当前位置:文档之家› 菲克第二定律

菲克第二定律

菲克第二定律
菲克第二定律

3.7.2 菲克第二定律

2009年09月13日星期日 13:54

3.7.2 菲克第二定律

(Fick’s second law)

菲克第二定律是在第一定律的基础上推导出来的。菲克第二定律指出,在非稳

扩散过程中,在距离x处,浓度随时间的变化率等于该处的扩散通量随距离变化

的负值,即

将代入上式,得

(3.7-2)

这就是菲克第二定律的数学表达式。如果扩散系数D与浓度无关,则(3.7-2)式可以写

(3.7-3)

上式中,C为扩散物质的体积浓度(kg/m3), t为扩散时间(s), x为距离(m)。实际上固溶体中溶质原子的扩散系数D是随浓度变化的,为了使求解扩散方程简单些,往近似地把D看作恒量处理。

式(3.7-2)和(3.7-3)都是偏微分方程,求解时应先作变换:令,这样,式(3.7-3

可以变成一个常微分方程,再结合初始条件和边界条件求出方程的通解。利用通解可解决包括非稳态扩散的具体问题。

直接应用菲克第二定律解决实际扩散问题,往往很复杂。但是有两条由菲克第二

律推导出来的结论却十分简单、有用:

1.对于钢铁材料渗碳处理时,扩散需要的时间t与扩散距离x的平方成正比。

2.对于同一个扩散系统,扩散系数D与扩散时间t的乘积为一常数。

热力学第二定律的建立

热力学第二定律的建立

热力学第二定律的建立 1850年克劳修斯提出热力学第二定律以后,至20世纪初,一直被作为与热力学第一定律并列的热力学两大基本定律,引起学术界特别是物理学界的极大重视。这两个基本定律的发现,使热力学在19世纪50年代初时起,被看作近代物理学中的一个新兴的学科,和物理学家们极其热衷的重要领域,得到物理学家和化学家们的关注。 1、热力学第二定律产生的历史背景 18世纪末惠更斯和巴本(Dents Papin,1647~1714)实验研究的燃气汽缸,塞维利(Thomas Savery,1650~1715)于1798年制成的“矿工之友”,及纽可门(Newcomen Thomas,1663~1729)于1712年发明的“大气机”等早期的蒸汽机,都是利用两个不同温度的热源(锅炉和水)并使部分热量耗散的方法使蒸汽机作功的,也可以说不自觉地运用热力学第二定律的思想,进行设计的。瓦特改进纽可门蒸汽机的关键,是以冷凝器取代大气作为第二热源,因而使耗散的热量大大降低。为了进一步减少热的耗散量和

提高热效率与功率,18世纪末和19世纪40年代又先后研制成中低压和高低压二级膨胀式蒸汽机。热机的整个发展史说明,它的热效率可以不断提高和耗散的热量可以逐渐减少。但是,热机的热效率至今虽然逐渐有所提高,但耗散的热量永远也不可能消除。因此,卡诺的可逆循环只可趋近而永远也无法达到。这就提出了一个十分重要的问题,就是卡诺提出的“在蒸汽机内,动力的产生不是由于热质的实际消耗,而是由热体传到冷体,也就是重新建立了平衡”的论断中,最后的话是不正确的,这不仅因为他相信热质说引起的,而且因为在无数事实中,这种热平衡在一个实际热机中是不可达到的。事实说明,机械功可以完全转化为热,但在不引起其他变化的条件下,热却不可能完全转化为机械功。 人们设想,如果出现一个制成这样永动机的先例,即一个孤立热力学系统会从低温热源取热而永恒地做功,那么大地和海洋几乎可以作为无尽的低温热源,做功将是取之不尽的。事实上这与热力学原理相矛盾的,这就意味着可能有一个新的热力学基本定律在起着作用。综上可见,虽然有的事件是不违背热力学第一定律的但也不可

牛顿三大定律详细总结

一、牛顿第一定律(惯性定律): 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 1.理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 2.惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量m Fr GM =2/严格相等。 ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。 【例1】火车在长直水平轨道上匀速行驶,门窗紧闭的车厢内有一个人向上跳起,发现仍落回到车上原处,这是因为 ( ) A.人跳起后,厢内空气给他以向前的力,带着他随同火车一起向前运动 B.人跳起的瞬间,车厢的地板给他一个向前的力,推动他随同火车一起向前运动 C.人跳起后,车在继续向前运动,所以人落下后必定偏后一些,只是由于时间很短,偏后距离太小,不明显而已 D.人跳起后直到落地,在水平方向上人和车具有相同的速度 【分析与解答】因为惯性的原因,火车在匀速运动中火车上的人与火车具有相同的水平速度,当人向上跳起后,仍然具有与火车相同的水平速度,人在腾空过程中,由于只受重力,水平方向速度不变,直到落地,选项D正确。 【说明】乘坐气球悬在空中,随着地球的自转,免费周游列国的事情是永远不会发生的,惯性无所不在,只是有时你感觉不到它的存在。 【答案】D 二、牛顿第二定律(实验定律) 1. 定律内容 物体的加速度a跟物体所受的合外力F 合成正比,跟物体的质量m成反比。 2. 公式:F ma 合 = 理解要点: ①因果性:F 合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失; ②方向性:a与F 合都是矢量,,方向严格相同;

牛二定律(力与变速运动)

一、已知力求运动,已知运动求力: 1、如图所示,用F = 6.0 N 的水平拉力,使质量m = 2.0 kg 的物体由静止开始沿光滑水平面 做匀加速直线运动。 (1)求物体的加速度a 的大小; (2)求物体开始运动后t = 4.0 s 末速度的大小; 2、如图所示,用F =12 N 的水平拉力,使物体由静止开始沿水平地面做匀加速直线运动. 已知物体的质量m =2.0 kg ,物体与地面间的动摩擦因数μ=0.30. 求: (1)物体加速度a 的大小; (2)物体开始运动后t=2.0 s 内通过的位移x 。 3、列车在机车的牵引下沿平直铁轨匀加速行驶,在100s 内速度由5.0m/s 增加到15.0m/s. (1)求列车的加速度大小. (2)若列车质量是1.0×106kg ,机车牵引力是1.5×105 N ,求列车在运动中所受的阻力大小. 4、静止在水平地面上的物体,质量为20kg ,现在用一个大小为60N 的水平力使物体做匀加速直线运动,当物体移动9.0m 时,速度达到6.0m/s ,求: (1)物体加速度的大小 (2)物体和地面之间的动摩擦因数 5、地面上放一木箱,质量为10kg ,用50N 的力与水平方向成37°角拉木箱,使木箱从静止开始沿水平面做匀加速直线运动,假设水平面光滑,(sin37°=0.6,cos37°=0.8) (1)求物块运动的加速度的大小 (2)求物块速度达到s m v /0.4=时移动的位移 6、如图,质量m=2kg 的物体静止在水平面上,物体与水平面间的滑动摩擦因数25.0=μ,现在对物体施加一个大小F=8N 、与水平方向夹角θ=37°角的斜下上的推力.已知 sin37°=0.6,cos37°=0.8,取g=10m/s 2 ,求 (1)物体运动的加速度 (2)物体在拉力作用下5s 内通过的位移大小。

2.实数基本定理的等价性证明

§ 2 实数基本定理等价性的证明 证明若干个命题等价的一般方法. 本节证明七个实数基本定理等价性的路线 : 证明按以下三条路线进行:Ⅰ: 确界原理单调有界原理区间套定理Cauchy收敛准则 确界原理 ; Ⅱ: 区间套定理致密性定理Cauchy收敛准则 ; Ⅲ: 区间套定理Heine–Borel 有限复盖定理区间套定理 . 一. “Ⅰ”的证明: (“确界原理单调有界原理”已证明过 ). 1. 用“确界原理”证明“单调有界原理”: 定理 1 单调有界数列必收敛 . 2. 用“单调有界原理”证明“区间套定理”: 定理 2 设是一闭区间套. 则存在唯一的点,使对有. 推论1 若是区间套确定的公共点, 则对, 当时, 总有. 推论2 若是区间套确定的公共点, 则有↗, ↘, . 3. 用“区间套定理”证明“Cauchy收敛准则”: 定理 3 数列收敛是Cauchy列.

引理Cauchy列是有界列. ( 证 ) 定理 4 的证明: ( 只证充分性 ) 教科书P217—218上的证明留作阅 读 . 现采用三等分的方法证明, 该证法比较直观. 4.用“Cauchy收敛准则”证明“确界原理”: 定理5 非空有上界数集必有上确界;非空有下界数集必有下确界 . 证(只证“非空有上界数集必有上确界”)设为非空有上界数集 . 当为有限集时 , 显然有上确 界 .下设为无限集, 取不是的上界, 为的上界. 对分区间, 取, 使不是 的上界, 为的上界. 依此得闭区间列. 验证为Cauchy 列, 由Cauchy收敛准则, 收敛; 同理收敛. 易见↘. 设↘.有↗. 下证.用反证法验证的上界性和最小性. 二. “Ⅱ”的证明: 1. 用“区间套定理”证明“致密性定理”: 定理6 ( Weierstrass ) 任一有界数列必有收敛子列. 证(突出子列抽取技巧) 定理7 每一个有界无穷点集必有聚点. 2.用“致密性定理”证明“Cauchy收敛准则”: 定理8 数列收敛是Cauchy列.

实数系基本定理等价性的完全互证[1]

第38卷第24期2008年12月数学的实践与认识M A TH EM A T I CS I N PRA CT I CE AND TH EO R Y V o l 138 N o 124  D ecem.,2008  教学园地 实数系基本定理等价性的完全互证 刘利刚 (浙江大学数学系,浙江杭州 310027) 摘要: 综合给出了实数系六个基本定理的等价性的完全互证方法,并归纳了各种证明方法的规律,旨在把抽象的证明转化为容易掌握的基本方法. 关键词: 实数系;连续性;等价;极限 收稿日期:2005206210 实数系基本定理是数学分析中重要组成部分,是分析引论中极限理论的基础,也称为实数系的连续性定理.能够反映实数连续性的定理很多,它们是彼此等价的.现有的教材都是按照某一顺序将这些定理进行一次循环证明就验证了它们的等价性[122].虽然不同的教材对于循环证明的顺序有所不同,但每一次循环证明看起来都似乎没有关联,并没有综合归纳其中的方法技巧.这么多相互独立的证明使得不少学生都感到数学分析中这部分内容太抽象,难以理解.因而当遇到一个教材中没有给出的2个定理之间的等价性证明时就无从下手.为此,在讲述这些定理的时候,我们把这些定理的相互证明详细地整理出来,并且归纳给出了这些定理的完全互证方法与规律,使学生在学习这部分内容时不再感到无所适从. 我们使用的教材[1]中给出的实数系的六个基本定理及其描述为: 1)确界存在定理(pp .12):上(下)有界的非空数集必存在唯一上(下)确界. 2)递增(减)有界数列必有极限(pp .34). 3)闭区间套定理(pp .41):设I 1,I 2,…,I n ,…是一串有界闭区间,I 1=I 2=…=I n = …,且I n 的长度 I n →0,称{I n }为闭区间套.则闭区间套{I n }的交∩∞ n =1 I n 必不空且为单点集. 4)Bo lzano 2W eierstrass 定理(pp .44):有界数列必有收敛子列 .5)Cauchy 收敛准则(pp .299):数列{x n }收敛Ζ{x n }是基本数列. 6)有限开覆盖定理(pp .308):若开区间族{O Α}覆盖了有界闭区间[a ,b ],则从{O Α}中必可挑出有限个开区间O Α1,O Α2,…,O Αn 同样覆盖了[a ,b ]:[a ,b ]

牛顿定律-牛顿第二定律 单位制

牛顿第二定律 单位制 要点一 牛顿第二定律 1.下列对牛顿第二定律的表达式F=ma 及其变形公式的理解,正确的是 ( ) A .由F=ma 可知,物体所受的合力与物体的质量成正比,与物体的加速度成正比 B .由m =a F 可知,物体的质量与其所受合力成正比,与其运动的加速度成反比 C .由a =m F 可知,m 一定时物体的加速度与其所受合力成正比,F 一定时与其质量成反比 D .由m =a F 可知,物体的质量可以通过测量它的加速度和它所受的合力而求出 答案 CD 要点二 单位制 2.请把下列物理量与单位一一对应起来 (1)力 A .kg ·m 2 /s 3 (2)压强 B .kg ·m/s 2 (3)功 C .kg ·m 2/s 2 (4)功率 D .kg/(s 2 ·m ) 答案 (1)—B (2)—D (3)—C (4)—A 题型1 已知受力求动过情况 【例1】如图所示,传送带与地面夹角θ=37°,从A 到B 长度为16 m,传送带以v 0=10 m/s 的速率逆时针转动.在传送带上端A 无初速地放一个质量为m =0.5 kg 的物体,它与传 送带间的动摩擦因数μ=0.5.求物体从A 运动到B 需要的时间.(sin37°=0.6, cos 37° =0.8,取g =10 m/s 2 )

答案 2s 题型2 由运动求受力情况 【例2】如图所示,质量M=10 kg的木楔静止于粗糙的水平地面上,已知木楔与地面间的动摩 擦因数μ=0.02.在木楔倾角θ=30°的斜面上,有一质量m=1.0 kg的物体由静止开始沿斜 面下滑,至滑行路程s=1.4 m时,其速度v=1.4 m/s.在这一过程中木楔始终保持静止,求地面对木楔的摩擦力的大小 和方向(g取10 m/s2). 答案0.61 N,方向水平向左. 题型3 生活物理 【例3】如图所示,是建筑工地常用的一种“深穴打夯机”,电动机带动两个滚轮匀速转动将 夯杆从深坑提上来,当夯杆底端刚到达坑口时,两个滚轮彼此分开,将夯杆释放,夯杆只在重力 作用下运动,落回深坑,夯实坑底,且不反弹.然后两个滚轮再次压紧,夯杆被提到坑口,如此周 而复始.已知两个滚轮边缘的线速度恒为v=4 m/s,滚轮对夯杆的正压力N=2×104N,滚轮与夯 杆间的动摩擦因数μ=0.3,夯杆质量m=1×103kg,坑深h=6.4 m,假定在打夯的过程中坑的深度变化不大可以忽 略,g=10 m/s2.求: (1)夯杆被滚轮压紧,加速上升至与滚轮速度相同时离坑底的高度. (2)打夯周期是多少? 答案 (1)4 m (2)4.2 s 1.如图所示,在光滑水平面上有两个质量分别为m1和m2的物体A、B,m1>m2, A、B间水平连接着一轻质弹簧秤.若用大小为F的水平力向右拉B,稳定后 B的加速度大小为a1,弹簧秤示数为F1;如果改用大小为F的水平力向左拉A,稳定后A的加速度大小为a2,弹簧秤示数为F2.则以下关系式正确的是 ( )

牛二定律及其应用练习题

高一物理必修一牛顿运动定律及其运用练习题 1、关于惯性,下列说法正确的是() A.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大 B.战斗机投入战斗时,必须抛掉副油箱,是要减少惯性,保证其运动的灵活性 C.在绕地球运转的宇宙飞船内的物体处于失重状态,因而不存在惯性 D.乒乓球可以快速抽杀,是因为乒乓球惯性大的缘故 2、如图所示,物块P与木板Q叠放在水平地面上,木板Q对物块P 的支持力的反作用力是() A.物块P受到的重力 B.地面对木板Q的弹力 C.物块P对木板Q的压力 D.地球对木板Q的吸引力 3、质量为60 kg的人站在水平地面上,用定滑轮装置将质量为m=40 kg的重物送入井中.当重物以2 m/s2的加速度加速下落时,忽略绳子和定滑轮的质量及定滑轮的摩擦,则人对地面的压力大小为(g取10 m/s2)() A.200 N B.280 N C.320 N D.920 N 4、如图,一辆有动力驱动的小车上有一水平放置的弹簧,其左端固定在小车上,右端与一小球相连.设在某一段时间内小球与小车相对静止且弹簧处于压缩状态,若忽略小球与小车间的摩擦力,则在此段时间内小车可能是() A.向右做加速运动B.向右做减速运动 C.向左做加速运动D.向左做减速运动 5、如图所示,车内绳AB与绳BC拴住一小球,BC水平,车由原来 的静止状态变为向右加速直线运动,小球仍处于图中所示的位置,则() A.AB绳、BC绳拉力都变大 B.AB绳拉力变大,BC绳拉力变小 C.AB绳拉力变大,BC绳拉力不变 D.AB绳拉力不变,BC绳拉力变大 6、如图所示,倾角为θ的传送带沿逆时针方向以加速度a加速转动时,小物体A与传

热力学第二定律 概念及公式总结

热力学第二定律 一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程) 一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。 二、 热力学第二定律 1. 热力学的两种说法: Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化 Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化 2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功) 功 热 【功完全转化为热,热不完全转化为功】 (无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原 3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程) 特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功 三、 卡诺定理(在相同高温热源和低温热源之间工作的热机) ηη≤ηη (不可逆热机的效率小于可逆热机) 所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关 四、 熵的概念 1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+η ηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关 热温商具有状态函数的性质 :周而复始 数值还原 从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数 2. 热温商:热量与温度的商 3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η (数值上相等) 4. 熵的性质: (1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质 (2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和 (3)只有可逆过程的热温商之和等于熵变 (4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量 (5)可用克劳修斯不等式来判别过程的可逆性 (6)在绝热过程中,若过程是可逆的,则系统的熵不变 (7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。若系统已处于平衡状态,则其中的任何过程一定是可逆的。 五、克劳修斯不等式与熵增加原理 不可逆过程中,熵的变化量大于热温商 ηηη→η?(∑ηηηηηηη)η>0 1. 某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程 2. 某一过程发生后,热温商等于熵变,则该过程是可逆过程

高一物理:解析牛顿三大定律

(一)牛顿第一定律(即惯性定律) 一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。 (1)理解要点: ①运动是物体的一种属性,物体的运动不需要力来维持。 ②它定性地揭示了运动与力的关系:力是改变物体运动状态的原因,是使物体产生加速度的原因。 ③第一定律是牛顿以伽俐略的理想斜面实验为基础,总结前人的研究成果加以丰富的想象而提出来的;定律成立的条件是物体不受外力,不能用实验直接验证。 ④牛顿第一定律是牛顿第二定律的基础,不能认为它是牛顿第二定律合外力为零时的特例,第一定律定性地给出了力与运动的关系,第二定律定量地给出力与运动的关系。 (2)惯性:物体保持原来的匀速直线运动状态或静止状态的性质叫做惯性。 ①惯性是物体的固有属性,与物体的受力情况及运动状态无关。 ②质量是物体惯性大小的量度。 ③由牛顿第二定律定义的惯性质量m=F/a和由万有引力定律定义的引力质量 =2/严格相等。 m Fr GM ④惯性不是力,惯性是物体具有的保持匀速直线运动或静止状态的性质、力是物体对物体的作用,惯性和力是两个不同的概念。 (二)牛顿第二定律 1. 定律内容 成正比,跟物体的质量m成反比。 物体的加速度a跟物体所受的合外力F 合 = 2. 公式:F ma 合 理解要点: ①因果性:F合是产生加速度a的原因,它们同时产生,同时变化,同时存在,同时消失; ②方向性:a与F合都是矢量,方向严格相同; ③瞬时性和对应性:a为某时刻某物体的加速度,F合是该时刻作用在该物体上的合外力。 (三)力的平衡 1. 平衡状态 指的是静止或匀速直线运动状态。特点:a=0。 2. 平衡条件 F0。 共点力作用下物体的平衡条件是所受合外力为零,即∑= 3. 平衡条件的推论 (1)物体在多个共点力作用下处于平衡状态,则其中的一个力与余下的力的合力等大反向; (2)物体在同一平面内的三个不平行的力作用下,处于平衡状态,这三个力必为共点

证明热力学第三定律的两种表述是等价的

证明热力学第三定律的两种表述是等价的 080311班 赵青 080311044

证明热力学第三定律的两种表述是等价的 一、热力学第三定律 英文名称: Third law of thermodynamics 热力学第三定律是在低温现象的研究中总结出来的一个普通规律。 1906年,德国物理学家能斯特(Nernst ,右图)在研究低 温条件下物质的变化时,把热力学的原理应用到低温现象和化学反应过程中,发现了一个新的规律,称为能斯特定律,简称能氏定理。这个规律被表述为:“当绝对温度趋于零时,凝聚系(固体和液体)的熵(即热量被温度除的商)在等温过程中的改变趋于零。”即: 0)(lim 0 =?→T T S 式中T S )(?为可逆等温过程中熵的变化。德国著名物理学家普朗克把这一定律改述为:“当绝对温度趋于零时,固体和液体的熵也趋于零。”这就消除了熵常数取值的任意性。 德国物理学家普朗克(Max Karl Ernst Ludwig Planck, 1858~ 1947)(右图) 是量子物理学的开创者和奠基人,他早期的研究领域主要是热力学,他的博士论文就是《论热力学的第二定律》。他在能斯特研究的基础上,利用统计理论指出:各种物 质的完美晶体在绝对零度时熵为零。1911年普朗克也提出了对热力学第三定律的表述,即“与任何等温可逆过程相联系的熵变, 随着温度的趋近于零而趋近于零”。 1912年,能斯特又将这一规律表述为绝对零度不可能达到原理:“不可能使一个物体冷却到绝对温度的零度。”这就是热力学第三定律。 1940 年R.H.否勒和 E.A.古根海姆还提出热力学第三定律的另一种表述形式:任何系统都不能通过有限的步骤使自身温度降低到0K ,称为0K 不能达到原理。此原理和前面所述及的热力学第三定律的几种表述是相互有联系的。但在化学热力学中,多采用前面的表述形式。 通常认为,能氏定理和绝对零度不能达到原理是热力学的两种表述。

热力学第二定律习题解析

第二章热力学第二定律 习题 一 . 选择题: 1. 理想气体绝热向真空膨胀,则 ( ) (A) △S = 0,W = 0 (B) △H = 0,△U = 0 (C) △G = 0,△H = 0 (D) △U = 0,△G = 0 2. 熵变△S 是 (1) 不可逆过程热温商之和 (2) 可逆过程热温商之和 (3) 与过程无关的状态函数 (4) 与过程有关的状态函数 以上正确的是() (A) 1,2 (B) 2,3 (C) 2 (D) 4 3. 对于孤立体系中发生的实际过程,下式中不正确的是:() (A) W = 0 (B) Q = 0 (C) △S > 0 (D) △H = 0 4. 理想气体经可逆与不可逆两种绝热过程() (A) 可以从同一始态出发达到同一终态 (B) 不可以达到同一终态 (C) 不能断定 (A)、(B) 中哪一种正确 (D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定 5. P?、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零? (A) △U (B) △H (C) △S (D) △G 6. 在绝热恒容的反应器中,H2和 Cl2化合成 HCl,此过程中下列各状态函数的变 化值哪个为零? ( ) (A) △r U m (B) △r H m (C) △r S m (D) △r G m 7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为: ( ) (A) 大于零 (B) 等于零 (C) 小于零 (D) 不能确定 8. H2和 O2在绝热钢瓶中生成水的过程:() (A) △H = 0 (B) △U = 0 (C) △S = 0 (D) △G = 0

对牛二定律的理解

一、对牛二定律的理解: 例1、如图3-3-1示,弹簧一端系在墙上O 点, 自由伸长到B 点,今将一小物体m 压着弹簧,将 弹簧压缩到A 点,然后释放,小物体能运动到C 点静止,物体与水平地面的动摩擦因数恒定,试 判断下列说法正确的是 A 、物体从A 到 B 速度越来越大,从B 到 C 速度越来越小 B 、物体从A 到B 加速度越来越小,从B 到C 加速度不变 C 、物体从A 到B ,先加速后减速,从B 到C 一直减速运动 D 、物体在B 点所受合外力为零 二、应用牛二定律解决两类基本的问题 三、连接体问题 例2、A 、B 两个滑块靠在一起放在光滑水平面上,其 质量分别为2m 和m ,从 t = 0时刻起,水平力F 1和F 2同 时分别作用在滑块A 和B 上,如图3-3-2所示,已知F 1 = (10+4t )N ,F 2 = (40–4t )N ,两力作用在同一直线上,求 滑块开始滑动后,经过多长时间A 、B 发生分离? 2.如图8所示, 图8 在光滑的水平面上,质量分别为m 1和m 2的木块A 和B 之间用轻弹簧相连,在拉力F 作用下,以加速度a 做匀加速直线运动,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度为a 1和a 2,则( ) A .a 1=a 2=0 B .a 1=a ,a 2=0 C .a 1=m 1m 1+m 2a ,a 2=m 2 m 1+m 2 a D .a 1=a ,a 2=-m 1 m 2 a 四、突变问题之绳杆模型 3-3-1 3-3-2

图4 【例2】 (2010·全国Ⅰ·15)如图4所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g.则有( ) A .a 1=0,a 2=g B .a 1=g ,a 2=g C .a 1=0,a 2=m +M M g D .a 1=g ,a 2=m +M M g 【例3】 (2011·宿迁模拟)在动摩擦 图5 因数μ=0.2的水平面上有一个质量为m =1 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图5所示.此时小球处于静止平衡状 态,且水平面对小球的弹力恰好为零,当剪断轻绳的瞬间,取g =10 m /s 2 .求: (1)此时轻弹簧的弹力大小; (2)小球的加速度大小和方向; (3)在剪断弹簧的瞬间小球的加速度大小. [针对训练2] 如图6甲所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态.求解下列问题: 图6 (1)现将线L 2剪断,求剪断L 2的瞬间物体的加速度. (2)若将图甲中的细线L 1换成长度相同,质量不计的轻弹簧,如图乙所示,其他条件不变,求剪断L 2的瞬间物体的加速度. 图14 8.如图14所示,质量为m 的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB 托住,小球恰好处于静止状态.当木板AB 突然向下撤离的瞬间,小球的加速度大小为( )

热力学第二定律详解

热力学第二定律(英文:second law of thermodynamics)是热力学的四条基本定律之一,表述热力学过程的不可逆性——孤立系统自发地朝着热力学平衡方向──最大熵状态──演化,同样地,第二类永动机永不可能实现。 这一定律的历史可追溯至尼古拉·卡诺对于热机效率的研究,及其于1824年提出的卡诺定理。定律有许多种表述,其中最具代表性的是克劳修斯表述(1850年)和开尔文表述(1851年),这些表述都可被证明是等价的。定律的数学表述主要借助鲁道夫·克劳修斯所引入的熵的概念,具体表述为克劳修斯定理。 虽然这一定律在热力学范畴内是一条经验定律,无法得到解释,但随着统计力学的发展,这一定律得到了解释。 这一定律本身及所引入的熵的概念对于物理学及其他科学领域有深远意义。定律本身可作为过程不可逆性[2]:p.262及时间流向的判据。而路德维希·玻尔兹曼对于熵的微观解释——系统微观粒子无序程度的量度,更使这概念被引用到物理学之外诸多领域,如信息论及生态学等 克劳修斯表述 克劳修斯 克劳修斯表述是以热量传递的不可逆性(即热量总是自 发地从高温热源流向低温热源)作为出发点。 虽然可以借助制冷机使热量从低温热源流向高温热源, 但这过程是借助外界对制冷机做功实现的,即这过程除 了有热量的传递,还有功转化为热的其他影响。 1850年克劳修斯将这一规律总结为: 不可能把热量从低温物体传递到高温物体而不产生其他影响。 开尔文表述 参见:永动机#第二类永动机

开尔文勋爵 开尔文表述是以第二类永动机不可能实现这一规律作为 出发点。 第二类永动机是指可以将从单一热源吸热全部转化为 功,但大量事实证明这个过程是不可能实现的。功能够 自发地、无条件地全部转化为热;但热转化为功是有条 件的,而且转化效率有所限制。也就是说功自发转化为热这一过程只能单向进行而不可逆。 1851年开尔文勋爵把这一普遍规律总结为: 不可能从单一热源吸收能量,使之完全变为有用功而不产生其他影响。 两种表述的等价性 上述两种表述可以论证是等价的: 1.如果开尔文表述不真,那么克劳修斯表述不真:假设存在违反开尔文表述 的热机A,可以从低温热源吸收热量并将其全部转化为有用功。假设存在热机B,可以把功完全转化为热量并传递给高温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到从低温热源流向高温热源,而并未产生任何其他影响,即克劳修斯表述不真。 2.如果克劳修斯表述不真,那么开尔文表述不真:假设存在违反克劳修斯表 述的制冷机A,可以在不利用外界对其做的功的情况下,使热量由低温热源流向高温热源。假设存在热机B,可以从高温热源吸收热量 并将其中的热量转化为有用功,同时将热量传递给低温热源(这在现实中可实现)。此时若让A、B联合工作,则可以看到A与B联合组成的热机从高温热源吸收热量并将其完全转化为有 用功,而并未产生任何其他影响,即开尔文表述不真。 从上述二点,可以看出上述两种表述是等价的。

第二章热力学第二定律

第三章热力学第二定律 一、选择题 1、如图,可表示理想气体卡诺循环的示意图是:() (A) 图⑴(B)图⑵(C)图⑶(D) 图⑷ 2、工作在393K和293K的两个大热源间的卡诺热机,其效率约为() (A) 83%(B) 25%(C) 100%(D) 20% 3、不可逆循环过程中,体系的熵变值() (A) 大于零(B) 小于零(C)等于零(D)不能确定 4、将1 mol 甲苯在101.325 kPa,110 ℃(正常沸点)下与110 ℃的热源接触,使它向真空容器中汽化,完全变成101.325 kPa 下的蒸气。该过程的:() (A) Δvap S m= 0 (B) Δvap G m= 0 (C) Δvap H m= 0 (D) Δvap U m= 0 5、1mol理想气体从300K,1×106Pa绝热向真空膨胀至1×105Pa,则该过程() (A)ΔS>0、ΔG>ΔA (B)ΔS<0、ΔG<ΔA (C)ΔS=0、ΔG=ΔA (D)ΔA<0、ΔG=ΔA 6、对理想气体自由膨胀的绝热过程,下列关系中正确的是( ) (A)ΔT>0、ΔU>0、ΔS>0 (B)ΔT<0、ΔU<0、ΔS<0 (C)ΔT=0、ΔU=0、ΔS=0 (D)ΔT=0、ΔU=0、ΔS>0 7、理想气体在等温可逆膨胀过程中( ) (A)内能增加(B)熵不变(C)熵增加(D)内能减少 8、根据熵的统计意义可以判断下列过程中何者的熵值增大?() (A) 水蒸气冷却成水(B) 石灰石分解生成石灰 (C) 乙烯聚合成聚乙烯(D) 理想气体绝热可逆膨胀 9、热力学第三定律可以表示为:() (A) 在0 K时,任何晶体的熵等于零(B) 在0 K时,任何完整晶体的熵等于零

实数完备性的等价命题及证明

一、问题提出 确界存在定理(定理1.1)揭示了实数的连续性和实数的完备性. 与之等价的 还有五大命题,这就是以下的定理1.2至定理1.6. 定理1.2 (单调有界定理)任何单调有界数列必定收敛. 定理1.3 (区间套定理)设为一区间套: . 则存在唯一一点 定理1.4 (有限覆盖定理) 设是闭区间的一个无限开覆 盖,即中每一点都含于中至少一个开区间内.则在中必存在有限个开区间,它们构成的一个有限开覆盖. 定理1.5 (聚点定理) 直线上的任一有界无限点集至少有一个聚点,即在的任意小邻域内都含有中无限多个点(本身可以属于,也可以不属于).定理1.6 (柯西准则) 数列收敛的充要条件是:,只要 恒有.(后者又称为柯西(Cauchy)条件,满足柯西条件的数列又称为柯西列,或基本列.) 这些定理构成极限理论的基础.我们不仅要正确理解这六大定理的含义,更重要的还要学会怎样用它们去证明别的命题.下面通过证明它们之间的等价性,使大家熟悉使用这些理论工具. 下图中有三种不同的箭头,其含义如下: :(1)~(3) 基本要求类

:(4)~(7) 阅读参考类 :(8)~(10) 习题作业类 下面来完成(1)~(7)的证明. 二、等价命题证明 (1)(用确界定理证明单调有界定理) (2)(用单调有界定理证明区间套定理) (3)(用区间套定理证明确界原理) *(4)(用区间套定理证明有限覆盖定理) *(5)(用有限覆盖定理证明聚点定理) *(6)(用聚点定理证明柯西准则) *(7)(用柯西准则证明单调有界定理) (1)(用确界定理证明单调有界定理) 〔证毕〕 (返回) (2)(用单调有界定理证明区间套定理)设区间套.

热力学第二定律

第四节热力学第二定律 基础夯实 1.第二类永动机不可能制成,是因为() A.违背了能量的守恒定律 B.热量总是从高温物体传递到低温物体 C.机械能不能全部转化为内能 D.内能不能全部转化为机械能,同时不引起其他变化 答案:D 解析:第二类永动机的设想并不违背能量守恒定律,但却违背了涉及热量的能量转化过程是有方向性的规律。故选项A错;在引起其他变化的情况下,热量可由低温物体非自发地传递到高温物体。故B错。机械能可以全部转化为内能。 2.下列哪些过程具有方向性() A.热传导过程 B.机械能向内能的转化过程 C.气体的扩散过程 D.气体向真空中的膨胀 答案:ABCD 解析:这四个过程都是与热现象有关的宏观过程,根据热力学第二定律的基本内涵,它们都是不可逆的,具有方向性。 3.关于热机的效率,下列说法正确的是() A.有可能达到80% B.有可能达到100% C.有可能超过80% D.一定能达到100% 答案:AC 解析:根据热力学第二定律,热机效率永远也达不到100%。

4.(2012·葫芦岛市一中高二检测)关于热力学定律,下列说法正确的是() A.在一定条件下物体的温度可以降到0K B.物体从单一热源吸收的热量可全部用于做功 C.吸收了热量的物体,其内能一定增加 D.压缩气体总能使气体的温度升高 答案:B 5.下列宏观过程能用热力学第二定律解释的是() A.大米和小米混合后小米能自发地填充到大米空隙中而经过一段时间大米、小米不会自动分开 B.将一滴红墨水滴入一杯清水中,会均匀扩散到整杯水中,经过一段时间,墨水和清水不会自动分开 C.冬季的夜晚,放在室外的物体随气温的降低,不会由内能自发地转化为机械能而动起来 D.随着节能减排措施的不断完善,最终也不会使汽车热机的效率达到100% 答案:BCD 解析:热力学第二定律反映的是与热现象有关的宏观过程的方向性的规律,A不属于热现象,A错;由热力学第二定律可知B、C、D正确。 6.如图所示,为电冰箱的工作原理示意图,压缩机工作时,强迫制冷剂在冰箱内外的管道中不断循环,在蒸发器中制冷剂汽化吸收箱体内的热量,经过冷凝器时制冷剂液化,放出热量到箱体外。下列说法正确的是()

实数系基本定理的等价性证明

实数系基本定理的等价性证明 摘 要 说明了确界原理、单调有界定理、闭区间套定理、致密性定理、柯西收敛原理、有限覆盖定理这六个定理是等价的.也就是说,以这六个定理中的任意一个作为公理都可以推出另外五个.本文把闭区间套定理作为公理,证明了这六个定理之间是相互等价的. 关键词 上、下确界、闭区间套、有限覆盖、收敛、等价性 在数学分析课程中我们学习了实数系的六个基本定理,即确界原理、单调有界定理、闭区间套定理、致密性定理、柯西收敛原理和有限覆盖定理.实数系这六个基本定理是相互等价的,即以其中任何一个定理作为公理都可推出另外五个定理. 在《数学分析》教材中,一般都是以确界原理作为公理,然后去证明其余 的五个定理.我们现以“闭区间套定理”作为公理,然后去推证其余的五个定理,并证明这六个定理是等价的. 六个定理的顺序: ① 确界原理 ② 单调有界定理 ③ 闭区间套定理 ④ 致密性定理 ⑤ 柯西收敛原理 ⑥ 有限覆盖定理 按以下顺序给予证明: ③?⑥?④?⑤?①?②?③ 1 闭区间套定理?有限覆盖定理[]1 闭区间套定理 若闭区间列][{}n n b a ,满足: ①[]n n b a ,?[]11,++n n b a ,n =1,2,3,…; ②∞ →n lim ()n n a b -=0 ; 则存在唯一ξ,使得∞ →n lim n a =∞ →n lim n b =ξ,ξ是所有区间的唯一公共点. 有限覆盖定理 若开区间所成的区间集E 覆盖一个闭区间[]b a ,,则总可从E 中选出有限个区间,使这有限个区间覆盖[]b a ,.

证明 用反证法 设[]b a ,不能被E 中有限个区间所覆盖.等分区间[]b a ,为两个区间,则至少有一个部分区间不能被E 中有限个区间所覆盖,把这一区间记为 []11,b a .再等分[]11,b a ,记不能被E 中有限个区间所覆盖的那个部分区间为 []22,b a .照这样分割下去,得到一个区间列][{}n n b a ,,这区间列显然适合下面两 个条件: (i ) 每一[]n n b a ,皆不能被E 中有限个区间所覆盖; (ii ) []b a ,?[]11,b a ?[]22,b a ?…; (iii )n b -n a = n a b 2-→0; 有条件(ii )及(iii ),于是由闭区间套定理,必有唯一点ξ∈[]b a ,使n a →ξ, n b →ξ.按覆盖概念及定理所设条件,在E 中至少存在一个开区间,设为)(βα,,使 ξ∈)(βα, 即 α<ξ<β 有数列极限的性质知道,?正整数N ,当n >N 时,有 α<n a <n b <β 即当n >N 时,有 []n n b a ,?)(βα, 也就是用E 中一个区间)(βα,就可覆盖所有形如[]n n b a ,﹙n >N ﹚的区间,与(i )矛盾. 定理证毕 2 有限覆盖定理?致密性定理[]2 致密性定理 有界数列必有收敛的子列. 证明 设{}n x 为有界数列,a 是它的一个下界,b 是它的一个上界,于是下列两种情形之一成立: (i ) α∈[]b a ,,使在α的任何邻域中都有{}n x 的无穷多项;

牛二定律

第2课时 牛顿第二定律 两类动力学问题 考纲解读 1.理解牛顿第二定律的内容、表达式及性质.2.应用牛顿第二定律解决瞬时问题和两类动力学问题. 考点一 瞬时加速度的求解 1.牛顿第二定律 (1)表达式为F =ma . (2)理解:核心是加速度与合外力的瞬时对应关系,二者总是同时产生、同时消失、同时变化. 2.两类模型 (1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间. (2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变. 例1 如图1所示,A 、B 两小球分别连在轻绳两端,B 球另一端用弹簧固定在倾角为30°的光滑斜面上.A 、B 两小球的质量分别为m A 、m B ,重力加速度为g ,若不计弹簧质量,在绳被剪断瞬间,A 、B 两球的加速度大小分别为( ) A .都等于g 2 B.g 2 和0 C.g 2和m A m B ·g 2 D.m A m B ·g 2和g 2 [拓展题组] 1.[瞬时加速度的求解]如图2所示,A 、B 球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时, 弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是( ) A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θ B .B 球的受力情况未变,瞬时加速度为零 C .A 球的瞬时加速度沿斜面向下,大小为2g sin θ D .弹簧有收缩的趋势,B 球的瞬时加速度向上,A 球的瞬时加速度向下,瞬时加速度都不为零 2.[瞬时加速度的求解]在光滑水平面上有一质量为1 kg 的物体,它的左端与一劲度系数为800 N /m 的轻弹簧相连,右端连接一细线.物体静止时细线与竖直方向成37°角,此时物体与水平面刚好接触但无作用力,弹簧处于水平状态,如图3所示,已知sin 37°=0.6,cos 37°=0.8,重力加速度g 取10 m/s 2,则下列判断正确的是( ) A .在剪断细线的瞬间,物体的加速度大小为7.5 m/s 2 B .在剪断弹簧的瞬间,物体所受合外力为15 N C .在剪断细线的瞬间,物体所受合外力为零 D .在剪断弹簧的瞬间,物体的加速度大小为7.5 m/s 2 求解瞬时加速度问题时应抓住“两点” (1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.

牛二定律 图像问题

牛二定律图像问题 1.(2010·山东理综·16)如图2所示,物体沿斜面由静止滑下,在水平面 上滑行一段距离后停止,物体与斜面和水平面间的动摩擦因数相同,斜 面与水平面平滑连接,v、a、F f和s分别表示物体速度大小、加速度大小、 2.(2009·山东理综·17)某物体做直线运动的v-t图象如图3所示,据此判断下列(F表示物 体所受合力,x表示物体的位移)四个选项中正确的是() 3.(2008·山东理综·17)质量为1 500 kg的汽车在平直的公路上运动,v-t图象如图4所示,由此可求() A.前25 s内汽车的平均速度 B.前10 s内汽车的加速度 C.前10 s内汽车所受的阻力 D.15 s~25 s内合外力对汽车所做的功 4.运动过程中所受空气阻力大小不变,取竖直向上为正方向.下列关于速度v、加速度a随时间t变化的图象正确的是 () 5.一物体沿固定斜面从静止开始向下运动,经过时间t0滑至斜面底端.已知物体在运动过程中所受的摩擦力恒定.若用F、v、x和E分别表示该物体所受的合力、物体的速度、位移和机械能,则下列图象中可能正确的是() 6.(2010·广东卷·17)图1是某质点运动的速度图象,由图象得到的正确结果是() A.0~1 s内的平均速度是2 m/s B.0~2 s内的位移大小是3 m C.0~1 s内的加速度大于2~4 s内的加速度 D.0~1 s内的运动方向与2~4 s内的运动方向相反 7.质点做直线运动的v-t图象如图2所示,规定向右为正方向,则该质点在前8 s内平均

速度的大小和方向分别为( ) A .0.25 m/s ,向右 B .0.25 m/s ,向左 C .1 m/s ,向右 D .1 m/s ,向左 8.质点做直线运动的v -t 图象如图4所示,规定向右为正方向,则该质点在前8 s 内( ) A .位移大小为8 m ,方向向右 B .路程大小为-3 m ,方向向左 C .平均速度大小为0.25 m/s ,方向向左 D .平均速度大小为1 m/s ,方向向右 9静止在光滑水平面上的物体受到一个水平拉力的作用,该力随时间变化的关系如图所示,则 ( ) A .物体将做往复运动 B .2 s 内的位移为零 C .2 s 末物体的速度最大 D .3 s 内,拉力做的功为零 10:一个小孩在蹦床上做游戏,他从高处落到蹦床上后又被弹回到原高度.小孩在从高处下落到弹回的整个过程中,他的运动速度随时间变化的图象如图所示,图中Oa 段和cd 段是直线. 根据此图象可知,小孩跟蹦床相接触的时间为 ( ) A .t 1~t 4 B .t 2~t 4 C .t 1~t 5 D .t 2~t 5 11 如图所示,在倾角为0 30的足够长的斜面上有一质量为m 的物体,它受到沿斜面方向的力F 的作用。力F 可按图(a )、(b )、(c )、(d )所示的四种方式随时间变化(图中纵坐标是F 与mg 的比值,力沿斜面向上为正)。已知此物体在t=0时速度为零,若用v1、v2、v3、v4分别表示上述四种受力情况下物体在2秒末的速率,则这四个速率中最大的是( ) A .v1 B.v2 C.v3 D.v4

相关主题
文本预览
相关文档 最新文档