史上最全的难题排列组合大全
- 格式:doc
- 大小:363.00 KB
- 文档页数:10
史上最全的排列组合难题大总结
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.
先排末位共有1
3C
然后排首位共有14C 最后排其它位置共有34A
由分步计数原理得113
434288C C A =
练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有
多少不同的种法?
二.相邻元素捆绑策略
例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.
解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元
素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522
522480A A A =种不同的
排法
练习题:某人射击8枪,命中4枪,4枪命中恰好有
3枪连在一起的情形的不同种数为 20
三.不相邻问题插空策略
例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多
少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,
第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有54
56A A
种
新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略
例人排队,其中甲乙丙3人顺序一定共有多少不同的排法
解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后
用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:73
73/A A
(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有4
7A 种方法,其余的三个位置甲乙丙共有
1种坐法,则共有4
7A 种方法。
思考:可以先让甲乙丙就坐吗?
(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法
练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?
5
10C
五.重排问题求幂策略
例5.把6名实习生分配到7个车间实习,共有多少种不同的分法
解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原理共有6
7种不同的排法
练习题:
1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插
入原节目单中,那么不同插法的种数为 42 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法8
7 六.环排问题线排策略
例6. 8
人围桌而坐,共有多少种坐法?
解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以固定一人44A 并从此位置把圆
形展成直线其余7人共有(8-1)!种排法即7!
练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120 七.多排问题直排策略
例人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法
解:8人排前后两排,相当于8人坐8把椅子,可以把椅子排成一排.个特殊元素有24A 种,再排后4
个位置上的特殊元素丙有14A 种,其余的5人在5个位置上任意排列有5
5A 种,则共有
2
1
5
445A A A 种
练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不
能坐,并且这2人不左右相邻,那么不同排法的种数是 346
八.排列组合混合问题先选后排策略
例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.
解:第一步从5个球中选出2个组成复合元共有2
5C 种方法.再把4个元素(包含一个复合元素)装
入4个不同的盒内有44A 种方法,根据分步计数原理装球的方法共有24
54C A
练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任
务,且正副班长有且只有1人参加,则不同的选法有 192 种
九.小集团问题先整体后局部策略
例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位
数有多少个?
解:把1,5,2,4当作一个小集团与3排队共有22A 种排法,再排小集团内部共有22
22A A 种排法,
由分步计数原理共有222
222A A A 种排法.
允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n
m 种 一般地,n 个不同元素作圆形排列,共有(n-1)!种排法.如果从n 个不同元素中取出m 个元素作圆形排列共有1m n A n 一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研
练习题:
1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一 品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为2
5
4
254A A A 2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有2
5
5
255A A A 种
十.元素相同问题隔板策略
例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?
解:因为10个名额没有差别,把它们排成一排。
相邻名额之间形成9个空隙。
在9个空档中选6
个位置插个隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法
共有6
9C 种分法。
练习题:
1. 10个相同的球装5个盒中,每盒至少一有多少装法? 4
9C 2 .100x y z w +++=求这个方程组的自然数解的组数 3103C
十一.正难则反总体淘汰策略
例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的
取法有多少种?
解:这问题中如果直接求不小于10的偶数很困难,可用总体淘汰法。
这十个数字中有5个偶数5
个奇数,所取的三个数含有3个偶数的取法有35C ,只含有1个偶数的取法有12
55C C ,和为偶数的取法共有123555C C C +。
再淘汰和小于10的偶数共9种,符合条件的取法共有123
5559C C C +-
练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的
抽法有多少种?
十二.平均分组问题除法策略
例12. 6本不同的书平均分成3堆,每堆2本共有多少分法?
解: 分三步取书得2
2
2
642C C C 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF ,若第一
步取AB,第二步取CD,第三步取EF 该分法记为(AB,CD,EF),则222
642C C C 中还有
(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,CD,AB),(EF,AB,CD)共有33A 种取法 ,而这些分法仅
是(AB,CD,EF)一种分法,故共有2223
6423/C C C A 种分法。
练习题:
1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?(5442
13842/C C C A )
名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的
小集团排列问题中,先整体后局部,再结合其它策略进行处理。
将n 个相同的元素分成m 份(n ,m 为正整数),每份至少一个元素,可以用m-1块隔板,插入n 个元素排成一排的n-1个空隙中,所有分法数为1
1m n C -- 有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.
平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以n
n A (n 为均分的组数)避免重复计数。
分组方法 (1540)
3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安 排2名,则不同的安排方案种数为______(2
2
2
2
4262/90C C A A =)
十三. 合理分类与分步策略
例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞
的节目,有多少选派方法
解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。
选上唱歌人员为标准进行研究
只会唱的5人中没有人选上唱歌人员共有22
33C C 种,只会唱的5人中只有1人选上唱歌人员
112534C C C 种,只会唱的5人中只有2人选上唱歌人员有22
55C C 种,由分类计数原理共有 2211222
3353455C C C C C C C ++种。
练习题:
1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有34
2. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27) 本题还有如下分类标准:
*以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果 十四.构造模型策略
例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2
盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?
解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有3
5C 种
十五.实际操作穷举策略
例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法
解:从5个球中取出2个与盒子对号有2
5C 种还剩下3球3盒序号不能对应,利用实际操作法,如
果剩下3,4,5号球, 3,4,5号盒3号球装4号盒时,则4,5号球有只有1种装法,同理3号
球装5号盒时,4,5号球有也只有1种装法,由分步计数原理有2
52C 种
3号盒 4号盒 5号盒
练习题:
1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)
2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种
解含有约束条件的排列组合问题,可按元素的性质进行分类,按事件发生的连续过程分步,做到标准明确。
分步层次清楚,不重不漏,分类标准一旦确定要贯穿于解题过程的始终。
对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果
十六. 分解与合成策略
例16. 30030能被多少个不同的偶数整除
分析:先把30030分解成质因数的乘积形式30030=2×3×5 × 7 ×11×13
依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,
所有的偶因数为:12345
55555C C C C C ++++
练习:正方体的8个顶点可连成多少对异面直线
解:我们先从8个顶点中任取4个顶点构成四体共有体共4
81258C -=,每个四面体有
3对异面直线,正方体中的8个顶点可连成358174⨯=对异面直线
十七.化归策略 例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?
解:将这个问题退化成9人排成3×3方阵,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,如
此继续下去.从3×3方队中选3人的方法有111
321C C C 种。
再从5×5方阵选出3×3方阵便可解决问题.从5×5方队中选取3行3列有3355C C 选法所以从5×5方阵选不在同一行也不在
同一列的3人有33111
55321C C C C C 选法。
练习题:某城市的街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少
种?(3
735C =)
十八.数字排序问题查字典策略
例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数?
解:297221
122334455=++++=A A A A A N
练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数
是 3140 十九.树图策略
例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同
的传球方式有______ 10=N
练习: 分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i =)的不同坐法有
多少种?44=N
二十.复杂分类问题表格策略
处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题
例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从中取5只,要求各字母均
有且三色齐备,则共有多少种不同的取法 解:
二十一:住店法策略
解决“允许重复排列问题”要注意区分两类元素:一类元素可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,再利用乘法原理直接求解.
例21.七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 .
分析:因同一学生可以同时夺得n 项冠军,故学生可重复排列,将七名学生看作7家“店”,五项冠军看作5名“客”,每个“客”有7种住宿法,由乘法原理得75
种.
染色问题的计数方法
一、 区域染色问题
1. 根据乘法原理,对各个区域分步染色,这是处理这类问题的基本的方法。
例1 要用四种颜色给四川、青藏、西藏、云南四省(区)的地图染色(图1)每一省(区)一种颜色,只要求相邻的省(区)不同色,则不同染色的方法有多少种?
分析 先给
西藏
青海云南
四川四川染色有4种方法,再给青海染色有3种
方法,接着给西藏染色有2种方法,最后给云南染色有2种方法,根据乘法原理,不同的染色方法共有4×3×2×2=48种 2. 根据共用了多少种颜色分类讨论,分别计算出各种情形的种数,再用加法原理求出不同年拾方法种数。
例2 (2003年全国高考题)如图2,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有多少种?
一些复杂的分类选取题,要满足的条件比较多, 无从入手,经常出现重复遗漏的情况,用表格法,则分类明确,能保证题中须满足的条件,能达到好
分析 依题意至少要
123
4
5
图2
选用3种颜色。
(1)当选用三种颜色时,区域2与4必须同色,区域3与5必须同色,有3
4A 种。
(2)当用四种颜色时,若区域2与4同色,则区域3与5不同色,有44
A
种;若区域3与5同色,
则区域2与4不同色,有
4
4
A
种,故用四种颜色时共有244
A
种。
由加法原理可知满足题意的着色方法共有
3
4A +244
A
=24+2×24=72种。
3.根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,分别计
算出两种情形的种数,再用加法原理求出不同染色方法数。
例3 用红、黄、蓝、白、黑五种颜色涂在“田”字形的四个小方格内(图3),每格涂一种颜
色,相邻的两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?
123
4
图3
(1)四格涂不同的颜色,方法数为
45
A
;
(2)有且仅有两格涂相同的颜色,即只有一组对角小方格涂相同颜色,涂法种数为2124
5C A
;
(1)两组对角小方格涂相同颜色,涂法种数为2
5
A。
因此,所求的涂法种数为4
5
A
+2124
5
C A
+
25
A
=260种
3.根据相间区域使用颜色的种类分类讨论
例4 如图4,一个六边形的6个区域A 、B 、C 、D 、E 、F ,现给这6个区域着色,要求同一区
域染同一种颜色,相邻的两个区域不得使用
A B C
D E F 图4
同一颜色,现有 4种不同
的颜色可供选择,则有多少种不同的着色方法。
解: (1)当相间区域A 、C 、E 着同一种颜色时,有4种着色方法,此时,B 、D 、F 各有3种着色方法故有4×3×3×3=108种方法
(2)当相间区域A 、C 、E 着两种不同颜色时,有224
3C A
种着色方法,此时B 、D 、F 有3×2
×2种着色方法,故共有
224
3
C A
×3×2×2=432种着色方法。
(1)当相间区域A 、C 、E 着三种不同颜色时,有34
A
种着色方法,此时B 、D 、F 各有2种着色
方法,此时共有
34
A
×2×2×2=192种方法。
故总计有108+432+192=732种方法 二 点染色问题
点染色问题,要注意对各点依次染色,主要方法有:(1)根据共用了多少种颜色分类讨论;(2)根据相对顶点是否同色分类讨论。
例5将一个四棱锥S -ABCD 的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少? 解法1 满足题设条件的染色至少要用三种颜色
(1)若恰用三种颜色,可先从五种颜色中任选一种染顶点S ,再从余下的四种颜色中任选两种染A 、B 、C 、D 四点,,此时只能A 与C ,B 与D 分别同色,故有
124
5
C A
=60种方法。
(1)若恰用四种颜色,可先从五种颜色中任选一种染顶点S ,再从余下的四种颜色中任选两种染A 与B ,由于A 、B 颜色可以交换,故有
24
A
种染法;再从余下的两种颜色种任选一种染D
或C ,而D 与C 中另一个只需染与其相对顶点同色即可,故有11124
5
2
2
C C C
A =240中方法。
(1)若恰用五种颜色,有
55
A
=120种染法。
综上,满足题意的染色方法数为60+240+120
=420种。
解法2 设想染色按S -A -B -C -D 的顺序进行,对S 、A 、B 染色,有5×4×3=60种染色方法。
由于C 点的颜色可能与A 同色或不同色,这影响到D 点颜色的选取方法数,故分类讨论:
C 与A 同色时(此时C 对颜色的选取方法唯一),
D 与A 、C 、S 不同色,有3种选择;C 与A 不同色时,C 有2种选择的颜色,D 有2种颜色可供选择,从而对C 、D 染色有1×3+2×2=7种染色方法。
由乘法原理,总的染色方法数是60×7=420种
评注 图中的连接状况是本质条件,而是否空间图形则无关紧要,试看下面的两个问题,尽管与例5表述方式不同,但具有相同的数学模型,所以都可以转化为例5来解决。
您不妨一试。
(1) 用五种颜色给图中的5个车站的候车牌A 、B 、C 、D 、E 染色,要求相邻两个车站间的候车牌的颜色不同,有多少种不同的染色方法(图6)
(2) 如图7所示为一张有5个行政区划的地图,今要用5种颜色给地图着色,要求相邻的区域不同色,共有多少种方案?
三、线段染色问题,要注意对各条线段依次讨论,主要方法有: (1) 根据共用了多少种颜色分类讨论; (2) 根据相对的线段是否同色分类讨论。
例5 用红、黄、蓝、白、四种颜色染矩形ABCD 的四条边,每条边只染一种颜色,且使相邻两边染不同的颜色,如果颜色可能反复使用,共有多少种不同的染色方法(图8) 解法1 (1)使用四种颜色有
44
A
种;
(2)使用三种颜色染色,则必须将一组对边染成同色,故有112
3
4
2
C C A
种;
(3) 使用两种颜色时,则两组对边必须分别同色,有24
A
种。
因此,所求的染色方法数为
44
A +11
2
3
4
2
C C A
+24
A
=84种
解法2 染色按AB-BC-CD-DA 的顺序进行,对AB 、BC 染色有4×3=12种染色方法。
由于CD 的颜色可能与AB 同色或不同色,这影响到DA 颜色的选取方法数,故分类讨论: 当CD 与AB 同色时,这时CD 对颜色的选取方法唯一,则DA 有3种颜色可供选择;当CD 与AB 不同色时,CD 有2种可供选择的颜色,DA 有2种可供选择的颜色,从而对CD 、DA 染色有1×3+2×2=7种染色方法。
由乘法原理,总的染色方法数为12×7=84种。
利用相同的方法可解决例7 例6 中央电视台“正大综艺”节目的现场观众来自4个单位,分别在图9中4个区域内坐定。
有4种不同的颜色服装,每个区域的观众必须穿同种颜色的服装,且相邻两个区域的颜色不同,不相邻区域颜色相同与否不受限制,那么不同的着色方法
共有多少种?
例7 用六种颜色给正四面体A -BCD 的每条棱染色,要求每条棱只能染一种颜色且共顶点的棱染不同的颜色,问有多少种不同的染色方法(图10)
分析 正四面体有三组对棱AB 与CD 、AC 与BD 、AD 与BC 。
满足题设条件的染色至少要用三种颜色。
解 (1)若恰用三种颜色染色,则每组对棱必须染同一颜色,而这三组间的颜色不同,故有
36
A
种方法。
(2) 若恰用四种颜色染色,则三组对棱中有两组对棱的组内对棱同色,但组与组之间不同色,故有
423
6
A
C 种方法。
(3)若恰用五种颜色染色,则三组对棱中有一组对棱染同一种颜色,故有513
6
A
C 种方法。
(4) 若恰用六种颜色染色,则有
66
A
种不同的方法。
综上,满足题意的总的染色方法数为
3
6
A +513
6
A
C +
66
A
=4080种
四 面染色问题
例9 (1996年全国高中数学联赛题)从给定的六种不同颜色中选用若干种颜色,将一个正方体的6个面染色,每两个具有公共棱的面染成不同的颜色,则不同的染色方案共有多少种? (注:如果我们对两个相同的正方体染色后,可以通过适当翻转,使得两个正方体的上、下、左、右、前、后6个面对应面的染色都相同,那么,我们就说这两个正方体的染色方案相同) 分析 显然,至少需要三种颜色,由于有多种不同情况,仍应考虑利用加法原理分类、乘法原理分步进行讨论。
解 根据共用了多少种不同的颜色分类讨论。
(1) 用了六种颜色,确定某种颜色(例如红色)所染面为下底(根据题注,对此处的两种
不同染色方案,这里的“第一面”总是相同的),则上底颜色可有5种选择,在上、下底已染好后,再确定其余4种颜色中的某一种所染面为左侧面,则其余3个面有3!种染色方案,根据乘法原理n1=5×3!=30种
C=6种方法,必有两面同色(必为相对面),确定(2)用了五种颜色,选定五种颜色有5
6
为上、下底面,其颜色可有5种选择,再确定一种颜色为左侧面,此时的方法数取决于右侧面
C×5×3=90
的颜色,有3种选择(前后面可通过翻转交换)n2=5
6
C C=90
(3)用了四种颜色,仿上分析可得n3=42
64
C=20
(4)用了三种颜色,n4=3
6
故总的染色方案有n=n1+ n2+n3+n4=230种。