智能控制--神经网络控制.答案
- 格式:ppt
- 大小:10.95 MB
- 文档页数:71
智能控制试卷及答案一、试卷一、选择题(每题2分,共20分)1. 下列哪项不是智能控制的主要类型?A. 人工智能控制B. 模糊控制C. 神经网络控制D. 逻辑控制2. 以下哪种控制方法适用于处理具有不确定性、非线性和时变性等特点的复杂系统?A. PID控制B. 模糊控制C. 串级控制D. 比例控制3. 神经网络控制的核心思想是利用神经网络实现控制规律的映射,以下哪种神经网络模型适用于动态系统的控制?A. BP神经网络B. RBF神经网络C. 感知器D. Hopfield神经网络4. 模糊控制中,模糊逻辑推理的核心部分是?A. 模糊集合B. 模糊规则C. 模糊推理D. 解模糊5. 以下哪种方法不属于智能控制系统的建模方法?A. 基于模型的建模B. 基于数据的建模C. 基于知识的建模D. 基于经验的建模二、填空题(每题2分,共20分)6. 智能控制的理论基础包括________、________和________。
7. 模糊控制的基本环节包括________、________、________和________。
8. 神经网络控制的主要特点有________、________、________和________。
9. 智能控制系统的主要性能指标包括________、________、________和________。
10. 智能控制技术在工业生产、________、________和________等领域有广泛应用。
三、判断题(每题2分,共10分)11. 模糊控制适用于处理具有确定性、线性和时不变性等特点的复杂系统。
()12. 神经网络控制具有较强的自学习和自适应能力。
()13. 智能控制系统不需要考虑系统的稳定性和鲁棒性。
()14. 智能控制技术在无人驾驶、智能家居等领域具有广泛应用前景。
()15. 模糊控制的核心思想是利用模糊逻辑进行推理和决策。
()四、简答题(每题10分,共30分)16. 简述模糊控制的基本原理。
1. 神经网络的模型分类,分别画出网络图,简述其特点。
1)前向网络:神经网元分层排列,组成输入层,隐含层和输出层。
每一层的神经元只能接收前一层神经元的输入.输入模式经过各层的顺次变换后,得到输出层数输出。
个神经元之间不存在反馈.感知器和误差反向传播算法中使用的网络都属于这种模型.1).2)2)反馈网络:这种网路结构指的是只有输出层到输入层存在反馈,即每一个输入节点都有可能接受来自外部的输入和来自输出神经元的反馈。
这种模式可用来存储某种模式序列,也可以动态时间序列系统的神经网络建模.3)相互结合型网络:属于网状结构,这种神经网络模型在任意两个神经元之间都可能存在连接.信号要在神经元之间反复往返传递,网络处在一种不断改变的状态之中。
从某个初态开始,经过若干次变化,才能达到某种平衡状态,根据网络结构和神经元的特性,还有可能进入周期震荡或混沌状态。
4)混合型网络:是层次型网络和网状结构网络的一种结合。
通过层内神经元的相互结合,可以实现同一层内的神经元的横向抑制或兴奋机制,这样可以限制每层内能同时动作的神经元数,或者把每层内的神经元分成若干组,让每组作为一个整体来动作. 2. 神经网络学习算法有几种,分别画出网络图,简述其特点。
1)有导师学习:所谓有导师学习就是在训练过程中,始终存在一个期望的网络输出。
期望输出和实际输出之间的距离作为误差度量并用于调整权值.1。
2)无导师学习:网络不存在一个期望的输出值,因而没有直接的误差信息,因此,为实现对网络训练,需建立一个间接的评价函数,一对网络的某种行为趋向作出评价. 3、简述神经网络泛化能力。
答:人工神经网络容许某些变化,如当输入矢量带有噪声时,即与样本输出矢量存在差异时,其神经网络的输出同样能够准确地呈现出应有的输出。
这种能力就成为泛化能力.4、单层BP 网络与多层神经网络学习算法的区别。
1)单层神经网络的Delta 学习算法是通过对目标函数∑==Npp E E1的极小来实现的,其中E 的极小是通过有序地对每一个样本数据的输出误差Ep 的极小化来得到。
智能控制技术复习题课后答案-图文一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和3、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。
5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1);(2)10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和16、直接型专家控制器、间接型专家控制器17.普通集合可用函数表示,模糊集合可用函数表示。
1-1 智能控制系统由哪几部分组成?各部分的作用是什么?答:六部分组成:执行器、传感器、感知信息处理、规划与控制、认知和通信接口。
1、执行器是系统的输出,对外界对象发生作用。
2、传感器产生智能系统的输入,传感器用来监测外部环境和系统本身的状态。
传感器向感知信息处理单元提供输入。
3、感知信息处理,将传感器得到的原始信息加以处理,并与内部环境模型产生的期望信息进行比较。
4、认知主要用来接收和存储信息、知识、经验和数据,并对他们进行分析、推理作出行动的决策,送至规划和控制部分。
5、通信接口除建立人机之间的联系外,还建立系统各模块之间的联系。
6、规划和控制是整个系统的核心,它根据给定的任务要求,反馈的信息,以及经验知识,进行自动搜索,推理决策,动作规划,最终产生具体的控制作用。
1-2 智能控制系统的特点是什么?答:1、智能控制系统一般具有以知识表示的非数学广义模型和以数学模型表示的混合控制过程。
2、智能控制器具有分层信息处理和决策机构。
3、智能控制器具有非线性和变结构特点。
4、智能控制器具有多目标优化能力。
5、智能控制器能够在复杂环境下学习。
从功能和行为上分析,智能控制系统应具备以下一条或几条功能特点:1、自适应功能2、自学习功能3、自组织功能4、自诊断功能5、自修复功能1-3 智能控制与传统控制相比较有什么不同?在什么场合下应该选用智能控制策略?答:(1)不同点:1、涉及的范围:智能控制的范围包括了传统控制的范围。
有微分/差分方程描述的系统;有混合系统(离散和连续系统混合、符号和数值系统混合、数字和模拟系统混合)。
2、控制的目标:智能的目标寻求在巨大的不确定环境中,获得整体的优化。
因此,智能控制要考虑:故障诊断、系统重构、自组织、自学习能力、多重目标。
3、系统的结构:控制对象和控制系统的结合。
(2)在什么场合下应该选用智能控制策略。
说法一:主要针对控制对象及其环境、目标和任务的不确定性和复杂性的系统。
智能控制作业学生姓名: 学号: 专业班级:(一)7-2 采用BP网路、RBF网路、DRNN网路逼近线性对象, 分别进行matlab 仿真。
(二)采用BP网络仿真网络结构为2-6-1。
采样时间1ms, 输入信号, 权值的初值随机取值, 。
仿真m文件程序为:%BP simulationclear all;clear all;xite=0.5;alfa=0.5;w1=rands(2,6); % value of w1,initially by randomw1_1=w1;w1_2=w1;w2=rands(6,1); % value of w2,initially by randomw2_1=w2;w2_2=w2_1;dw1=0*w1;x=[0,0]';u_1=0;y_1=0;I=[0,0,0,0,0,0]'; % input of yinhanceng cellIout=[0,0,0,0,0,0]'; % output of yinhanceng cellFI=[0,0,0,0,0,0]';ts=0.001;for k=1:1:1000time(k)=k*ts;u(k)=0.5*sin(3*2*pi*k*ts);y(k)=(u_1-0.9*y_1)/(1+y_1^2);for j=1:1:6I(j)=x'*w1(:,j);Iout(j)=1/(1+exp(-I(j)));endyn(k)=w2'*Iout; %output of networke(k)=y(k)-yn(k); % error calculationw2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2for j=1:1:6FI(j)=exp(-I(j))/(1+exp(-I(j))^2);endfor i=1:1:2for j=1:1:6dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation endendw1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1% jacobian informationyu=0;for j=1:1:6yu=yu+w2(j)*w1(1,j)*FI(j);enddyu(k)=yu;x(1)=u(k);x(2)=y(k);w1_2=w1_1;w1_1=w1;w2_2=w2_1;w2_1=w2;u_1=u(k);y_1=y(k);endfigure(1);plot(time,y,'r',time,yn,'b');xlabel('times');ylabel('y and yn');figure(2);plot(time,y-yn,'r');xlabel('times');ylabel('error');figure(3);plot(time,dyu);xlabel('times');ylabel('dyu');运行结果为:(三)采用RBF网络仿真网路结构为2-4-1, 采样时间1ms, 输入信号, 权值的初值随机取值, , 高斯基函数初值, 。
智能控制基础答案【篇一:智能控制基础思考题】xt>复习思考题一重要概念解释 1 智能控制答:智能控制是一门交叉学科,美国学者在运筹学的基础上提出了三元论的智能控制概念,即ic=ac n ai n or 各子集的含义为:ic为智能控制,ai为人工智能,ac为自动控制,or为运筹学。
所谓智能控制,即设计一个控制器,使之具有学习、抽象、推理、决策等功能,并能根据环境(包含被控对象或被控过程)信息的变化做出适应性反应,从而实现由人来完成的任务。
2 专家系统与专家控制答:专家系统是一类包含知识和推理的智能计算机程序,其内部包含某领域专家水平的知识和经验,具有解决专门问题的能力。
专家控制是智能控制的一个重要分支,又称专家智能控制。
所谓专家控制,是将专家系统的理论和技术同控制理论、方法与技术相结合,在未知环境下,仿效专家的经验,实现对系统的控制。
3 模糊集合与模糊关系,模糊推理模糊控制答:模糊集合:给定论域u上的一个模糊集a?是指:对任何元素u?u 都存在一个数?a?u???0,1?与之对应,表示元素u属于集合a?的程度,这个数称为元素u对集合a?的隶属度,这个集合称为模糊集合。
模糊关系:二元模糊关系:设a、b是两个非空集合,则直积a?b???a,b?|a?a,b?b?中的一个模糊集合称为从a到b的一个模糊关系。
模糊关系r?可由其隶属度?r?a,b?完全描述,隶属度?r?a,b?表明了元素a与元素b具有关系r?的程度。
模糊推理:知道了语言控制规则中蕴含的模糊关系后,就可以根据模糊关系和输入情况,来确定输出的情况,这就叫“模糊推理”。
4神经网络?答:人工神经网络(artificial neural network )是模拟人脑思维方式的数学模型。
神经网络是在现代生物学研究人脑组织成果的基础上提出的,用来模拟人类大脑神经网络的结构和行为,它从微观结构和功能上对人脑进行抽象和简化,神经网络反映了人脑功能的基本特征,如并行信息处理、学习、联想、模式分类、记忆等。
智能控制技术考试题及答案《智能控制技术》考试试题 A《智能控制》课程考试试题 A 参考答案(1) OPEN (2) 最有希翼(3) 置换(4) 互补文字(5) 知识库(6) 推理机(7) 硬件(8) 软件(9) 智能(10) 傅京孙(11) 萨里迪斯(12) 蔡自兴(13) 组织级(14) 协调级(15) 执行级(16) 递阶控制系统(17) 专家控制系统(18) 含糊控制系统(19) 神经控制系统(20) 学习控制系统1 、D2 、A3 、C4 、B5 、D6、B7、A8、D9、A 10、D1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不彻底性等,普通无法获得精确的数学模型。
(2) 研究这种系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。
(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。
(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。
传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开辟与应用计算机科学与工程的最新成果。
人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。
人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平——智能控制发展。
智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不彻底性、含糊性或者不确定性以及不存在已知算法的过程,并以知识进行推理, 以启示式策略和智能算法来引导求解过程。
(2) 智能控制的核心在高层控制, 即组织级。
高层控制的任务在于对实际环境或者过程进行组织, 即决策和规划,实现广义问题求解。
第一章绪论1. 什么是智能、智能系统、智能控制?答:“智能”在美国Heritage词典定义为“获取和应用知识的能力”。
“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。
“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。
2.智能控制系统有哪几种类型,各自的特点是什么?答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等。
各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。
该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。
人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。
可以说是一种模拟人类专家解决领域问题的计算机程序系统。
多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。
这种结构的特点是:1.上、下级是隶属关系,上级对下级有协调权,它的决策直接影响下级控制器的动作。
2.信息在上下级间垂直方向传递,向下的信息有优先权。
同级控制器并行工作,也可以有信息交换,但不是命令。
智能控制习题⼀、填空题(每空1分,共20分)1.控制论的三要素是:信息、反馈和控制。
2.传统控制是经典控制和现代控制理论的统称。
3.智能控制系统的核⼼是去控制复杂性和不确定性。
4.神经元(即神经细胞)是由细胞体、树突、轴突和突触四部分构成。
5.按⽹络结构分,⼈⼯神经元细胞可分为层状结构和⽹状结构按照学习⽅式分可分为:有教师学习和⽆教师学习。
6.前馈型⽹络可分为可见层和隐含层,节点有输⼊节点、输出节点、计算单元。
7.神经⽹络⼯作过程主要由⼯作期和学习期两个阶段组成。
⼆、判断题:(每题1分,共10分)1.对反馈⽹络⽽⾔,稳定点越多,⽹络的联想与识别能⼒越强,因此,稳定点的数据⽬越多联想功能越好。
(错)2.简单感知器仅能解决⼀阶谓词逻辑和线性分类问题,不能解决⾼阶谓词和⾮线分类问题。
(对)3. BP算法是在⽆导师作⽤下,适⽤于多层神经元的⼀种学习,它是建⽴在相关规则的基础上的。
(错)4.在误差反传训练算法中,周期性函数已被证明收敛速度⽐S型函数慢。
(错)5.基于BP算法的⽹络的误差曲⾯有且仅有⼀个全局最优解。
(错) 6.对于前馈⽹络⽽⾔,⼀旦⽹络的⽤途确定了,那么隐含层的数⽬也就确定了。
(错)7.对离散型HOPFIELD⽹络⽽⾔,如权矩阵为对称阵,⽽且对⾓线元素⾮负,那么⽹络在异步⽅式下必收敛于下⼀个稳定状态。
(对)8.对连续HOPFIELD⽹络⽽⾔,⽆论⽹络结构是否对称,都能保证⽹络稳定。
(错)9.竞争学习的实质是⼀种规律性检测器,即是基于刺激集合和哪个特征是重要的先验概念所构造的装置,发现有⽤的部特征。
(对)10.⼈⼯神经元⽹络和模糊系统的共同之处在于,都需建⽴对象的精确的数学模型,根据输⼊采样数据去估计其要求的决策,这是⼀种有模型的估计。
(错)三、简答题(每题5分,共30分)1.智能控制系统有哪些类型?答:1)多级递阶智能控制 2)基于知识的专家控制3)基于模糊逻辑的智能控制——模糊控制4)基于神经⽹络的智能控制——神经控制5)基于规则的仿⼈智能控制6)基于模式识别的智能控制7)多模变结构智能控制8)学习控制和⾃学习控制9)基于可拓逻辑的智能控制——可拓控制10)基于混沌理论的智能控制——混沌控制2.⽐较智能控制与传统控制的特点?1)传统控制⽅法在处理复杂性、不确定性⽅⾯能⼒低⽽且有时丧失了这种能⼒智能控制在处理复杂性、不确定性⽅⾯能⼒⾼2)传统控制是基于被控对象精确模型的控制⽅式,可谓“模型论”智能控制是智能决策论,相对于“模型论”可称为“控制论”3)传统的控制为了控制必须建模,⽽利⽤不精确的模型⼜采⽤摸个固定控制算法,使整个的控制系统置于模型框架下,缺乏灵活性,缺乏应变性,因此很难胜任对复杂系统的控制。
选择题
在智能控制算法中,PID控制器的“I”代表:
A. 比例
B. 积分(正确答案)
C. 微分
D. 反馈
下列哪种算法是基于生物进化论思想而发展起来的一种全局优化搜索方法?
A. 神经网络算法
B. 模糊控制算法
C. 遗传算法(正确答案)
D. PID控制算法
智能控制算法中的专家系统主要依赖于哪种知识表示方法?
A. 数学模型
B. 规则库(正确答案)
C. 状态空间图
D. 神经网络结构
在模糊控制中,模糊集合的隶属度函数用于表示:
A. 控制系统的稳定性
B. 控制输入的精确值
C. 元素属于某模糊集合的程度(正确答案)
D. 控制输出的响应时间
下列哪种智能控制算法通过模拟人脑神经元网络的工作原理来实现控制?
A. 模糊控制
B. 遗传算法
C. 神经网络控制(正确答案)
D. 专家系统控制
在自适应控制系统中,控制器参数是根据什么进行自动调整的?
A. 预设的固定值
B. 系统的动态响应特性(正确答案)
C. 外部环境的温度
D. 控制器的功耗
智能控制算法中的强化学习是通过什么方式优化控制策略的?
A. 试错法(正确答案)
B. 梯度下降法
C. 最小二乘法
D. 遗传算法
下列哪种控制算法常用于处理具有显著非线性特性的控制系统?
A. PID控制
B. 线性二次型最优控制
C. 滑模控制(正确答案)
D. 状态反馈控制
在智能控制系统中,数据驱动的控制方法主要依赖于什么来进行决策和控制?
A. 系统的物理模型
B. 控制器的内部结构
C. 系统的实时数据(正确答案)
D. 控制器的设计经验。