第1章 信号与系统的基本概念
- 格式:ppt
- 大小:1.33 MB
- 文档页数:50
信号与系统概念,公式集:第一章:概论1.信号:信号是消息的表现形式。
(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。
第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。
常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。
(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f j i dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。
如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。
2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。
3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。
如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。
信号与系统的重点、难点及疑点第一章 信号与系统的基本概念1、信号、信息与消息的差别?答:消息:待传送的一种以收发双方事先约定的方式组成的符号,如语言、文字、图像、数据等;信号:随时间变化的与消息一一对应的物理量;信息:所接收到的未知内容的消息,即传输的信号是带有信息的。
2、在绘制信号波形时应注意哪些方面内容?答:应注意信号的基本特征,标出信号的初值,终值及一些关键值,如极大值和极小值等,同时注意阶跃信号,冲激信号的特点等。
3、什么是奇异信号?答:函数本身有不连续点或其导数或积分有不连续点的这类函数统称为奇异信号或奇异函数。
较为重要的两种奇异信号是单位冲激信号δ(t )和单位阶跃信号u(t )。
4、什么是单位阶跃信号?单位阶跃信号在0t =处的值是多少?答:单位阶跃信号也是一类奇异信号,定义为:10()00t u t t >⎧=⎨<⎩ 它可以表示单边信号,持续时间有限信号,在信号处理中起着重要的作用。
在郑君里这本书中单位阶跃信号在0t =处没有定义。
5、单位冲激信号的物理意义是什么?答:冲激信号:它是一种奇异函数,它表达的是一类幅度很强,但作用时间很短的物理现象。
其重要特性是筛选性,即:()()()(0)(0)t x t dt t x dt x δδ∞∞-∞-∞==⎰⎰ 6、为什么要对信号进行分解?常用的分解方法有哪些?答:为了便于研究信号的传输和处理问题,往往将信号分解为一些简单的信号之和。
分解角度不同,可以分解为不同的分量。
常用的分解方法有:直流分量与交流分量;偶分量与奇分量;无穷多个时刻具有不同幅度的阶跃函数的和;无穷多个时刻具有不同强度的冲激函数的和;实部分量与虚部分量;正交函数分量。
7、如何判断系统是因果系统还是非因果系统?答:若系统的输出只与该时刻及以后的激励有关,而与该时刻的激励信号无关,则该系统为因果系统。
8、什么样的系统是线性时不变系统?答:同时满足线性(包括叠加性和均匀性)以及时不变特性的系统,称为线性时不变系统。
《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。
信号与系统第三版课后习题答案信号与系统第三版课后习题答案信号与系统是电子信息类专业中一门重要的基础课程,它是研究信号的产生、传输、处理和识别的学科。
在学习这门课程时,课后习题是非常重要的,它可以帮助我们巩固所学的知识,并且提高解决问题的能力。
下面是信号与系统第三版课后习题的答案。
第一章:信号与系统的基本概念1. 信号是指随时间、空间或其他独立变量的变化而变化的物理量。
系统是指能够对输入信号进行处理并产生输出信号的物理设备或数学模型。
2. 连续时间信号是在连续时间范围内定义的信号,可以用连续函数表示。
离散时间信号是在离散时间范围内定义的信号,可以用数列表示。
3. 周期信号是指在一定时间间隔内重复出现的信号,具有周期性。
非周期信号是指不具有周期性的信号。
4. 奇对称信号是指关于原点对称的信号,即f(t)=-f(-t)。
偶对称信号是指关于原点对称的信号,即f(t)=f(-t)。
5. 系统的线性性质是指系统满足叠加原理,即对于输入信号的线性组合,输出信号也是这些输入信号的线性组合。
6. 系统的时不变性质是指系统对于不同时间的输入信号,输出信号的特性是不变的。
7. 系统的因果性质是指系统的输出只依赖于当前和过去的输入信号,而不依赖于未来的输入信号。
第二章:连续时间信号与系统的时域分析1. 奇偶分解是将一个信号分解为奇对称和偶对称两个部分的过程。
奇偶分解的目的是简化信号的处理和分析。
2. 卷积是信号处理中常用的一种操作,它描述了两个信号之间的相互作用。
卷积的定义为:y(t) = ∫[x(τ)h(t-τ)]dτ。
3. 系统的冲激响应是指系统对于单位冲激信号的输出响应。
冲激响应可以用来描述系统的特性和性能。
4. 系统的单位阶跃响应是指系统对于单位阶跃信号的输出响应。
单位阶跃响应可以用来描述系统的稳定性和响应速度。
5. 系统的单位斜坡响应是指系统对于单位斜坡信号的输出响应。
单位斜坡响应可以用来描述系统的积分特性。
《信号与系统》基础知识学习指导第一章 信号与系统的基本概念1.单位冲激信号的脉冲幅度为 ,脉冲强度为 ,持续时间为 。
2.单位抽样序列 (是/不是)奇异函数。
3.离散信号两个序号之间的序列值为 (零/无定义)。
4.虚指数序列的低频位置位于π的 倍附近,高频位置位于π的 倍附近。
5.虚指数序列的谐波个数为 (有限/无限)多个。
6.线性系统的三个性质为 、 和 。
7.系统的输出是由输入引起的,它的输出不能领先于输入,这种性质称为 。
8.若系统输入有界输出也有界,则系统满足 性。
9.系统输入输出关系为)()(t y t x →,若其满足)()(00t t y t t x -→-,则其具有 性。
10.积分t t t t t d )1()835(2426⎰---+++δ的结果为 。
11.普通函数)(t x 与)(0t t -δ的乘积为 。
第二章 连续时间系统的时域分析1.连续时间系统的时域数学模型为 。
2.系统的微分方程的齐次解为系统的 响应,特解为系统的 响应。
3.系统的单位冲激响应和阶跃响应都属于系统的 (零输入/零状态/全)响应。
4.单位冲激响应是单位阶跃响应的 (微分/积分)。
5.因果的LTI 系统的单位冲激响应)(t h 应满足的条件是 。
6.稳定的LTI 系统的单位冲激响应)(t h 应满足的条件是 。
7.系统的单位冲击响应)(t h 与输入)(t x 的卷积)()(t h t x *代表系统的 响应。
8.两个子系统)(1t h 和)(2t h 串联组成的系统的单位冲激响应为 。
9.两个子系统)(1t h 和)(2t h 并联组成的系统的单位冲激响应为 。
10.普通函数)(t x 与)(0t t -δ的卷积为 。
11.恒等系统的单位冲激响应为 。
12.积分系统的单位冲激响应为 。
13.微分系统的单位冲激响应为 。
第三章 离散时间系统的时域分析1.离散时间系统的时域数学模型为 。
2.系统的单位抽样响应和阶跃响应都属于系统的 (零输入/零状态/全)响应。
西北工业大学《827信号与系统》重难点解析第1讲第一章信号与系统的基本概念一、信号的主要分类(1)连续时间信号:自变量的取值是连续的离散时间信号:自变量的取值是离散的(2)周期信号:具有周期性,且是无始无终信号非周期信号:不具有周期性(3)因果信号:t<0时,f( t) =0;t>0时,f( t) ≠0的信号非因果信号:t>0时,f( t) =0的信号(4)功率信号:平均功率为有限值,能量趋近于无穷;能量信号:平均功率为0,能量为有限值的信号注意:(1)两个连续周期信号的和不一定是周期信号,只有当这两个信号的周期比为有理数时,该信号才是周期信号,且周期为原信号周期的最小公倍数;(2)直流信号和有界的周期信号均为功率信号;阶跃信号和有始周期信号也是功率信号;有界的非周期信号均为能量信号;无界的周期信号和无界的非周期信号均为非功率非能量信号。
一个信号只能是功率信号和能量信号两者之一,不会两者都是,但可以两者都不是,也就是非周期非能量信号。
【例1】判断下列各信号是否为周期信号后,若为周期信号,求出其周期。
(1)f( t) =cos8t-sin12t(2)f(k) =cos k+2sin2πk解:(1) T1==T2==由于=,故f( t)为周期信号,其周期为T1和T2的最小公倍数,即T=(2) cos k为周期信号,N1==842π2π故f(k)为周期信号,为N1和N2的最小公倍数,即N=8个间隔2cos2πk为周期信号,N2==1三、δ(t )和 δ′( t ) 函数的性质【例 2】 (3t -2)[ δ(t ) + δ(t -2) ]dtt 2 -2t + 3) δ'( t -2)dt(3t -2) δ(t -2)dt= -2 + (3 ×2 -2) = 2(2) 原式 = - ( t 2 + 3 -2t ) ' t =2 = - (2t -2) t =2 = -2四、系统的分类(1)线性系统:同时满足齐次性和叠加性的系统 非线性系统:不能同时满足以上两个条件的系统 (2)时不变系统:满足时不变的系统 时变系统:不满足时不变的系统(3)因果系统:响应不产生激励之前的系统 非因果系统:响应产生于激励之前的系统(4)稳定系统:系统的激励有界,响应也有界的系统 非稳定系统:系统的激励有界,响应无界的系统【例 3】 已知系统:a :y ( t ) =2f ( t ) +3 b :y ( t ) =f (2t ) c :y ( t ) =f ( -t ) d :y ( t ) =tf ( t ) 试判断上述哪些系统满足下列条件: (1)不是线性系统的是: (2)不是稳定系统的是: (3)不是时不变系统的是: (4)不是因果系统的是:解:(1) a (2)d (3)b ,c ,d (4)b ,c五、线性时不变系统的性质f ( t ) →y ( t ),f 1 ( t ) →y 1 ( t ),f 2 ( t ) →y 2 ( t ), A 1,A 2,A 为任意常数,常见性质如下: 1.齐次性:Af ( t ) →Ay ( t )2.叠加性:f 1 ( t ) +f 2 ( t ) →y 1 ( t ) +y 2 ( t )5 555西北工业大学《827 信号与系统》重难点解析3.线性:A 1f 1 ( t ) +A 2f 2 ( t ) →A 1 y 1 ( t ) +A 2 y 2 ( t ) 4.时不变性:f ( t -τ) →y ( t -τ) 5.微分性:→6.积分性:)d τ→)d τ【例 4】 一阶系统的初始状态为 y (0 - ),激励与响应分别为f ( t ),y ( t ) 。