当前位置:文档之家› 引风控制系统课程设计

引风控制系统课程设计

引风控制系统课程设计
引风控制系统课程设计

目录

摘要 (1)

关键字 (1)

Abstract (2)

Keywords (2)

1引言 (3)

1.1 课题背景 (3)

1.2选题意义 (3)

2引风自动控制系统 (5)

2.1 引风量控制系统 (5)

2.2 引风自动调节系统分析 (6)

2.3 引风控制系统在火电厂中的应用 (7)

3设计思想 (9)

3.1 控制方案 (9)

3.1.1 引风控制系统的设计 (9)

3.2引风控制为简要介绍 (9)

3.2.1炉膛压力测量 (9)

3.2.2引风机控制指令 (9)

3.2.3引风机MFT加速器、超越和定向闭锁 (10)

3.2.4轴流风机堵转保护 (10)

3.2.5引风机偏差平衡系统 (11)

4控制系统图分析 (12)

4.1 SAMA图符号与逻辑图功能码说明 (12)

4.2 SAMA图分析 (12)

4.2.1测量回路 (12)

4.2.2 空气流量指令形成回路 (13)

4.2.3 引风机动叶控制回路 (13)

4.2.4引风机挡板控制回路 (14)

4.3引风系统组态图 (15)

总结 (17)

致谢 (18)

参考文献 (19)

华能伊敏电厂4#引风控制系统组态

摘要

风量是锅炉运行质量的重要指标之一,风量过高或过低都会影响电厂的安全性、经济性,必须通过自动化手段加以控制。风量控制中引风量是保持炉膛压力稳定在给定值,确保燃烧的安全性。

风量调节方法采用开大或关小风机动叶或挡板的调节方法。引风机提供了锅炉的抽吸力,把引风和送风加以平衡,炉膛压力即可保持在适当值。引风控制系统是以炉膛压力为给定值的一个单回路调节系统,其被调量为炉膛负压,调节变量为引风量(即引风机挡板开度或转速),扰动来自送风和引风。由于炉膛负压被控对象的动态特性基本上为比例环节,负压容易波动,因此从送风系统引进一前馈信号,经前馈补偿装置进入引风调节器。当送风系统动作时使引风系统也响应动作,从而使引风量随送风量成比例地变化,以保持炉膛负压基本不变。但这一前馈引如入点不要引自送风系统的风量指令信号或实际送风量,因为引风调节间接会影响送风量,从而引起两系统间的相互作用,引起震荡。从送风动叶指令或位置反馈引出到引风系统的前馈,可有效地避免这种系统间的干扰。本文阐述送风自动控制系统与引风自动控制系统,介绍了关于送引风系统的调节、投运及在火电厂中的应用等内容。并利用组态进行显示和监控。

关键字:引风控制系统;INFI-90,挡板调节;SAMA图

沈阳工程学院课程设计

Abstract

Air flow is an important indicator of the quality of boiler operation, the air flow is too high or too low will affect the safety of the plant, the economy must be controlled through automated means. Air volume control in the wind volume is to keep the furnace pressure is stable at a given value, to ensure the safety of combustion.

Air volume control method uses open or closed by motorized adjustment method leaves or wind baffles. Induced draft fan provides a suction force of the boiler, to be balanced with the wind and air, furnace pressure can be maintained at an appropriate value. Blower control system is based on a single-loop control system for a given value of the pressure chamber, which is adjusted amount of negative pressure chamber, the manipulated variable air volume for the lead (ie, induced draft fan baffle opening or speed), and disturbance from air the wind. Due to the dynamic characteristics of the controlled object furnace pressure is substantially proportional component, negative easily fluctuate, so the introduction of a feed-forward signal from the air supply system, the feedforward compensation device into the induced air conditioner. When the air supply system so that the wind action system also responds to the action, so that the amount of change in the wind in proportion to the amount of air to keep the furnace pressure basically unchanged. But this point feedforward cited as not to quote from the air volume air systems command signal or the actual air volume, because the wind will affect indirectly regulate the amount of air, which led to the interaction between the two systems, causing shock. Buckets instruction from air drawn into the position feedback or feedforward the wind system can effectively avoid the interference of such systems. This paper describes the automatic air control system and the wind automatic control system, introduced on the wind system to send the regulation, investment in thermal power plants in operation and content applications. Display and use the configuration and monitoring.

Keywords: the wind control system; INFI-90, baffle adjustment;SAMA figure

华能伊敏电厂4#引风控制系统组态

1引言

1.1 课题背景

火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一,大型火力发电机组在国内外发展很快,是我国现以300MW机组为骨干机组,并逐步发展600MW以上机组。目前,国外已建成单机容量1000MW以上的单元机组。

单元发电机组是由锅炉、汽轮发电机和辅助设备组成的庞大的设备群。由于其工艺流程复杂,设备众多,管道纵横交错,有上千个参数需要监视,操作或控制,而且电能生产还要求有高度的安全可靠性和经济性,因此,大型机组的自动化水平受到特别的重视。锅炉风量就是其中一项需要监视的重要参数。锅炉风量包括送风量和引风量。本次设计题目是:300MW火力发电单元机组送、引风控制系统。

本次设计是以铁岭发电厂为课题背景,提供的原始资料及依据如下:

型式:亚临界一次中间再热自然循环汽包锅炉;型号:HZ-1021/18.2-YMX;

最大连续蒸发量:1021t/h;过热蒸汽压力:18.2Mpa;汽轮机型号:N300-16.7/537/537;过热蒸汽温度:537℃;再热蒸汽出口温度:537℃。

伊敏电厂本期改造工程为#2机300MW燃煤凝汽式机组。锅炉为亚临界,自然循环,中间再热汽包炉,制粉系统采用5台正压直吹式中速磨系统,一次风送粉;

燃烧为单炉膛四角切圆燃烧,燃烧器布置有五层煤粉,两层油。点火方式采用蒸汽雾化二级点火(点火器点轻柴油,轻柴油点燃煤粉)汽机为单轴,双缸双排汽,中间再热凝汽式。发电机为水氢氢冷却方式。主蒸气和给水系统为单元制热力系统。设有2×50% B-MCR容量的汽动给水泵和1×50% B-MCR容量电动调速给水泵作为启动备用泵,旁路系统设有35% B-MCR容量的高,低压串级旁路。回热抽汽系统由3台高加,1台除氧器,4台低加组成。

1.2选题意义

锅炉引风量是影响锅炉生产过程经济性和安全性的重要参数。大型锅炉一般配有两台轴流式送风机,送风量是通过送风机的动叶来调整的。两台离心式或两台轴流式引风机,引风量通过引风机的入口挡板(离心式)或动叶(轴流式)来控制。如果送风量比较大,送风量与燃料量的比例系数K(最佳比例值)随之增大,炉膛内燃烧将不会充分,达不到经济性。如果送风量比较小,送风动叶开度就会比较小,临近送风机的喘振区,喘振危害性很大,严重时能造成风道和风机部件

沈阳工程学院课程设计

的全面损坏,而总风量小于25%时,就会触发MFT(主燃料跳闸)动作。如果引风量比较大,也就是炉膛压力太低,会使大量的冷空气漏入炉膛内,降低了炉膛温度,增大了引风机负荷和排烟带走的热量损失。如果引风量太低,也就是炉膛压力高,接近大气压力,则炉烟会往外冒,影响设备与工作人员的安全。所以,送风量、引风量过高或过低都是生产过程所不允许的。

为了保证锅炉生产过程的安全性、经济性,送风量和引风量必须通过自动化手段加以控制。因此,送风量和引风量的控制任务是:使送风量与燃料量有合适的比例,实现经济运行;使炉膛压力控制在设定值附近,保证安全运行[2]。

华能伊敏电厂4#引风控制系统组态

2引风自动控制系统

2.1 引风量控制系统

燃烧控制系统在根据燃烧率指令控制燃料量和送风量的同时,必须相应地控制引风量,以维持炉膛压力在设定值附近,保证安全运行。正常运行时,炉膛压力设定值为-50—-100Pa,具体数值与炉膛压力的测量位置有关。因为送风量是炉膛压力最重要的扰动因素,所以一般取送风机动叶的控制指令(或送风机动叶的实际位置),作为引风量控制的前馈信号。当送风量(或控制指令)变化时比例改变引风量(指令),再根据炉膛压力与设定值的偏差,由炉膛压力调节进行校正调节。

引风量控制系统如图2-1所示。

送风挡板送风挡板

图2-1 送、引风控制系统

系统输入信号为炉膛压力信号,选三个炉膛压力测量值信号中的一个中间值作为调节器输入信号,与给定值进行比较,对偏差进行比例积分运算后,输出经MI多输出接口组件送至各引风机控制回路去调节引风机挡板的开度。由于炉膛压力测量波动较大,为防止执行器不必要的频繁动作,在调节器中加入非线性环节,起阻尼滤波作用。调节器的前馈信号来自送风控制系统调节器输出的动态联系信

沈阳工程学院课程设计

号,以保证负荷变化时,引风控制与送风协调动作。

引风控制系统动作过程如下:当负荷变化时,锅炉主控发出改变送风量的指令,送风调节器根据偏差运算,输出改变送风机挡板的信号。同时,此信号通过动态联系组f(t)把信号送至引风调节器,引风调节器输出一个大小与方向与送风调节信号相同的调节信号,改变引风机挡板开度。当送风机挡板开度与引风机挡板的相应开度不能完全保证炉膛压力在给定值时,或其它扰动引起炉膛压力变化时,则由调节器偏差信号进行校正。静态时,动态联系组f(t)没有输出,故炉膛压力保持为给定值。

2.2 引风自动调节系统分析

引风控制系统的设计是为了实现对炉膛压力控制,使其维持在额定负压工况下,炉膛压力的控制是通过对引风机入口静叶进行调节来完成,该系统具有如下特点:

A 系统并非简单的串级调节系统,而是由3个PI 调节器共同完成炉膛压力的

调节,设定值为一固定参数,其缺点是手/自动切换有扰动,因此,在动态投自动时需手动将实际炉膛负压调至或接近设定值再投入自动,否则引起扰动较大。当然,一般运行方式一旦风机启动时将自动将炉膛压力系统投入自动状态,在启动过程中存在一些扰动是允许的。2个辅助调节器主要实现对炉膛压力的高低限制,它不同于其它电厂所采用的跟踪限制,而采用调节限制,其优点是能够快速消除动态超差,确保系统的安全性和稳定性。当系统运行在允许工况下,2个副调节器则处于跟踪状态,稳定偏差的消除靠主调节器来完成。

B 送风前馈的引入使得当进行燃烧调整时,能够提前作用炉膛压力调节系统,

确保系统的快速性和稳定性。

C 增益自调节回路的设计及电流平衡作用的实现相同于送风系统。

D 该系统可实现从风机启动至锅炉带满负荷全程自动调节以及当发生MFT

时快速降低引风出力的功能。

E 该系统设计的缺点是当1台引风机已投入自动时,再投入第二台时,系统

存在一个平衡过程,这就是本台机组在多次执行机构系统设计存在的共同缺陷,虽然,其平衡过程为一平滑过渡,但对系统本身仍是一个扰动源。该项目可作为移交生产后的技该项目。

华能伊敏电厂4#引风控制系统组态

2.3 引风控制系统在火电厂中的应用

在电厂中引风控制系统实质上就是炉膛压力控制系统。锅炉的炉膛压力通过控制2台引风机来保持,锅炉的负压一般控制在-20Pa左右。原理如图2-2所示,PC3为压力控制器。

图2-2炉膛压力控制系统

为了提高炉膛压力控制系统的可靠性和提高调节品质,炉膛压力调节通常采用如下方法。

(1)炉膛压力测量采用3台变送器,3台变送器经过控制算法后所选的值作为测量值,对这些变送器设有监控逻辑。当3台变送器全部正常时,选偏差不大

的2台变送器的平均值作为测量值;当其中任一台变送器有品质报警,而其他2

台无品质报警的变送器控制偏差大,此时切手动;当3台变送器全部有品质报警

时,切手动;当3台变送器之间全部有控制偏差报警时,切手动。这样就可以保

证炉膛压力测量信号的准确性。

(2)当炉膛负压过低(-500Pa)时,控制系统将闭锁引风机风量增加;当炉膛负压过高(500Pa)时,该控制系统将闭锁引风机风量减小,以保证炉膛压力在

要求的范围内。

(3)在计算机中对炉膛负压的测量值进行滤波(时间一般为2 s左右),以保证

执行机构不频繁动作。

(4)炉膛压力控制器一般设有一个死区,当炉膛压力的设定值和测量值的偏差不超过死区范围时,控制器的输出不变,执行机构不动作,这就有效地消除了

因炉膛压力经常波动而使执行机构频繁动作,提高了整个系统的稳定性和执行机

构的使用寿命。

(5)为了保证炉膛压力控制的正确性,当控制偏差超过一定数值时自动切手动,并有报警提示。

(6)炉膛压力控制系统还设有防内爆功能。当锅炉由于汽包液位低、炉膛压力低等保护动作而发生锅炉主燃料跳闸(MFT动作)时,由于锅炉突然灭火引起

锅炉炉膛压力大幅度下降,如果控制燃料的执行机构不及时动作,就有可能引起

沈阳工程学院课程设计

锅炉炉膛内爆。为了避免这种情况的发生,用MFT动作信号引发一组逻辑动作,直接前馈到该控制系统中去(如图2-2所示)。在MFT动作后,2台引风机执行机构先向关的方向动作,直到开度达到原来设定的某一位置,保持一段时间后,使2台引风机的执行机构再向开的方向动作,直到开度达到MFT时的位置,这样就实现了引风机的一组防内爆功能,从而保证了锅炉的安全。

华能伊敏电厂4#引风控制系统组态

3设计思想

3.1 控制方案

3.1.1 引风控制系统的设计

引风控制系统的设计是为了实现对炉膛压力的控制,如果炉膛压力接近于大气压力,则炉烟往外冒出,严重时甚至引起炉膛爆炸,影响设备与工作人员的安全,反之,如果炉膛压力过低,又会使大量的冷空气漏入炉膛内,降低炉膛温度增大引风机负荷和排烟带走的热量损失。引风控制系统就是使炉膛压力维持在额定的压力工况下。控制炉膛负压的手段是调节引风机的引风量,其主要的外部干扰是送风量。由于引风调节对象的动态响应快,测量也容易,所以引风控制系统设计成只需采取以炉膛负压作为被调量的单回路控制系统,由于送风量的变化是引起负压变化的主要原因,为了使引风量快速的跟踪送风量,以保持二者的比例,可将送风量作为前馈信号引入引风调节器而使引风量跟着改变。是一个快速补偿系统。这样当送风控制系统动作时,引风控制系统跟着立即动作,而不是等炉膛负压偏离给定值后在动作,从而能使炉膛负压基本不变。有利于提高引风控制系统的稳定性和减小炉膛负压的动态偏差,改善系统的调节性能。另外,由于调节对象相当于一个比例环节,被调量反应过于灵敏,为了防止小幅度引起引风机挡板的频繁动作,可以设置调节器是比例带自动修复环节,使得在小偏差时增大调节器的比例带。对于负压的测量信号,也需要通过低通滤波,以抑制测量值的剧烈波动。

3.2引风控制为简要介绍

3.2.1炉膛压力测量

炉膛压力选用三冗余变送器进行测量。其中一台变送器故障不致引起控制系统异常。如各个变送器均正常,则变送器间出现大的偏差时将发出报警。偏差正常时,运行人员可任选一台或中值、平均值信号。

变送器有故障时,控制逻辑将自动切换到好的变送器。若变送器全部故障,控制逻辑自动切换到手动状态运行。设有适当的联锁逻辑以防止运行人员选用故障变送器。

3.2.2引风机控制指令

所选的炉膛压力信号和运行人员设定的给定值加以比较,送入引风调节器,调节器输出控制引风机入口动叶。为了使系统快速响应炉膛燃烧的变化,引入送风系统的风量指令

沈阳工程学院课程设计

或送风调节输出作为引风系统的前馈信号。

在“氧量信号”的反系统中,该系统与上述不同在于:使引风量与负荷相适应;调送风量维持炉膛负压;

因为炉膛压力本质上是低增益高积分控制,所以在误差和比例/积分控制器之间用一个非线性函数块加以修正。这种组态在炉膛压力误差大时用高增益比例调节,炉膛压力接近设定点时用低增益修正,从而保证了控制的稳定性。如炉膛压力低或引风机入口静叶都在最大位置,该控制器禁止进一步增加。如果炉膛压力高,则禁止进一步减少。

3.2.3引风机MFT加速器、超越和定向闭锁

该控制系统监测锅炉何时跳闸并采取措施减小所造成的负压偏差。锅炉跳闸时,由负荷产生的负压偏差被加到引风机入口静叶控制信号上。这将使静叶立即关闭。这个加速信号在短时间内使迟延变为0%。该回路还用来补偿投运风机的台数。如只有一台风机运行,则在跳闸时增益为2。

如存在大的炉膛负压偏离,即发生炉膛压力超越。炉膛压力超越控制器用来减小引风机入口静叶的位置。当炉膛压力超过其设定点以上一个预定量时,机组即开始降负荷(RUNBDOWN)。RUNDOWN一直持续到引风机能够保持适当的炉膛压力为止。加速和超越闭锁发生在控制站的下游,从而避免运行人员无意中使炉膛压力连续恶化。

入口静叶指令的定向闭锁可防止其向错误方向移动。一旦炉膛压力异常,即闭锁入口静叶指令。炉膛内负压偏大时,入口静叶位置指令被存储起来,进行选择最低指令。自动控制只能减小而不能增加该指令量。如炉膛压力出现正压误差,其控制逻辑与此相同,但方向相反。定向闭锁在控制站下游因而可禁止运行人员或次后的指令信号来增加入口静叶位置使炉膛压力更负,或禁止减小静叶位置使炉膛压力更高。

3.2.4轴流风机堵转保护

轴流风机有一个独特的性质,称为堵转(颤振)。堵转情况是一种气动力现象,当风机风叶被要求提供超出其设计能力的升力时,就在风叶周围发生气流分离现象。这时,风机呈不稳状态,不在以其正常性能曲线运行。控制系统提供了一个方法来防止这种现象发生。

每个风机均配备有压力开关,用以检测堵转条件。当风机接近进入堵转条件时,一个负偏差加到风机指令(控制站输出)上,该指令使静叶或动叶降低出力以缓解这种状态。如堵转状态通过减小出力指令仍未予纠正,则机组负荷指令将发出机组将负荷指令以降低机组负荷。

华能伊敏电厂4#引风控制系统组态

3.2.5引风机偏差平衡系统

引风机的偏差回路保证了平衡切换。当两台引风机均正常时,引风机主控制站跟随两台引风机风叶指令的平均值。该平均值减去引风机风叶控制站的输出即为偏差信号。然后把该偏差值从平均值中减去即为引风机A的输入信号。该偏差加上平均值即为引风机B的输入信号。这样,该偏置网络使两台引风机得以平衡以便切换到自动运行。例如,假设引风机A为60%,引风机B为40%,则平均值为50%,偏差为-10%即为引风机A的60%输入信号,而50%加上-10%即为引风机B的40%信号。若只有一台引风机为自动运行,则偏置网络自动补偿该台引风机,以抵消对手动运行风机的任何调节。两台风机间的偏差被连续计算,而且手动运行风机被平衡以便切换为自动运行。若两台风机均为自动则偏差调节有运行人员进行。

沈阳工程学院课程设计

4控制系统图分析

4.1 SAMA图符号与逻辑图功能码说明

目前热控系统按功能给出的功能图,其控制框图的画法一般都采用国际标准画法,即SAMA图例。这种图例的特点是流程比较清楚,特别是对复杂回路画起来都比较容易。SAMA图的输入输出关系及流程方向与控制组态方式比较接近,各控制算法有比较明确的标志。

常用的SAMA图例有四种,分别表示的含义如下:

(1是图形框,表示测量或信号读出功能;

(2是矩形框,表示自动信号处理,一般表示机架上所安装的组件的功能;

(3是正菱形,表示手信处理,一般表示仪表盘上所安装的仪表的功能;

(4是等腰梯形框,表示最终控制装置,如执行机构等。

逻辑图中常用的功能码有三种,分别表示的含义如下:

(1)逻辑或,表示当输入的任一条满足,输出为1,即执行输出;

(2)逻辑与,表示当输入的所有条件都满足,输出为1,即执行输出;

(3)逻辑非,表示输出所执行的指令与输入的条件相反。

4.2 SAMA图分析

4.2.1测量回路

总风量(TOTAL AIR FLOW)的测量由送风机A二次风流量测量经流量转换器所得信号和送风机B二次风流量测量经流量转换器所得信号与五台磨煤机(磨煤机A、磨煤机B、磨煤机C、磨煤机D、磨煤机E)一次风流量测量值经流量转换器的信号通过求和块求和所得。另外,防止信号坏质量影响信号的测量,系统设计了信号坏质量线路,如果信号坏质量就会通过坏质量块经过逻辑块或门送到总风量坏质量信号处。为了确保测量的准确性,送风机A与送风机B二次风流量测量采用两个测点,分别经平均值选折块通过开方块将信号送到求和块。而且,总风量应大于最低风量信号(MIN AIR FLOW一般设为30%),如果总风量小于最低风量信号,系统设置了报警信号,并且系统还设计了用送风机A与送风机B的出口风温用除法块对二次风流量进行修正。

华能伊敏电厂4#引风控制系统组态

4.2.2 空气流量指令形成回路

铁岭电厂送风系统有三路,一路送入制粉系统、一路作一次风输粉、另一路作为二次风直接进入炉膛燃烧。每路有左、右两管,共装有六台机翼型测风装置,三路信号经过温度校正后相加,作为总风量测量值信号(TOTAL AIR FLOW)。

空气流量指令(AIR FLOW DEMAND)由热量信号(HEAT RELEASE)与锅炉主控指令(BOILER DMD)选大值,以保证风量始终富裕于燃料量。另外,为防止锅炉灭火,引入了最低风量信号(MIN AIR FLOW),由图7中定值块进行设定。当锅炉主控指令与热量信号(间接代表燃料量)都小于最低风量信号(一般设定为30%)时,则大值选折块选折最低风量信号作为空气流量需求指令,以维持炉膛不灭火所需要的最低风量。为保证燃烧的经济性,控制系统引入了烟气含氧量(FLUE GAS OXYGEN)信号进行校正,图中实测烟气含氧量信号(最佳含氧量与锅炉负荷有关,一般负荷增加,最佳含氧量减少,负荷减少,最佳含氧量增加)比较,经比例积分调节块PI输出被一级压力经函数发生器修正后对风量指令进行修正。

4.2.3 引风机动叶控制回路

该系统增设了两台送风机(A、B)的防喘振调节回路。该回路由运算块,比例积分块及大值选择块组成,送风机动叶控制设计为—选择调节系统。

锅炉在正常负荷下,风机的工作点位于稳定工况区,这时风道阻力正常,防喘振调节器的输出小于送风调节器的输出。因此,大值选择块选择送风调节器的输出作为送风机动叶开度的控制指令。系统根据总风量测量值与空气流量指令的偏差进行比例积分调节,防喘振调节器处于挂起状态。

一旦锅炉负荷降低,送风量减少或运行中风道发生阻塞造成风量减少时,引风机出口压头增大,则风机有喘振发生的趋势。这时,防喘振调节器的输出大于送风调节器的输出,大值选择块选择防喘振调节器的输出作为送风机动叶的控制信号,迅速调整风机的动叶角度,使风机的工作点不越过临界点K,从而阻止了风机发生喘振的可能。

为了实现系统自动、手动的双向无扰切换。本系统设计了如下的一些跟踪回路:

当任意一台风机处于“自动”运行方式,则送风调节器即处在“自动”方式;只有当两台风机均处于手动方式时,送风调节器才处于跟踪方式。送风调节器的输出跟踪两台风机动叶开度之和的平均值。

一台风机投自动,则处于手动状态下的风机所对应的防喘振调节器处于跟踪

沈阳工程学院课程设计

状态,跟踪自动方式下引风调节器的输出。

两台风机分别投自动时的无扰切换靠偏差块,切换块,速率限制块所构成的跟踪回路实现。

为了保证两台风机的同步运行,该系统由风机B的自动/手动操作站引出一个偏置信号。当两台都处于自动运行方式下,偏置信号通过切换块,速率限制块分别作用到加法块和减法块的一个输入端,并与送风调节器的输出指令相加或相减,以实现两台风机的负荷分配或用来调整两台风机的输入—输出特性之间存在的差异,求得两台风机同步运行。

该系统还设计了一些联锁保护回路:

a.当炉膛压力高(HI FURN PRESS)或送风指令在最大(FDF DMD AT MAX)

时,送风机闭锁增(FDF BLOCK INC);

b.当炉膛压力低(LO FURN PRESS)或空气量与热量信号偏差太小(AF-HR

DEV LO)或送风控制系统在最小(FDF DMD AT MIN)时,送风机闭锁减(FDF BLOCK DEC)。

c.两台引风机调闸5分钟应全开两台送风机挡板实现炉膛自然通风。

该系统还设计了一些报警回路:

a 总风量偏差高报警和总风量偏差低报警;

b 送风动叶指令在最大和送风动叶指令在最小。

此外,从风机运行角度上为提高风机效率,减少攻耗,一般不允许空载启动风机;应先将运行中的风机负荷降低(即动叶关小到一定位置)再启动另一台风机;当一台风机停止运行,则先将继续运行的另一台风机的动叶先关小再停止此台风机等措施都是为了风机安全经济运行设置的运行准则,运行操作人员应严格遵守。

4.2.4引风机挡板控制回路

系统输入信号为炉膛压力信号,选三个炉膛压力测量信号中的一个中间值作为调节器输入信号,与给定值进行比较。给定值由遥控手动设定值器、速率限制器、高低值限定器送到偏差块,比较的偏差通过PID调节器进行运算,PID调节器输出的引风机入口挡板指令分别作用到加法块、减法块和切换块去控制引风机入口挡板。

该系统同样也设计了引风机防喘振回路,该回路由A、B风机入口压力测量值经防喘振调节器、小值选折器组成。

锅炉在正常负荷下,风机的工作点位于稳定工况区,这时风道阻力正常,防喘振调节器的输出大于送风调节器的输出。因此,小值选择块选择送风调节器的

华能伊敏电厂4#引风控制系统组态

输出作为送风机动叶开度的控制指令。系统根据炉膛压力测量值与给定值的偏差进行比例积分调节,防喘振调节器处于挂起状态。

一旦锅炉负荷增加,引风量减少或运行中风道发生阻塞造成风量减少时,引风机入口压头增大,则风机有喘振发生的趋势。这时,防喘振调节器的输出小于送风调节器的输出,小值选择块选择防喘振调节器的输出作为送风机动叶的控制信号,迅速调整风机的挡板开度,使风机的工作点不越过临界点K,从而阻止了风机发生喘振的可能。

4.3引风系统组态图

如图4-1和4-2所示为炉膛压力控制图和引风控制图

4-1炉膛压力控制图

沈阳工程学院课程设计

4-2引风控制图

华能伊敏电厂4#引风控制系统组态

总结

风量是锅炉运行质量的重要指标之一,风量过高或过低都会影响电厂的安全性、经济性,必须通过自动化手段加以控制。风量控制的任务是引风量是保持炉膛压力稳定在给定值,确保燃烧的安全性。

在本设计中,控制方案采用调节送、引风机的挡板开度大小来控制送风量和引风量的控制系统。控制器采用PID规律,控制系统采用串级控制。本设计严格按设计任务书的要求,完成了以下工作内容:1对送、引风控制系统进行综述,2对送引风控制系统构成,控制方案进行阐述,3上机,通过AUTOCAD绘图软件对SAMA图的绘制及INFI-90硬件及功能码学习,4对控制系统分析(SAMA图和逻辑图的分析)。

本设计的原始数据来源于铁岭发电厂,所以本设计完全适用于伊敏发电厂目前的生产需要。本设计所采用的控制方案为目前电力行业中广泛采用的一种方案,正在现在的电力生产领域中发挥着重要作用。

沈阳工程学院课程设计

致谢

在设计的整个研究设计过程中,得到了许多老师和同学的大力帮助,借此机会向他们表示最诚挚的谢意。首先感谢我的指导老师朱晓娟老师。在整个的设计过程中,朱老师对我们热心指导、严格要求,在选题、系统总体设计与技术方案上,给予宝贵的建议,帮助我建立了正确的设计思想,保证了课题的研究和开发工作的顺利完成。我从他那里学到的不仅仅是学术方面的知识,更重要的是严谨的治学态度。在我遇到具体的电路分析上朱老师给予我的帮助和指导,感谢朱老师,正是因为他一丝不苟,任劳任怨的教学,我们才能具有扎实的基本功来进行设计工作。还要感谢我的指导老师为我们的毕业设计提供了良好的环境和仪器设备。有了这些,我们才能够高效率的完成任务。

自动控制系统课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:自动控制理论课程设计 设计题目:直线一级倒立摆控制器设计 院系:电气学院电气工程系 班级: 设计者: 学号: 指导教师: 设计时间:2016.6.6-2016.6.19 手机: 工业大学教务处

*注:此任务书由课程设计指导教师填写。

直线一级倒立摆控制器设计 摘要:采用牛顿—欧拉方法建立了直线一级倒立摆系统的数学模型。采用MATLAB 分析了系统开环时倒立摆的不稳定性,运用根轨迹法设计了控制器,增加了系统的零极点以保证系统稳定。采用固高科技所提供的控制器程序在MATLAB中进行仿真分析,将电脑与倒立摆连接进行实时控制。在MATLAB中分析了系统的动态响应与稳态指标,检验了自动控制理论的正确性和实用性。 0.引言 摆是进行控制理论研究的典型实验平台,可以分为倒立摆和顺摆。许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等,都可以通过倒立摆系统实验直观的表现出来,通过倒立摆系统实验来验证我们所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。 本次课程设计中以一阶倒立摆为被控对象,了解了用古典控制理论设计控制器(如PID控制器)的设计方法和用现代控制理论设计控制器(极点配置)的设计方法,掌握MATLAB仿真软件的使用方法及控制系统的调试方法。 1.系统建模 一级倒立摆系统结构示意图和系统框图如下。其基本的工作过程是光电码盘1采集伺服小车的速度、位移信号并反馈给伺服和运动控制卡,光电码盘2采集摆杆的角度、角速度信号并反馈给运动控制卡,计算机从运动控制卡中读取实时数据,确定控制决策(小车运动方向、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,通过皮带带动小车运动从而保持摆杆平衡。

智能家居控制系统课程设计报告

.. XXXXXXXXXXXXXX 嵌入式系统原理及应用实践 —智能家居控制系统(无操作系统) 学生姓名XXX 学号XXXXXXXXXX 所在学院XXXXXXXXXXX 专业名称XXXXXXXXXXX 班级XXXXXXXXXXXXXXXXX 指导教师XXXXXXXXXXXX 成绩 XXXXXXXXXXXXX 二○XX年XX月

综合实训任务书 学生姓名XXX 学生学号XXX 学生专业XXX 学生班级XXX 设计题目智能家居控制系统(无操作系统) 设计目的: 巩固AD转换模块的应用—光照采集 掌握PWM驱动蜂鸣器产生不同频率声音的方法 巩固SSI 模块控制数码管动态显示的方法 掌握定时器控制数码管实现动态扫描的思想 掌握DS18B20检测温度的程序设计方法 掌握一个完整项目的分析、规划、硬件设计、软件设计、报告撰写的流程方法。 具体任务: 1、编写(或改写)发光二极管、按键、继电器、定时器、数码管、ADC、PWM、温度传感器DS18B20等模块的初始化程序及基本操作程序。 2、为保证数码管显示的稳定性,使用定时器定时扫描各个数码管,可避免 处理器在执行其他程序时,数码管停止扫描而使得显示不正常。 3、通过ADC模块采集开发板上的光敏电阻(CH3),并在数码管低四位显示 采集的值,将光照强度分为 5 级,亮度最亮时开发板上的 4 颗LED全部熄灭, 亮度越来越低时,分别点亮 1 颗、2 颗、3 颗,完全黑暗时点亮 4 颗LED。 4、通过DS18B20检测环境温度,并在数码管高三位显示(两位整数、一位 小数),当环境温度低于设定的下限温度时,蜂鸣器报警,同时打开空调制热(继 电器);当环境温度高于上限温度时,蜂鸣器报警,同时打开空调制热(继电器)。 5、通过开发板上的三个按键KEY1、KEY2、KEY4(KEY3引脚与DS18B20共用,在此项目中不使用)设定上下限温度: KEY1按一次设定上限温度(同时数码管显示上限温度),按两次设定下限温 度(同时数码管显示下限温度),按三次,设定完成(同时数码管显示实时温度); KEY2按一次,上限或下限温度加1; KEY3—该引脚被DS18B20占用,不可使用!!! KEY4按一次,上限或下限温度减1。

机电控制系统课程设计

JIANG SU UNIVERSITY 机电系统综合课程设计 ——模块化生产教学系统的PLC控制系统设计 学院:机械学院 班级:机械 (卓越14002) 姓名:张文飞 学号: 3140301171 指导教师:毛卫平 2017年 6月

目录 一: MPS系统的第4站PLC控制设计 (3) 1.1第四站组成及结构 (3) 1.2 气动回路图 (3) 1.3 PLC的I/O分配表,I/O接线图(1、3、6站电气线路图) (4) 1.4 顺序流程图&梯形图 (5) 1.5 触摸屏控制画面及说明,控制、信息软元件地址表 (10) 1.6 组态王控制画面及说明 (13) 二: MPS系统的两站联网PLC控制设计 (14) 2.1 PLC和PLC之间联网通信的顺序流程图(两站)&从站梯形图 (14) 2.2 通讯软元件地址表 (14) 三:调试过程中遇到的问题及解决方法 (18) 四:设计的收获和体会 (19) 五:参考文献 (20)

一:MPS系统的第4站PLC控制设计 1.1第四站组成及结构: 由吸盘机械手、上下摆臂部件、料仓换位部件、工件推出部件、真空发生器、开关电源、可编程序控制器、按钮、I/O接口板、通讯接口板、多种类型电磁阀及气缸组成,主要完成选择要安装工件的料仓,将工件从料仓中推出,将工件安装到位。 1.吸盘机械手臂机构:机械手臂、皮带传动结构真空吸嘴组成。由上下摆臂装置带动其旋转完成吸取小工件到放小工件完成组装流程的过程。 2.上下摆臂结构:由摆臂缸(直线缸)摆臂机械装置组成。将气缸直线运动转化为手臂旋转运动。带动手臂完成组装流程。 3.仓料换位机构:由机构端头换仓缸带动仓位装置实现换位(蓝、黑工件切换)。 4.推料机构:由推料缸与机械部件载料平台组成。在手臂离开时将工件推出完成上料。 5.真空发生器:当手臂在工件上方时,真空发生器通气吸盘吸气。 5.I/O接口板:将桌面上的输入与输出信号通过电缆C1与PLC的I/O相连。 6.控制面板:完成设备启动上电等操作。(具体在按钮上有标签说明)。

机电传动控制课程设计解析

学号:0121018700306 课程设计 题目组合机床加工过程PLC自动控制设计 学院物流学院 专业物流工程 班级行政1001班 姓名徐宏华 指导教师徐沪萍 2013 年 6 月29 日

课程设计任务书 学生姓名:徐宏华专业班级:物流行政1001班 指导教师:徐泸萍工作单位:物流学院 题目: 组合机床加工过程PLC自动控制设计 初始条件: 1.编程环境:Step7v5.5软件 2.PLC型号:西门子公司S7系列,S7-300 3.机电传动的相关资料指导书 4.仿真环境:S7-PLCSIM 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 液压滑台式组合机床在原位启动后,快速向前到设定的位置时转为慢速前进,到达攻丝进给位置时停止前进,转为攻螺纹主轴转动,丝锥能向前攻入,打到规定深度时,主轴快速制动。接着攻螺纹反转退出,回到原位时快速制动,同时滑台能快速退回原位,并在原位停止。 时间安排:十八周 指导教师签名:年月日 系主任(或责任教师)签名:年月日

本科生课程设计成绩评定表 指导教师签字: 年月日

目录 摘要------------------------------------------------------------------------------------------------- 0第一章基本知识介绍 ------------------------------------------------------------------------ 1 1.1 设计的任务要求--------------------------------------------------------------------- 1 1.2 组合机床概述------------------------------------------------------------------------ 2 1.2.1 组合机床部件分类 --------------------------------------------------------- 2 1.2.2 组合机床的特点 ------------------------------------------------------------ 2 1.3 PLC控制系统 ----------------------------------------------------------------------- 3 1.3.1 PLC简介 --------------------------------------------------------------------- 3 1.3.2 PLC控制系统设计的基本原则 ------------------------------------------ 4 1.3.3 PLC控制系统的一般步骤 ------------------------------------------------ 4第二章总体方案选择和控制方式选择----------------------------------------------------- 6 2.1 总体方案选择------------------------------------------------------------------------ 6 2.2 控制方式的选择--------------------------------------------------------------------- 6第三章电路图的设计 -------------------------------------------------------------------------- 6 3.1 主电路的设计------------------------------------------------------------------------ 6 3.2 PLC的I/O地址分配--------------------------------------------------------------- 8第四章控制程序的设计 --------------------------------------------------------------------- 10 4.1 顺序功能图的设计---------------------------------------------------------------- 10 4.2 梯形图的设计---------------------------------------------------------------------- 11 4.3 语句表的设计---------------------------------------------------------------------- 15 第五章调试及结果分析 ------------------------------------------------------------------- 21 5.1 硬件组态---------------------------------------------------------------------------- 21 5.2 仿真结果分析---------------------------------------------------------------------- 21 感想----------------------------------------------------------------------------------------------- 25 参考资料书-------------------------------------------------------------------------------------- 26

软件工程课程设计智能灯光控制系统

软件工程课程设计 智能家居.智能灯光控制系统 学院计算机学院 专业 班级级班 学号 姓名 指导教师 合作人 2014年1月日

目录 1、引言...............................................................................................................................- 4 - 1.1、项目背景......................................................................................................................- 4 - 1.2、项目可行性..................................................................................................................- 4 - 1.3、项目目的及意义..........................................................................................................- 4 - 2、任务概述.......................................................................................................................- 5 - 2.1、系统定义......................................................................................................................- 5 - 2.1.1、自动感知...........................................................................................................- 5 - 2.1.2、智能分析...........................................................................................................- 5 - 2.1.3、智能决策...........................................................................................................- 5 - 2.1.4、远程控制...........................................................................................................- 5 - 2.1.5、电源控制...........................................................................................................- 5 - 2.2、术语定义:..................................................................................................................- 5 - 2.2.1、照明设备单元...................................................................................................- 5 - 2.2.2、光源单元...........................................................................................................- 6 - 2.2.3、照明模式...........................................................................................................- 6 - 2.3、数据描述:..................................................................................................................- 7 - 2.3.1、物理信号...........................................................................................................- 7 - 2.3.2、数字信号...........................................................................................................- 7 - 2.3.3、指令...................................................................................................................- 7 - 2.3.4、数据处理过程...................................................................................................- 7 - 3、需求分析.......................................................................................................................- 8 - 3.1、功能需求......................................................................................................................- 8 - 3.1.1、业务需求...........................................................................................................- 8 - 3.1.2、用户需求...........................................................................................................- 8 - 3.1.3、系统需求...........................................................................................................- 8 - 3.1.4、用例图及说明................................................................................................ - 10 - 3.2、性能需求................................................................................................................... - 12 - 3.2.1、速度................................................................................................................ - 12 - 3.2.2、鲁棒性............................................................................................................ - 12 - 3.2.3、容错性............................................................................................................ - 12 - 3.2.4、界面................................................................................................................ - 12 - 3.3、约束........................................................................................................................... - 14 - 3.3.1、运行环境........................................................................................................ - 14 - 3.3.2、硬件要求........................................................................................................ - 15 - 4、概要设计.................................................................................................................... - 16 - 4.1、系统架构设计........................................................................................................... - 16 - 4.1.1、总体架构........................................................................................................ - 16 - 4.1.2、智能控制........................................................................................................ - 17 - 4.1.3、远程控制:基于B/S结构 ............................................................................ - 17 - 4.2、系统需求设计........................................................................................................... - 17 - 4.2.1、智能控制设计................................................................................................ - 17 - 4.2.2、远程控制设计................................................................................................ - 19 -

卧式镗床(T68)-机电传动控制课程设计任务书

沈阳航空航天大学 课程设计任务书 机电工程学院机械设计制造及自动化专业 班:学号:姓名: 一、课程设计课题某型号卧式镗床的电气控制系统设计 二、课程设计工作自至 三、课程设计技术说明和控制要求 1、设备机械部分运动说明 某型号卧式镗床主要有床身、前立柱、镗头架、工作台、后立柱和尾架等部分组成。其运动形式有三种:镗轴与花盘的旋转运动为主运动;进给运动包括镗轴的轴向进给、花盘上刀具的径向进给、镗头的垂直进给、工作台的纵向与横向进给;辅助运动为工作台的旋转、后立柱的水平移动、尾架的垂直移动及各部分的快速移动。 2、设备电气控制要求及技术参数 1)主运动与进给运动由同一台双速电动机M1拖动,各方向的快速运动由另一台电动机M2拖动 2)主轴旋转和进给都有较大的调速范围 3)要求M1能正反转,能正反向点动,并带有制动,各方向的进给都能快速移动,正反向都能短时点动 4)必要的保护环节、连锁环节、照明和信号电路 5)电动机的功率 M1:5.2KW M2:3KW

四、课程设计的主要内容 1、分析设备的电气控制要求,制定设计方案、绘制草图; 2、进行电路计算,选择元器件,并列出元器件目录表,绘制电气原理图(包 括主电路和控制电路); 3、通电调试、故障排除、任务验收,编写设计说明书 五、课程设计时间安排 六、主要参考资料 1、齐占庆. 机床控制技术. 北京: 机械工业出版社,1999 2、邓星中主编. 机电传动控制. 武汉:华中科技大学出版社,2001 3、齐占庆. 王振臣主编. 电器控制技术. 北京:机械工业出版社, 2002 4、陈远龄. 机床电气自动控制. 重庆:重庆大学出版社,1997 5、方承远.工厂电气控制技术. 北京: 机械工业出版社,2000 6、张万奎主编.机床电气控制技术.北京:中国林业出版社,北京大学出版社, 2006

自动控制课程设计~~~

指导教师评定成绩: 审定成绩: 重庆邮电大学 移通学院 自动控制原理课程设计报告 系部: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:2013年12 月 重庆邮电大学移通学院制

目录 一、设计题目 二、设计报告正文 摘要 关键词 设计内容 三、设计总结 四、参考文献

一、设计题目 《自动控制原理》课程设计(简明)任务书——供2011级机械设计制造及其自动化专业(4-6班)本科学生用 引言:《自动控制原理》课程设计是该课程的一个重要教学环节,既有别于毕业设计,更不同于课堂教学。它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面分析和综合。 一设计题目:I型二阶系统的典型分析与综合设计 二系统说明: 该I型系统物理模拟结构如图所示。 系统物理模拟结构图 其中:R=1MΩ;C =1uF;R0=41R 三系统参量:系统输入信号:x(t); 系统输出信号:y(t);

四设计指标: 设定:输入为x(t)=a×1(t)(其中:a=5) 要求动态期望指标:M p﹪≤20﹪;t s≤4sec; 五基本要求: a)建立系统数学模型——传递函数; b)利用根轨迹方法分析和综合系统(学号为单数同学做); c)利用频率特性法分析和综合系统(学号为双数同学做); d)完成系统综合前后的有源物理模拟(验证)实验; 六课程设计报告: 1.按照移通学院课程设计报告格式写课程设计报告; 2.报告内容包括:课程设计的主要内容、基本原理; 3.课程设计过程中的参数计算过程、分析过程,包括: (1)课程设计计算说明书一份; (2)原系统组成结构原理图一张(自绘); (3)系统分析,综合用精确Bode图一张; (4)系统综合前后的模拟图各一张(附实验结果图); 4.提供参考资料及文献 5.排版格式完整、报告语句通顺; 6.封面装帧成册。

智能家居控制系统课程设计报告20

XXXXXXXXXXXXXX 嵌入式系统原理及应用实践 —智能家居控制系统(无操作系统) 学生姓名XXX 学号XXXXXXXXXX 所在学院XXXXXXXXXXX 专业名称XXXXXXXXXXX 班级XXXXXXXXXXXXXXXXX 指导教师XXXXXXXXXXXX 成绩 XXXXXXXXXXXXX 二○XX年XX月

综合实训任务书

目录 前言 (1) 1 硬件设计 (1) 1.1 ADC转换 (3) 1.2 SSI控制数码管显示 (3) 1.3 按键和LED模块 (5) 1.4 PWM驱动蜂鸣器 (6) 2 软件设计 (7) 2.1 ADC模块 (7) 2.1.1 ADC模块原理描述 (7) 2.1.2 ADC模块程序设计流程图 (8) 2.2 SSI 模块 (8) 2.2.1 SSI模块原理描述 (9) 2.2.2 SSI模块程序设计流程图 (10) 2.3 定时器模块 (10) 2.3.1 定时器模块原理描述 (10) 2.3.2 定时器模块流程图 (11) 2.4 DS18B20模块 (11) 2.4.1 DS18B20模块原理描述 (11) 2.4.2 DS18B20模块程序设计流程图 (12) 2.5 按键模块 (13) 2.5.1 按键模块原理描述 (13) 2.5.2 按键模块程序设计流程图 (13) 2.6 PWM模块 (13) 2.6.1 PWM模块原理描述 (14) 2.6.2 PWM模块程序设计流程图 (14) 2.6 主函数模块 (14) 2.6.1 主函数模块原理描述 (14) 2.6.2主函数模块程序设计流程图 (15)

控制系统仿真课程设计

控制系统仿真课程设计 (2010级) 题目控制系统仿真课程设计学院自动化 专业自动化 班级 学号 学生姓名 指导教师王永忠/刘伟峰 完成日期2013年7月

控制系统仿真课程设计(一) ——锅炉汽包水位三冲量控制系统仿真1.1 设计目的 本课程设计的目的是通过对锅炉水位控制系统的Matlab仿真,掌握过程控制系统设计及仿真的一般方法,深入了解反馈控制、前馈-反馈控制、前馈-串级控制系统的性能及优缺点,实验分析控制系统参数与系统调节性能之间的关系,掌握过程控制系统参数整定的方法。 1.2 设计原理 锅炉汽包水位控制的操作变量是给水流量,目的是使汽包水位维持在给定的范围内。汽包液位过高会影响汽水分离效果,使蒸汽带水过多,若用此蒸汽推动汽轮机,会使汽轮机的喷嘴、叶片结垢,严重时可能使汽轮机发生水冲击而损坏叶片。汽包液位过低,水循环就会被破坏,引起水冷壁管的破裂,严重时会造成干锅,甚至爆炸。 常见的锅炉汽水系统如图1-1所示,锅炉汽包水位受汽包中储水量及水位下汽包容积的影响,而水位下汽包容积与蒸汽负荷、蒸汽压力、炉膛热负荷等有关。影响水位变化的因素主要是锅炉蒸发量(蒸汽流量)和给水流量,锅炉汽包水位控制就是通过调节给水量,使得汽包水位在蒸汽负荷及给水流量变化的情况下能够达到稳定状态。 图1-1 锅炉汽水系统图

在给水流量及蒸汽负荷发生变化时,锅炉汽包水位会发生相应的变化,其分别对应的传递函数如下所示: (1)汽包水位在给水流量作用下的动态特性 汽包和给水可以看做单容无自衡对象,当给水增加时,一方面会使得汽包水位升高,另一方面由于给水温度比汽包内饱和水的温度低,又会使得汽包中气泡减少,导致水位降低,两方面的因素结合,在加上给水系统中省煤器等设备带来延迟,使得汽包水位的变化具有一定的滞后。因此,汽包水位在给水流量作用下,近似于一个积分环节和惯性环节相串联的无自衡系统,系统特性可以表示为 ()111()()(1)K H S G S W S s T s ==+ (1.1) (2)汽包水位在蒸汽流量扰动下的动态特性 在给水流量及炉膛热负荷不变的情况下,当蒸汽流量突然增加时,瞬间会导致汽包压力的降低,使得汽包内水的沸腾突然加剧,水中气泡迅速增加,将整个水位抬高;而当蒸汽流量突然减小时,汽包内压力会瞬间增加,使得水面下汽包的容积变小,出现水位先下降后上升的现象,上述现象称为“虚假水位”。虚假水位在大中型中高压锅炉中比较显著,会严重影响锅炉的安全运行。“虚假水位”现象属于反向特性,变化速度很快,变化幅值与蒸汽量扰动大小成正比,也与压力变化速度成正比,系统特性可以表示为 222()()()1f K K H s G s D s T s s ==-+ (1.2) 常用的锅炉水位控制方法有:单冲量控制、双冲量控制及三冲量控制。单冲量方法仅是根据汽包水位来控制进水量,显然无法克服“虚假水位”的影响。而双冲量是将蒸汽流量作为前馈量用于汽包水位的调节,构成前馈-反馈符合控制系统,可以克服“虚假水位”影响。但双冲量控制系统要求调节阀具有好的线性特性,并且不能迅速消除给水压力等扰动的影响。为此,可将给水流量信号引入,构成三冲量调节系统,如图1-2所示。图中LC 表示水位控制器(主回路),FC 表示给水流量控制器(副回路),二者构成一个串级调节系统,在实现锅炉水位控制的同时,可以快速消除给水系统扰动影响;而蒸汽流量作为前馈量用于消除“虚假水位”的影响。

机电传动控制课程设计

机电传动控制课程设计 一、目录 引言 2 设计说明相关内容 (一)、课程设计题目 3 (二)、设计目的及要求 3 (三)、设计内容 4 一、控制方案设计 4 二、线路设计 4 三、控制电路的设计 6 四、元件的选取 6 五、柜体设计 8 六、结束语 11 七、参考文献 12

二、引言 《机电传动控制》课程是机械制造及其自动化专业的一门必修专业基础课,它是机电一体化人才所需电知识结构的躯体。在学习《机电传动控制》这门课程的时候,我能够深刻的体会到其重要性。作为机械类专业本基础教材,本课程涵盖了经典控制理论的基本原理和基本知识,内容与机械类课程现代控制理论相衔接。本书所讲内容突出机电结合,电为机用。在保证基本内容的前提下,简化理论分析,加强反映了当前机电领域的新技术和新知识,加强实例的分析、设计,力求做到内容深入浅出、重点突出,以利于我们开拓思路、深化知识。《机电传动控制》是机械设计制造及其自动化专业系列的教材之一,可以作为机械类专业及与之相近专业的同学们学习和研究。本课程不仅在于它是一门系统理论基础课程,是我们掌握控制论的基础知识,解决机械工程中的控制问题,更重要的是通过呵护唯物辩证法的方法论的建明阐述,使我们学会用控制理论观点,系统论方法,分析、处理机械工程中遇到的难题,启迪和发展我们的思维,培养我们分析问题和解决问题的能力。 由于现代科学和计算机技术的迅速发展,控制理论应用于机械工程的重要性日益明显。将理论联系实际,展开设计的课程设计实践,可以激发我们对该课程的学习兴趣而且能够让我们初步掌握系统性能分析及系统设计的基本方法,为专业课学习和参加控制工程实践打下必要的基础。由此可见,本次课程设计势在必行!

自动控制原理课程设计实验

上海电力学院 自动控制原理实践报告 课名:自动控制原理应用实践 题目:水翼船渡轮的纵倾角控制 船舶航向的自动操舵控制 班级: 姓名: 学号:

水翼船渡轮的纵倾角控制 一.系统背景简介 水翼船(Hydrofoil)是一种高速船。船身底部有支架,装上水翼。当船的速度逐渐增加,水翼提供的浮力会把船身抬离水面(称为水翼飞航或水翼航行,Foilborne),从而大为减少水的阻力和增加航行速度。 水翼船的高速航行能力主要依靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求系统使浮力稳定不变,相当于使纵倾角最小。 航向自动操舵仪工作时存在包括舵机(舵角)、船舶本身(航向角)在内的两个反馈回路:舵角反馈和航向反馈。 当尾舵的角坐标偏转错误!未找到引用源。,会引起船只在参考方向上发生某一固定的偏转错误!未找到引用源。。传递函数中带有一个负号,这是因为尾舵的顺时针的转动会引起船只的逆时针转动。有此动力方程可以看出,船只的转动速率会逐渐趋向一个常数,因此如果船只以直线运动,而尾舵偏转一恒定值,那么船只就会以螺旋形的进入一圆形运动轨迹。 二.实际控制过程 某水翼船渡轮,自重670t,航速45节(海里/小时),可载900名乘客,可混装轿车、大客车和货卡,载重可达自重量。该渡轮可在浪高达8英尺的海中以航速40节航行的能力,全靠一个自动稳定控制系统。通过主翼上的舵板和尾翼的调整完成稳定化操作。该稳定控制系统要保持水平飞行地穿过海浪。因此,设计上要求该系统使浮力稳定不变,相当于使纵倾角最小。

上图:水翼船渡轮的纵倾角控制系统 已知,水翼船渡轮的纵倾角控制过程模型,执行器模型为F(s)=1/s。 三.控制设计要求 试设计一个控制器Gc(s),使水翼船渡轮的纵倾角控制系统在海浪扰动D (s)存在下也能达到优良的性能指标。假设海浪扰动D(s)的主频率为w=6rad/s。 本题要求了“优良的性能指标”,没有具体的量化指标,通过网络资料的查阅:响应超调量小于10%,调整时间小于4s。 四.分析系统时域 1.原系统稳定性分析 num=[50]; den=[1 80 2500 50]; g1=tf(num,den); [z,p,k]=zpkdata(g1,'v'); p1=pole(g1); pzmap(g1) 分析:上图闭环极点分布图,有一极点位于原点,另两极点位于虚轴左边,故处于临界稳定状态。但还是一种不稳定的情况,所以系统无稳态误差。 2.Simulink搭建未加控制器的原系统(不考虑扰动)。

智能电风扇控制器设计单片机课程设计

智能电风扇控制器设计单片机课程设计

智能电风扇控制器设计 单片机课程设计 设计题目:智能电风扇控制器设计

neuq 目录 序言 一、设计实验条件及任务 (2) 1.1、设计实验条件 1.2、设计任务 (2) 二、小直流电机调速控制系统的总体方案设计 (3) 2.1、系统总体设计 (3) 2.2、芯片选择 (3) 2.3、DAC0832芯片的主要性能指标 (3) 2.4、数字温度传感器DS18B20 (3) 三、系统硬件电路设计 (4) 3.1、AT89C52单片机最小系统 (5) 3.2、DAC0832与AT89C52单片机接口电路设计 (6) 3.3、显示电路与AT89C52单片机接口电路设计 (7) 3.4、显示电路与AT89C52单片机电路设计 (8) 四、系统软件流程设计 (7) 五、调试与测试结果分析 (8) 5.1、实验系统连线图 (8) 5.2、程序调试................................................,. (8) 5.3、实验结果分析 (8) 六、程序设计总结 (10) 七、参考文献............................................ (11) 附录 (12) 1、源程序代码 (12) 2、程序原理图 (23)

序言 传统电风扇不能根据温度的变化适时调节风力大小,对于夜间温差大的地区,人们在夏夜使用电风扇时可能遇到这样的问题:当凌晨降温的时候电风扇依然在工作,可是人们因为熟睡而无法察觉,既浪费电资源又容易引起感冒,传统的机械定时器虽然能够控制电风扇在工作一定后关闭,但定时范围有限,且无法对温度变化灵活处理。鉴于以上方面的考虑,我们需要设计一种智能电风扇控制系统来解决这些问题,使家用电器产品趋向于自动化、智能化、环保化和人性化,使得由微机控制的智能电风扇得以出现。 本文介绍了一种基于AT89C52单片机的智能电风扇调速器的设计,该设计主要硬件部分包括AT89C52单片机,温度传感器ds18b20,数模转换DAC0809 电路,电机驱动和数码管显示电路,系统可以实现手动调速和自动调速两种模式的切换,在自动工作模式下,系统能够能够根据环境温度实现自动调速;可以通过定时切换键和定时设置键实现系统工作定时,使得在用户需求的定时时间到后系统自动停止工作。 在日常生活中,单片机得到了越来越广泛的应用,本系统采用的AT89C52单片机体积小、重量轻、性价比高,尤其适合应用于小型的自动控制系统中。系统电风扇起停的自动控制,能够解决夏天人们晚上熟睡时,由于夜里温度下降而导致受凉,或者从睡梦中醒来亲自开关电风扇的问题,具有重要的现实意义。 一、设计实验条件及任务 1.1、设计实验条件 单片机实验室 1.2、设计任务 利用DAC0832芯片进行数/模控制,输出的电压经放大后驱动小直流电机的速度进行数字量调节,并显示运行状态DJ-XX和D/ A输出的数字量。 巩固所学单片知识,熟悉试验箱的相关功能,熟练掌握Proteus仿真软件,培养系统设计的思路和科研的兴趣。实现功能如下: ①系统手动模式及自动模式工作状态切换。

控制系统仿真课程设计

控制系统数字仿真课程设计 1.课程设计应达到的目的 1、通过Matlab仿真熟悉课程设计的基本流程; 2、掌握控制系统的数学建模及传递函数的构造; 3、掌握控制系统性能的根轨迹分析; 4、学会分析系统的性能指标; 2.课程设计题目及要求 设计要求 1、进行系统总体设计,画出原理框图。(按给出的形式,自行构造数学模型,构造成1 个零点,三个极点的三阶系统,主导极点是一对共轭复根) G(s)=10(s+2)/(s+1)(s2+2s+6) 2、构造系统传递函数,利用MATLAB绘画系统的开环和闭环零极点图;(分别得 到闭环和开环的零极点图)参考课本P149页例题4-30 clear; num = [10,20]; den =[1 3 8 6]; pzmap(num,den) 3、利用MATLAB绘画根轨迹图,分析系统随着根轨迹增益变化的性能。并估算超 调量=16.3%时的K值(计算得到)。参考课本P149页例题4-31 clear num=[10,20]; den=[1 3 8 6]; sys=tf(num,den); rlocus(sys) hold on jjx(sys); s=jjx(sys); [k,Wcg]=imwk(sys)

set(findobj('marker','x'),'markersize',8,'linewidth',1.5,'Color','k'); set(findobj('marker','o'),'markersize',8,'linewidth',1.5,'Color','k'); function s=jjx(sys) sys=tf(sys); num=sys.num{1}; den=sys.den{1}; p=roots(den); z=roots(num); n=length(p); m=length(z); if n>m s=(sum(p)-sum(z))/(n-m) sd=[]; if nargout<1 for i=1:n-m sd=[sd,s] end sysa=zpk([],sd,1); hold on; [r,k]=rlocus(sysa); for i=1:n-m plot(real(r(i,:)),imag(r(i,:)),'k:'); end end else disp; s=[]; end function [k,wcg]=imwk(sys) sys=tf(sys) num=sys.num{1} den=sys.den{1}; asys=allmargin(sys); wcg=asys.GMFrequency; k=asys. GainMargin;

相关主题
文本预览
相关文档 最新文档