全国电子设计大赛旋转倒立摆

  • 格式:docx
  • 大小:763.19 KB
  • 文档页数:8

下载文档原格式

  / 8
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

摘要

本设计综合考虑基础部分和发挥部分要点,采用mega128a为主控芯片,BTS7960驱动电机并在程序中涉及到pid算法对电机进行调控,在设计中,我们采用1000线编码器为角度传感器。在该简单控制装置中,我们实现了摆动,圆周运动和短时间的自动控制下的倒立。

关键字:倒立摆,mega128a,编码器

第一章系统方案比较与选择

1.1总实现方案

方案一:用陀螺仪和加速度计通过卡尔曼数据融合得到角度,用此处的角度为载体用单片机进行数据处理,并调整电机。

方案二:用电位器做角度传感,通过单片机自带ADC来读取电位数值以此为依据来判断角度,并调整电机。

方案三:用编码器做角度传感器,通过读取编码器的输出脉冲来计算角度传感器的输出角度,用此角度做处理调整电机。

通过对两个方案的对比选择,方案一中的加速度计和陀螺仪算法实现复杂,我们在融入卡尔曼滤波后有明显滤波效果,但是由于圆周运动,会使得各个方向轴返回的数据出错,且波动大,会减弱卡尔曼的滤波效果,对于pid的精准调整还是远远达不到预期。在方案二中,考虑到电位器内部结构问题,虽然理论上电位器在转动过程中是线性的,但是考虑到每次停靠的电阻位可能会产生误差,最后考虑到我们最终选定的单片机ADC只有10位,在方案三中,由于实现编码器的功能实现方便简单,并能更多的趋近于精确值,因此最后我们采用了方案三。

1.2主控制器方案比较与选择

为了完成在短时间快速采集并计算角度,主控器件必须有较高的CPU工作频率和存储空间。

方案一:采用51系列加强型STC12C5A60S2作为主控器件,用来实现题目所要求的各种功能。此方案最大的特点是系统规模可以做得很小,成本较低。操作控制简单。但是,我们在利用单片机处理高速信号快速扫描及电机控制时显得吃力, 51系列单片机很难实现这一要求。

方案二:采用ATMEL公司的AVR系列ATMEGA128A单片机为核心控制器件,MEGA128A有8个外部中断,中断系统丰富,并且有128K 字节的系统内可编程Flash,我们对它的性能和指标相对也较为熟悉,如此能够实现快速扫描和数据处理!

按照题目的要求,综合考虑我们最终选择了方案二,采用ATMEGA128A单片机为核心控制器件。

第二章理论分析与计算

2.1编码器脉冲转换角度设计

在单片机中,我们开启外部0中断,在AVR系列单片机中外部0中断的中断优先级最高,以此我们可以得到较为精确的角度。由于我们使用的编码器为1000线编码器,所以每一个脉冲的角度值为0.36,所以在计算时即使丢步也不会很大的影响角度值,我们在后面做过的实验测试中,也证明了我们的想法。

2.2摇摆及圆周算法设计

我们通过对整体的系统建模,在查阅资料当中,根据单摆定律,摆杆的摆动虽然在衰减但是摆动的周期相同,所以在基础要求中的摇摆和圆周运动中,只要在摆杆在正弦我们对单摆系统实测波形如下,所以依据我们分析,当每次施

力点在每次过峰值的时候既可以累加力的作用效果,以此来完成摇摆和圆周运动。

图2-2

2.3机械结构设计及电机选型

图2-3

以上是我们机械结构的仿真图。

在电机选型中,我们首先想到步进电机很便于角度控制,但是由于步进电机反应较慢,所以我们没有考虑,对于普通的直流电机虽然其反应快但调速性能差,另外我们还可以选择减速电机和直流伺服电机,直流伺服电机调速性,启动和制动都很有优势但是价格昂贵,最后在考虑到经济适用性方面,我们选择了带有减速箱的减速电机。

在这个简易摆装置中,我们选用400转减速电机,型号为JH37-555,额定功率为15W,力矩为30Kgf.cm,由于转矩T=9550 * P / n= 716.25N·m,电机中心距离转臂245mm,电机转矩已经足够大,完全可以带动所要带的物体。另外,由于该系统中电机要在短时间内顺逆时针转动,所以系统要达到很高要求的稳定性,所以我们在选择装置的底盘和支架选用了较为稳固的粗木。在转臂与摆杆连接处我们选用了欧姆龙1000线编码器,编码器的轴与轴承相连接,也解决了摆杆与转臂的连接问题。

在机械结构的设计当中我们一共修正了3次基本构架,也经历了很多次的调整,在这个过程中也确定了最终的最稳定的构架。

2.4 PID算法设计

为了实现主轴旋转角度控制,我们又采用电机转动范围限制,同样的采用增量式PID控制算法,且结合我们单片机的速度限制(8位,16Mhz),电机旋转角度测量会存一定的的偏差,因此我们整定了P、I两个参数,减小了因测量误差计算出来的PID偏差。

采集回来的摆轴角度和主轴旋转角度,经PID反馈回来的数据进行融合,以PWM占空比的形式直接输入到减速直流电机上面。从而达到目标控制。

PID参数整定:由于我们在物理结构,以及力学方面的知识薄弱,因此我们采用了反复整定确定系数的办法,首先,我们控制I、D为零,控制P参数,知道系统对输入阶跃响应出现零界振荡,记下这时的比例系数和零界震荡周期,在此基础上将该系数乘以60~70%,在调节I参数,同样的方法,调节D参数,知道系统稳定。

增量型控制:

控制流程:

公式:

程序框图:

第三章系统电路设计

3.1 系统主板工作原理

系统主板主要由5V电源模块,3.3V电源模块,蜂鸣器模块,以及ATMEGA128A单片机为核心控制模块按。

5V电源模块:此设计采用12V开关电源供电,通过稳压芯片LM2576一脚输入三脚输出将12V输入转变为5V输出,来给单片机供电。

3.3V电源模块:3.3V电源输出是由AM1117稳压芯片三脚输入5V二脚输出来进行转换

按键模块:本系统板中设计了四个按键,通过按键来对不同功能来进行切换演示。(外接)

液晶模块:液晶模块采用NOKIA5110液晶来显示,NOKIA5110液晶具有功能强大,连接简单等优势。(外接)

图3-1 系统主板工作原理图

第四章系统程序设计

4.1 系统总体模块图