x C (){}30<<x x D[Key] C(15)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有 (A)150种 (B)147种 (C)144种 (D)141种[Key] D(16)已知92⎪⎪⎭⎫⎝⎛-x x a的展开式中x 3的系数为49,常数a 的值为_________. [Key] 4(17)已知直线的极坐标方程22)4sin(=+πθρ则极点到该直线的距离是_______。
2004-2005高等数学下册期中考试试卷姓名: 班级: 成绩单号:一、单项选择题1、[3分]函数32),(y x y x f =在点)0,0(处(A)不连续; (B) 连续,但两个偏导数)0,0(),0,0(y x f f ''都不存在; (C)连续且两个偏导数)0,0(),0,0(y x f f ''都存在,但不可微 (D) 可微 2、[3分] 设2)0,0(,1)0,0(='='y x f f ,则D(A)),(y x f 在点)0,0(处连续; (B) dy dx y x df 2),()0,0(+=; (C)βαcos 2cos )0,0(+=∂∂lf ,其中βαcos ,cos 为l 的方向余弦;(D) ),(y x f 在点)0,0(处沿x 轴负方向的方向导数为1-。
3、[3分] 若),(y x f 连续,且⎰⎰+=Ddxdy y x f xy y x f ),(),(,其中D 是由1,,02===x x y y 所围成的区域,则=),(y x f C(A) xy (B) xy 2 (C) 81+xy (D) 1+xy4、[3分] 若函数),(y x f 在点),(00y x 的某个邻域内有连续两阶偏导数,且满足[]0),(),(),(2000000>-y x f y x f y x f xy yy xx ,则),(00y x D (A) 必不是),(y x f 的极值点; (B) 必是),(y x f 的极值点; (C) 必是),(y x f 的极小值点 (D) 可能不是),(y x f 的极值点5、[3分]设空间区域1,)(3:22222≤+++≥Ωz y x y x z ,则⎰⎰⎰Ω=dv z 2(A)⎰⎰⎰ππϕϕϕθ2030142cos sin dr r d d (B)⎰⎰⎰ππϕϕϕθ2060142cos sin dr r d d(C)⎰⎰⎰ππϕϕϕθ203013cos sin dr r d d (D)⎰⎰⎰ππϕϕϕθ206012cos sin dr r d d二、填空题1、[3分]已知向量a 与b 垂直,则=-⨯-b a b a 2()3( 。
1998高等数学下册补考试卷及解答
一、单项选择题
1.[3分]设Ω为正方体10≤≤x ,10≤≤y ,10≤≤z ,。
),,(z y x f 在Ω上可积,试问下面各式中哪一式为在上的三重积分的值。
A. 3
11),,(lim ⎪⎭⎫ ⎝⎛∑=∞→n n i n i n i f n i n B. n n n i n i n i f n i n 11),,(lim 1⋅⎪⎭⎫ ⎝⎛∑=∞→ C. 3
1111),,(lim ⎪⎭⎫ ⎝⎛∑∑∑===∞→n n k n j n i f n i n j n k n D. n n k n j n i f n i n j n k n 1),,(lim 111∑∑∑===∞→ 2.[3分]⎰+++-=C dy y x x dx y
x y I 2222,因为2222
2)(y x x y x Q y P +-=∂∂=∂∂,所以 A.对任意闭曲线0:=I C B. 在曲线C 不围住原点时0=I
C. 因y
P ∂∂与x Q ∂∂在原点不存在,故对任意的闭曲线C :0≠I D. 在曲线C 围住原点时0=I ,不围住原点时0≠I
3.[3分]设向量b a ,满足b a b a +=-,则必有
A. 0 =-b a
B. 0 =+b a
C. 0=⋅b a
D. 0 =⨯b a
4.[3分] 设OM 是从)0,0(O 到)1,1(M 的直线段,则与曲线积分ds e I OM y x ⎰+=22不相等的积分是 A.⎰102dx e x B. ⎰
102dy e y C. ⎰20dr e r D.
⎰1
02dr e r 5.[3分] 级数∑∞=12n n u 与∑∞=-112n n u 均收敛是∑∞
=1
n n u 收敛的
A.必要但非充分条件
B. 充分但非必要条件
C. 充分必要条件
D. 既非必要又非充分条件
二、解答下列各题
1、[6分] 设Ω是由22y x z +=及1=z 所围的有界闭域,试将⎰⎰⎰Ω
dv z y x f ),,(化
成先对x 次对y 再对z 积分的三次积分式。
2、[6分]试确定∑=1n n n x n 的收敛域。
三、解答下列各题
1、[5分]设x y x z arctan )(+=,求
y z x z ∂∂∂∂, 2、[4分] 设xyz e z y x u =),,(,求
321===∂∂z y x x u 。
四、解答下列各题
1、[5分]已知幂级数 ∑∞=0n n
n x a 的收敛半径0≠R ,试求∑∞
=≠1)0(n n n n b x b a 的收敛半径。
2、[5分]由二重积分的几何意义,求
⎰⎰≤++--12222)11(y x dxdy y x
3、[5分]计算⎰⎰∑
++xydzdx dxdy z )1(,其中100222≤≤≥=+∑z x R y x 且上为的一
部分曲面,它的法线与x 轴的正向交成锐角,R 为正数。
4、[5分]求微分方程x e x y y y ++=-'-''1332的一个特解。
五、解答下列各题
1、[5分]设0 ≠a ,证明向量a a
b a b p 2-=与a 垂直 2、[5分]证明:若0),(1=y x u 和0),(2=y x u 是全微分方程0),(),(=+dy y x N dx y x M 的两个解,则它们只差一个常数
六、解答下列各题
1、[6分]求曲面9=++xyz xy x 在点)3,2,1(处的切平面和法线方程。
2、[6分]求曲线⎪⎩⎪⎨⎧=-=23:t
y t t x L 在t 从1-=t 到1=t 部分所围区域的面积 七、解答下列各题
1、[6分]利用二重积分计算由平面
1=++c
z b y a x (其中0,,>c b a )0,0,0===z y x 所围立体的体积。
2、[6分]设面密度2),(y y x =ρ的平面薄片由)0(>=+a a y x 及0,0==y x 所围成,试求它的质量。
八、解答下列各题
1、[6分]判别级数∑=1sin
n n
n 的敛散性。
2、[6分]讨论函数y y xy xy z 4422+--=的极值。