当前位置:文档之家› 模电multisim仿真复习过程

模电multisim仿真复习过程

模电multisim仿真复习过程
模电multisim仿真复习过程

模电m u l t i s i m仿真

模拟电子技术基础课程设计说明书题目: Multisim仿真应用

学生姓名:陈明

学号:201212020201

院(系):理学院

专业:应用物理学

指导教师:李冠强

2014 年 6 月 10日

目录

4-2消除交越失真的互补输出级的测试数据 (8)

4-2消除交越失真的互补输出级的测试数据 (8)

4-2消除交越失真的互补输出级的测试数据 (8)

第0节背景

Multisim是一个完整的设计工具系统,提供了一个非常大的元件数据库,并提供原理图输入接口、全部的数模Spice仿真功能、VHDL设计接口与仿真功能、 FPGA/CPLD 综合、RF设计能力和后处理功能还可以进行从原理图到PCB布线工具包(如:Ultiboard)的无缝隙数据传输。

随着计算机的飞速发展,以计算机辅助设计为基础的电子设计自动化技术(EDA)已经

成为电子学领域的重要学科。EDA工具使电子电路和电子系统的设计产生了革命性的

变化,它摒弃了靠硬件调试来大道设计目标的繁琐过程,实现了硬件设计软件化。

Multisim具有齐全的元器件模型参数库和比较齐全的仪器仪表库,可模拟实验

室内的操作进行各种实验。学习Multisim可以提高仿真能力、综合能力和设计能

力,还可进一步提高实践能力。

第1节Multisim应用举例——二极管的特性的研究

1.1 题目

研究二极管对直流量和交流量表现的不同特点。

1.2 仿真电路

仿真电路如图1-1所示。因为只有在低频小信号下二极管才能等效成一个电阻所以图中交流信号的频率为1kHz、数值为10mV(有效值)。由于交流信号很小,输出电压不失真故可以认为直流电压表(测平均值)的读书是电阻上直流电压值。

(a)(b)

图1-1二极管静态和动态电压的测试

(a)直流电源电压为1V时的情况(b)直流电源电压为4V时的情况

1.3仿真内容

(1)在直流电流不同时二极管管压降的变化。利用直流电压表测电阻上的电压,从而得到二极管管压降。

(2)在直流电流不同时二极管交流等效电阻的变化。利用示波器测的电阻上交流电压的峰值,从而得到二极管交流电压的峰值。

1.4仿真结果

仿真结果如表1-1所示,表中交流电压均为峰值

表1-1 仿真数据

直流电源V1/V 交流信号

V2/V

R直流电压表

读数

UR

R交流电压

Ur/mV

二极管直流电

UD/V

二极管交流电

Ud/mV

1 10 353.847mV 9.32

2 0.65V 0.678

4 10 9.920mV 9.920 0.704V 0.080 1.5结论

(1)比较直流电流在1V和4V两种情况下二极管的直流管压降可知,二极管的直流电流越大管压降越大,直流管压降不是常量。

(2)比较直流电源在1V和4V两种情况下二极管的直流管的直流管压降可知,二极管的直流电流越大,其交流管压降越小,说明随着静态电流的增大,动态电阻将减小;两种情况下的交流压降均接近输入交流电压值,说明二极管动态电阻很小。

第2节Multisim应用举例——Rb变化对Q点和电压放大倍数的影响

2.1题目

研究Rb变化对Q点和的影响。

2.2仿真电路

仿真电路如图2-1所示。晶体管采用FMMT5179,其余参数BF = 133,RB = 5Ω。

(a)

(b)

图2-1阻容耦合共射放大电路的测试

(a)电路和测试仪器的解法(b)输入信号

增大后输出电压的波形

2.3仿真内容

(1)Rb=3MΩ和3.2MΩ时的UCEQ和Au.由于信号幅值很小,为1mv,输出电压不失真,故可以从外用表直流电压(为平均值)档读出静态管压降UCEQ。左边万用表显示Rb=3MΩ时的UCEQ,右边万用表显示3.2MΩ时的UCEQ,从示波器可以读出输出电压的峰值。(2)输入电压峰值逐渐增大到20mV,观察输出电压波形的变化情况。

2.4仿真结果

(1)Rb=3MΩ和 3.2MΩ时的UCEQ和Au

仿真结果如表2-1所示。

表2-1仿真数据

基极偏置电阻Rb/MΩ直流电压表

读数U CEQ/V

信号源峰值

U ipp/mV

示波器显示峰

值U opp/mV I CQ/mA |Au|

3 8.435 1 146.862 0.86 147

3.2 8.785 1 139.949 0.83 140 (2)将信号源V1峰值逐渐增大到10mV时输出电压波形正、负半轴幅值有明显差别。当V1峰值为20mV时,输出电压波形明显失真。

2.5结论

(1)Rb增大时,I CQ减小,U CEQ增大,|Au|减小。

在图2-1所示电路中,若r bb<<(1+β)U T/I EQ,则电压放大倍数

Au = -β.R L`/r be(2-1)......。

r be=r bb +(1+β)U T/I EQ (2-2)......。得 Au = -I CQ R L`/U T

表明几乎与晶体管无关,而仅与电路中电阻值和温度有关,且与I CQ成正比.因此调节电阻R b以改变I CQ,是改变阻容耦合共射放大电路电压放大倍数最有效的方法;而利用管子以

增大的方法,对的影响是不明显的。

(2)根据分析,实际的最大不失真输出电压小于理论计算值。产生这种误差的主要原因在于晶体管的输入、输出特性总是存在非线性,而理论分析是将晶体管特性做了线性化处理。对于实际电路,失真后的波形并不是顶部成平顶或底部呈平底,而是圆滑的曲线。测试放大电路时,可以通过输出电压波形正、负半轴幅值是否相等来判断电路是否产生失真。

第3节Multisim应用举例——直接耦合多级放大电路的调试

3.1题目

两级直接耦合放大电路的调试。

3.2仿真电路

图3-1中所示电路为两级直接耦合放大电路,第一级为双端输入单端输出差分放大电路,第二极为共射放大电路。

由于在分立元件中很难找到在任何温度下均具有完全相同特性的两只晶体管,因而就很难实现共模抑制比很高的差分放大电路。在Multisim环境下可以做到两只晶体管基本相同。

(a)

模电仿真实验 共射极单管放大器

仿真实验报告册 仿真实验课程名称:模拟电子技术实验仿真仿真实验项目名称:共射极单管放大器 仿真类型(填■):(基础■、综合□、设计□) 院系:专业班级: 姓名:学号: 指导老师:完成时间: 成绩:

一、实验目的 (1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。 (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。 (3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。 二、实验设备及材料 函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。 三、实验原理 电阻分压式共射极单管放大器电路如图所示。它的偏置电路采用(R W +R 1)和R 2组成的分压电路,发射极接有电阻R 4(R E ),稳定放大器的静态工作点。在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o ,从而实现了电压放大。 在图电路中,当流过偏置电阻R 1和R 2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC 为电源电压): CC 21W 2 BQ ≈ U R R R R U ++ (3-2-1) C 4 BE B EQ ≈I R U U I -= (3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3) 电压放大倍数 be L 3u ||=r R R β A - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 图 共射极单管放大器

模电仿真实验报告。

模拟电路仿真实验报告 张斌杰生物医学工程141班 MUltiSim软件使用 一、实验目的 1、掌握MUltiSim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、MUItiSim软件介绍 MUItiSim是美国国家仪器(NI)有限公司推出的以WindOWS为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用MUItiSinl交互式地搭建电路原理图,并对电路进行仿真。MUltiSiIn提炼了SPICE 仿真的复杂内容,这样工程师无需懂得深入的SPlCE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过MUItiSiIn和,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到和测试这样一个完整的综合设计流程。 实验名称:

仪器放大器设计与仿真 二、实验目的 1、 掌握仪器放大器的设计方法 2、 理解仪器放大器对共模信号的抑制能力 3、 熟悉仪器放大器的调试功能 4、 掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏 表信 号发生器等虚拟仪器的使用 三、设计实验电路图: 四、测量实验结果: 出为差模放大为399mvo 五、实验心得: 应用MUIti S im 首先要准备好器件的PSPiCe 模型,这是最重要的,没有这个 东西免谈,当然SPiCe 高手除外。下面就可以利用MUItiSinl 的元件向导功 能制作 差模分别输入信号InW 第二条线与第三条线: 共模输入2mv 的的电压,输出为2mv 的电压。 第一条线输

Multisim三相电路仿真实验

实验六 三相电路仿真实验 一、实验目的 1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真; 2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结; 3、 加深对三相四线制供电系统中性线作用的理解。 4、 掌握示波器的连接及仿真使用方法。 5、 进一步提高分析、判断和查找故障的能力。 二、实验仪器 1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求 1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。 3.仿真分析三相电路的相关内容。 4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明 1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。这种联接方式的 特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。 2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。 3、电流、电压的“线量”与“相量”关系 测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。画仿真图时要注意。 负载对称星形联接时,线量与相量的关系为: (1) P L U U 3= (2)P L I I = 负载对称三角形联接时,线量与相量的关系为: (1)P L U U = (2)P L I I 3= 4、星形联接时中性线的作用 三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。

如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。 五、实验内容及参考实验步骤 (一)、建立三相测试电路如下: 图1 三相负载星形联接实验电路图 1.接入示波器:测量ABC三相电压波形。并在下表中绘出图形。 Timebase:_________/DIV 三相电压相位差:φ=__________。 (二)、三相对称星形负载的电压、电流测量 (1)使用Multisim软件绘制电路图1,图中相电压有效值为220V。 (2)正确接入电压表和电流表,J1打开,J2 、J3闭合,测量对称星形负载在三相四线制(有中性线)时各线电压、相电压、相(线)电流和中性线电流、中性点位移电压。记入表1中。 (3)打开开关J2,测量对称星形负载在三相三线制(无中性线)时电压、相电压、相(线)电流、中性线电流和中性点位移电压,记入表1中。 表1 三相对称星形负载的电压、电流 (4)根据测量数据分析三相对称星形负载联接时电压、电流“线量”与“相量”的关系。 结论: (三)、三相不对称星形负载的电压、电流测量 (1)正确接入电压表和电流表,J1闭合,J2 、J3闭合,测量不对称星形负载在三相

Multisim仿真实验报告

Multisim仿真实验报告 实验课程:数字电子技术 实验名称:Multisim仿真实验 姓名:戴梦婷 学号: 13291027 班级:电气1302班 2015年6月11日

实验一五人表决电路的设计 一、实验目的 1、掌握组合逻辑电路——五人表决电路的设计方法; 2、复习典型组合逻辑电路的工作原理和使用方法; 3、提高集成门电路的综合应用能力; 4、学会调试Multisim仿真软件,并实现五人表决电路功能。 二、实验器件 74LS151两片、74LS32一片、74LS04一片、单刀双掷开关5个、+5V直流电源1个、地线1根、信号灯1个、导线若干。 三、实验项目 设计一个五人表决电路。在三人及以上同意时输出信号灯亮,否则灯灭,用8选1数据选择器74LS151实现,通过Multisim仿真软件实现。 四、实验原理 1、输入变量:A B C D E,输出:F;

3、逻辑表达式 F= ABCDE+ABCDE+ABCDE+ABCDE+ ABCDE+ ABCDE+ABC DE+ABCDE+ ABCDE+ ABCDE+ABCDE+ABCDE+ ABCDE+ABCDE+ABCDE+ABCDE =ABCDE+ ABCDE+ABCDE+ ABCD+ABCDE+ABCDE+ABCD+ABCDE+ ABCD+ABCD+ABCD 4、对比16选1逻辑表达式,令A3=A,A2=B,A1=C,A0=D,D3=D5=D6=D9=D10=D12=E, D 7=D 11 =D 13 =D 14 =D 15 =1,D =D 1 =D 2 =D 4 =D 8 =0; 5、用74LS151拓展构成16选1数据选择器。 五、实验成果 用单刀双掷开关制成表决器,同意开关打到上线,否则打到下线。当无人同意时,信号指示灯不亮,如下图:

基于multisim的晶闸管交流电路仿真实验分析报告

基于multisim的晶闸管交流电路仿真实验报告

————————————————————————————————作者:————————————————————————————————日期:

自动化(院、系)自动化专业112 班组电力电子技术课 学号21 姓名易伟雄实验日期2013.11.24 教师评定 实验一、基于Multisim的晶闸管交流电路仿真实验 一、实验目的 (1)加深理解单相桥式半控整流电路的工作原理。 (2)了解晶闸管的导通条件和脉冲信号的参数设置。 二、实验内容 2.1理论分析 在单相桥式半控整流阻感负载电路中,假设负载中电感很大,且电路已工作于稳态。在u2正半周,触发角α处给晶闸管VT1加触发脉冲,u2经VT1和VD4向负载供电。u2过零变负时,因电感作用使电流连续,VT1继续导通。但因a点电位低于b点电位,使得电流从VD4转移至VD2,VD4关断,电流不再流经变压器二次绕组,而是由VT1和VD2续流。此阶段,忽略器件的通态压降,则ud=0,不会像全控桥电路那样出现ud为负的情况。 在u2负半周触发角α时刻触发VT3,VT3导通,则向VT1加反压使之关断,u2经VT3和VD2向负载供电。u2过零变正时,VD4导通,VD2关断。VT3和VD4续流,ud又为零。此后重复以上过程。 2.2仿真设计

(院、系)专业班组课学号姓名实验日期教师评定 触发脉冲的参数设计如下图

(院、系)专业班组课学号姓名实验日期教师评定 2.3仿真结果 当开关S1打开时,仿真结果如下图

(院、系)专业班组课学号姓名实验日期教师评定 三、实验小结与改进 此次实验在进行得过程中遇到了很多的问题,例如:触发脉冲参数的设置,元器件的选择等其中。还有一个问题一直困扰着我,那就是为什么仿真老是报错。后来,通过不断在实验中的调试发现,这是因为一些元器件的参数设置过小,导致调试出错。总的来说,这次实验发现了很多问题,但在反复的调试下,最后我还是完成了实验。同时,也让我认识到实践比理论更难掌握。通过不断的发现问题,然后逐一解决问题,最后得出自己的结论,我想实验的乐趣就在于此吧。 而对于当开关S1打开时的实验结果,这是因为出现了失控现象。我从书中发现:当一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半波,即半周期ud 为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形 另外,在实验过程中,我们如果进行一些改进:电路在实际应用中可以加设续流二极管,以避免可能发生的失控现象。实际运行中,若无续流二极管,则当α突然增大至180度或触发脉冲丢失时,会发生一个晶闸管持续导通而二极管轮流导通的情况,这使ud成为正弦半,即半周期ud为正弦,另外半周期ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形。有二极管时,续流过程由二极管完成,在续流阶段晶闸管关断,这就避免了某一个晶闸管持续导通从而导致失控的想象。同时续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗。

Multisim 10-正弦稳态交流电路仿真实验

暨南大学本科实验报告专用纸 课程名称电路分析CAI 成绩评定 实验项目名称正弦稳态交流电路仿真实验指导教师 实验项目编号05实验项目类型验证型实验地点计算机中心C305 学生姓学号 学院电气信息学院专业实验时间 2013 年5月28日 一、实验目的 1.分析和验证欧姆定律的相量形式和相量法。 2.分析和验证基尔霍夫定律的相量形式和相量法。 二、实验环境定律 1.联想微机,windows XP,Microsoft office, 2.电路仿真设计工具Multisim10 三、实验原理 1在线性电路中,当电路的激励源是正弦电流(或电压)时,电路的响应也是同频的正弦向量,称为正弦稳态电路。正弦稳态电路中的KCL和KVL适用于所有的瞬时值和向量形式。 2.基尔霍夫电流定律(KCL)的向量模式为:具有相同频率的正弦电流电路中的任一结点,流出该结点的全部支路电流向量的代数和等于零。 3. 基尔霍夫电压定律(KVL)的向量模式为:具有相同频率的正弦电流电路中的任一回路,沿该回路全部的支路电压向量的代数和等于零。 四、实验内容与步骤 1. 欧姆定律相量形式仿真 ①在Multisim 10中,搭建如图(1)所示正弦稳态交流实 验电路图。打开仿真开关,用示波器经行仿真测量,分别测

量电阻R、电感L、电容C两端的电压幅值,并用电流表测 出电路电流,记录数据于下表 ②改变电路参数进行测试。电路元件R、L和C参数不变, 使电源电压有效值不变使其频率分别为f=25Hz和f=1kHz 参照①仿真测试方法,对分别对参数改变后的电路进行相同 内容的仿真测试。 ③将三次测试结果数据整理记录,总结分析比较电路电源频 率参数变化后对电路特性影响,研究、分析和验证欧姆定律 相量形式和相量法。 暨南大学本科实验报告专用纸(附页) 欧姆定律向量形式数据 V Rm/V V Lm/V V Cm/V I/mA 理论计算值 仿真值(f=50Hz) 理论计算值 仿真值(f=25Hz) 理论计算值 仿真值(f=1kHz) 2.基尔霍夫电压定律向量形式 在Multisim10中建立如图(2)所示仿真电路图。 打开仿真开关,用并接在各元件两端的电压表经行 仿真测量,分别测出电阻R、电感L、电容C两端 的电压值。用窜连在电路中的电流表测出电路中流 过的电流I,将测的数记录在下表。 ②改变电路参数进行测试。电路元件R=300Ω、L=

模电实验报告

模拟电子技术基础实验报告 姓名:蒋钊哲 学号:2014300446 日期:2015.12.21

实验1:单极共射放大器 实验目的: 对于单极共射放大电路,进行静态工作点与输入电阻输出电阻的测量。 实验原理: 静态工作点的测量是指在接通电源电压后放大器输入端不加信号(通过隔直电容将输入端接地)时,测量晶体管集电极电流I CQ和管压降V CEQ。其中集电极电流有两种测量方法。 直接法:将万用表传到集电极回路中。 间接法:用万用表先测出R C两端的电压,再求出R C两端的压降,根据已知的R E的阻值,计算I CQ。 输出波底失真为饱和失真,输出波顶失真为截止失真。 电压放大倍数即输出电压与输入电压之比。 输入电阻是从输入端看进去的等效电阻,输入电阻一般用间接法进行测量。 输出电阻是从输出端看进去的等效电阻,输出电阻也用间接法进行测量。 实验电路:

实验仪器: (1)双路直流稳压电源一台。 (2)函数信号发生器一台。 (3)示波器一台。 (4)毫伏表一台。 (5)万用表一台。 (6)三极管一个。 (7)电阻各种组织若干。 (8)电解电容10uF两个,100uF一个。 (9)模拟电路试验箱一个。

实验结果: 经软件模拟与实验测试,在误差允许范围内,结果基本一致。

实验2:共射放大器的幅频相频 实验目的: 测量放大电路的频率特性。 实验原理: 放大器的实际信号是由许多频率不同的谐波组成的,只有当放大器对不同频率的放大能力相同时,放大的信号才不失真。但实际上,放大器的交流放大电路含有耦合电容、旁路电容、分布电容和晶体管极间电容等电抗原件,即使得放大倍数与信号的频率有关,此关系为频率特性。 放大器的幅频特性是指放大器的电压放大倍数与输入信号的频率之间的关系。在一端频率范围内,曲线平坦,放大倍数基本不变,叫作中频区。在中频段以外的频率放大倍数都会变化,放大倍数左右下降到0.707倍时,对应的低频和高频频率分别对应下限频率和上限频率。 通频带为: f BW=f H-f L 实验电路:

multisim电路仿真实验报告

模拟电子技术课程 multisim 仿真 一、目的 2.19 利用multisim 分析图P2.5所示电路中b R 、c R 和晶体管参数变化对Q 点、u A ? 、i R 、o R 和om U 的影响。 二、仿真电路 晶体管采用虚拟晶体管,12V C C V =。 1、当5c R k =Ω, 510b R k =Ω和1b R M =Ω时电路图如下(图1): 图 1 2、当510b R k =Ω,5c R k =Ω和10c R k =Ω时电路图如下(图2)

图 2 3、当1b R M =Ω时, 5c R k =Ω和10c R k =Ω时的电路图如下(图3) 图 3 4、当510b R k =Ω,5c R k =Ω时,β=80,和β=100时的电路图如下(图4)

图 4 三、仿真内容 1. 当5c R k =Ω时,分别测量510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 。由于输出电压很小,为1mV ,输出电压不失真,故可从万用表直流电压(为平均值)档读出静态管压降C E Q U 。从示波器可读出输出电压的峰值。 2. 当510b R k =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 3. 当1b R M =Ω时,分别测量5c R k =Ω和10c R k =Ω时的C E Q U 和u A ? 。 4. 当510b R k =Ω,5c R k =Ω时,分别测量β=80,和β=100时的C E Q U 和u A ? 。 四、仿真结果 1、当5c R k =Ω,510b R k =Ω和1b R M =Ω时的C E Q U 和u A ? 仿真结果如下表(表1 仿真数据)

模电PSPICE仿真实验报告

实验一晶体三极管共射放大电路 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件 条件一: 条件二: I 1>>I BQ V>>V BE I I =(5~10)I B V B =3~5V R E 由 V B V BE V B 再选定 I EQ I CQ 计算出Re R b2 I I ,由 V B V B I I (5~10)I B Q 计算出 m - Vcc V B R b1 再由 V CC V B (5~10)I BQ 计算出 Ri

Time 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: V1 12Vdc Rc 此时得到波形为: 400mV 200mV 0V -200mV 450us 500us 75k 3k 4.372V R2 50k Q1 Q2N2222 Re 2.2k C2 T 一 6.984V 10uF 彳Ce 100uF

2.0 V -4.0V 0s 50us 100us 口V(C2:2) V(C1:1) 150us 200us 250us 300us 350us 400us 450us 500us Time 此时出现饱和失真。 当RL开路时(设RL=1MEG Q)时: V1 输出波形为:

4.0V -4.0V 出现饱和失真 二、实验心得 这个实验我做了很长时间,主要是耗在静态工作点的调试上面。按照估计算出的Rb1、Rb2、Re的值带入电路进行分析时,电路出现失真,根据其失真的情况需要不停的调 节Rb1、Rb2和Re的值是电路输出不失真。 实验二差分放大电路 -、实验目的 1、学习差分放大电路的设计方法 2、学习差分放大电路静态工作的测试和调整方法 3、学习差分放大电路差模和共模性能指标的测试方法 二、实验内容 1. 测量差分放大电路的静态工作点,并调整到合适的数值。

Multisim实验报告

实验一 单级放大电路 一、实验目得 1、 熟悉mul tisim 软件得使用方法 2、 掌握放大器静态工作点得仿真方法及其对放大器性能得影响 3、 学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻得仿真方法,了解共射极电 路得特性 二、虚拟实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表 三、实验步骤 4、 静态数据仿真 电路图如下: 当滑动变阻器阻值为最大值得10%时,万用表示数为2。204V。 R151kΩ R25.1kΩR320kΩ R41.8kΩ R5 100kΩ Key=A 10 % R61.5kΩ V110mVrms 1000 Hz 0° C110μF C210μF C347μF 2Q1 2N2222A 3 R7 100Ω8 1 5 64XMM1 7

仿真得到三处节点电压如下 : 仿真数据(对地数据)单位:V 计算数据 单位:V 基极V(3) 集电极V(6) 发射级V(7) V be Vc e Rp 2。83387 6、12673 2.20436 0。6295 1 3、92237 10K Ω 5、 动态仿真一 (1)单击仪器表工具栏中得第四个(即示波器Oscillos cope),放置如图所示,并且连接电路、 (注意:示波器分为两个通道,每个通道有+与—,连接时只需要连接+即可,示波器默认得地已经接好、观察波形图时会出现不知道哪个波形就是哪个通道得,解决方法就是更改连接得导线颜色,即:右键单击导线,弹出,单击wir e colo r,可以更改颜色,同时示波器中波形颜色也随之改变) R151kΩ R25.1kΩR3 20kΩ R41.8kΩ R5 100kΩ Key=A 10 % V110mVrms 1000 Hz 0° V212 V C110μF C210μF C347μF 2Q1 2N2222A 3 R7100Ω8 1 XSC1 A B Ext Trig + + _ _ + _ 746R61.5kΩ 5

模电仿真实验报告。

模电仿真实验报告。

————————————————————————————————作者:————————————————————————————————日期:

模拟电路仿真实验报告 张斌杰生物医学工程141班学号6103414032 Multisim软件使用 一、实验目的 1、掌握Multisim软件的基本操作和分析方法。 二、实验内容 1、场效应管放大电路设计与仿真 2、仪器放大器设计与仿真 3、逻辑电平信号检测电路设计与仿真 4、三极管Beta值分选电路设计与仿真 5、宽带放大电路设计与仿真 三、Multisim软件介绍 Multisim是美国国家仪器(NI)有限公司推出的以Windows为基础的仿真工具,适用于板级的模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。工程师们可以使用Multisim交互式地搭建电路原理图,并对电路进行仿真。Multisim提炼了SPICE仿真的复杂内容,这样工程师无需懂得深入的SPICE技术就可以很快地进行捕获、仿真和分析新的设计,这也使其更适合电子学教育。通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 一、实验名称: 仪器放大器设计与仿真 二、实验目的 1、掌握仪器放大器的设计方法 2、理解仪器放大器对共模信号的抑制能力 3、熟悉仪器放大器的调试功能 4、掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器,毫伏表信 号发生器等虚拟仪器的使用 三、设计实验电路图:

模拟电子线路multisim仿真实验报告

MULTISIM 仿真实验报告 实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器的静态工作点的仿真方法,及对放大器性能的影响。 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻的仿真方法,了

解共射级电路的特性。 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1.仿真电路图 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 1 R7 5.1kΩ 9 XMM1 6 E级对地电压25.静态数据仿真

仿真数据(对地数据)单位;V计算数据单位;V 基级集电极发射级Vbe Vce RP 10k 26.动态仿真一 1.单击仪表工具栏的第四个,放置如图,并连接电路。 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9

2.双击示波器,得到如下波形 5.他们的相位相差180度。 27.动态仿真二 1.删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2.重启仿真。

模电实验报告直流稳压电源设计.

模拟电路仿真实验 实验报告 班级: 学号: 姓名:

集成直流稳压电源的设计 一、实验目的 1. 学习用变压器,整流二极管,滤波电容及集成稳压器设计直流稳压电源。 2. 掌握直流稳压电路的调试及主要技术指标的测试方法。 3. 利用仿真实验,深入理解整流滤波的原理。 二、设计指标与要求 设计指标:设计两个电路: (1)电路一:同时输出V 12±电压,A I o 8.0max =。 (2)电路二:V V 9~3o ++=连续可调,A I 8.0max o =。 (3)两者的性能指标:mV V p 5op ≤?-。,3 105-?≤U S 。 三、实验原理与分析 直流稳压电源的基本原理 直流稳压电源一般由电源变压器T 、整流滤波电路及稳压电路所组成。 基本框图如下。各部分作用: 1. 电源变压器T 的作用是将220V 的交流电压变换成整流滤波电路所需要的交流电压U i 。 变压器副边与原边的功率比为P 2/P 1=n ,式中n 是变压器的效率。 2. 整流电路:整流电路将交流电压U i 变换成脉动的直流电压。再经滤波电路滤除较大的波 纹成分,输出波纹较小的直流电压U 1。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。 3. 滤波电路: 整流 电路 U i U o 滤波 电路 稳压 电路 电源 变压器 ~ 直流稳压电源的原理框图和波形变换

各滤波电路C 满足R L -C=(3~5)T/2,式中T 为输入交流信号周期,R L 为整流滤波电路的等效负载电阻。 4. 稳压电路: 常用的稳压电路有两种形式:一是稳压管稳压电路,二是串联型稳压电路。二者的工作原理有所不同。稳压管稳压电路其工作原理是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。它一般适用于负载电流变化较小的场合。串联型稳压电路是利用电压串联负反馈的原理来调节输出电压的。集成稳压电源事实上是串联稳压电源的集成化。实验中为简化电路,我们选择集成稳压器(三端稳压器)作为电路的稳压部分。集成稳压器的W7800系列输出正电压5V 、6V 、9V 、12V 、15V 、18V 、24V ,输出电流为1.5A (W7800)、0.5A (W78M00)、0.1A (W78L00);W7900系列输出负电压-5V 、-6V 、-9V 、-12V 、-15V 、-18V 、-24V ,输出电流为1.5A (W7900)、0.5A (W79M00)、0.1A (W79L00)。 四、计算机仿真部分 1、半波整流电路 仿真电路图如图所示。

Multisim数字电路仿真实验报告

基于Multisim数字电路仿真实验 一、实验目的 1.掌握虚拟仪器库中关于测试数字电路仪器的使用方法,入网数字信号发生器和逻辑分析仪的使用。 2.进一步了解Multisim仿真软件基本操作和分析方法。 二、实验内容 用数字信号发生器和逻辑分析仪测试74LS138译码器逻辑功能。 三、实验原理 实验原理图如图所示: 四、实验步骤 1.在Multisim软件中选择逻辑分析仪,字发生器和74LS138译码器; 2.数字信号发生器接138译码器地址端,逻辑分析仪接138译码器输出端。并按规定连好译码器的其他端口。 3.点击字发生器,控制方式为循环,设置为加计数,频率设为1KHz,并设置显

示为二进制;点击逻辑分析仪设置频率为1KHz。相关设置如下图 五、实验数据及结果 逻辑分析仪显示图下图

实验结果分析:由逻辑分析仪可以看到在同一个时序74LS138译码器的八个输出端口只有一个输出为低电平,其余为高电平.结合字发生器的输入,可知.在译码器的G1=1,G2A=0,G2B=0的情况下,输出与输入的关系如下表所示

当G1=1,G2A=0,G2B=0中任何一个输入不满足时,八个输出都为1 六、实验总结 通过本次实验,对Multisim的基本操作方法有了一个简单的了解。同时分析了38译码器的功能,结果与我们在数字电路中学到的结论完全一致。 实验二基于Multisim的仪器放大器设计 一、实验目的 1.掌握仪器放大器的实际方法; 2.理解仪器放大器对共模信号的抑制能力; 3.熟悉仪器放大器的调试方法; 4.掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器、毫伏表、信号发生器等虚拟仪器的使用方法。

东南大学模电实验报告 实验一 运算放大器的基本应用

东南大学电工电子实验中心 实验报告 课程名称:模拟电子电路实验 第一次实验 实验名称:运算放大器的基本应用 院(系):自动化学院专业:自动化 姓名:某某学号:08015 实验室: 101实验组别: 同组人员:无实验时间:2017年3月29日

评定成绩:审阅教师: 实验一运算放大器的基本应用 一、实验目的: 1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法; 2、熟练掌握运算放大电路的故障检查和排除方法; 3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、熟练掌握运算放大电路的增益、幅频特性传输曲线测量方法。 二、预习思考: 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释参数含义。

2、设计一个反相比例放大器,要求:|A|=10,Ri>10KΩ,R=100 KΩ,并用Multisim仿LV真;(1)仿真原理图 (2)参数选择计算 因为要求|A|=10,即|V/V|= |-R/R|=10,故取R=10R,输入电阻尽量大些,取:1iv1F0F R=15kΩ,R=150 kΩ, R=100 kΩL1F (3)仿真结果 当输入电压为时,输出电压为,放大倍数为,与理论值10接近。 3、设计一个同相比例放大器,要求:|A|=11,Ri>10KΩ,R=100 KΩ,并用Multisim仿LV真。(1)仿真原理图 (2)参数选择计算

Multisim实验报告

实验一单级放大电路 一、实验目的 1、熟悉multisim软件的使用方法 2、掌握放大器静态工作点的仿真方法及其对放大器性能的影响 3、学习放大器静态工作点、放大电压倍数、输入电阻、输出电阻的仿真方法,了解共射极 电路的特性 二、虚拟实验仪器及器材 双踪示波器、信号发生器、交流毫伏表、数字万用表 三、实验步骤 4、静态数据仿真 电路图如下: 当滑动变阻器阻值为最大值的10%时,万用表示数为2.204V。

仿真得到三处节点电压如下: 5、动态仿真一 (1)单击仪器表工具栏中的第四个(即示波器Oscilloscope),放置如图所示,并且连接电路。 (注意:示波器分为两个通道,每个通道有+和-,连接时只需要连接+即可,示波器默认

的地已经接好。观察波形图时会出现不知道哪个波形是哪个通道的,解决方法是更改连接的导线颜色,即:右键单击导线,弹出,单击wire color ,可以更改颜色,同时示波器中波形颜色也随之改变) (2)右键V1,出现properties ,单击,出现 对话框,把voltage 的数据改为10mV ,Frequency 的数据改为1KHz ,确定。 (3)单击工具栏中运行 按钮,便可以进行数据仿真。 (4)双击 图标,得到如下波形: 电路图如下: 示波器波形如下: 由图形可知:输入与输出相位相反。 XSC1 A B Ext Trig + + _ _ +_

6、 动态仿真二 (1)删除负载电阻R6,重新连接示波器如图所示 (2)重新启动仿真,波形如下: R151kΩ R25.1kΩR3 20kΩ R41.8kΩ R5 100kΩ Key=A 10 % V110mVrms 1000 Hz 0° V212 V C110μF C210μF C347μF 2Q1 2N2222A 3 R7100Ω8 1 XSC1 A B Ext Trig + + _ _ + _ 740 5 6

模电PSPICE仿真实验报告

实验一 晶体三极管共射放大电路 一、 实验目的 1、 学习共射放大电路的参数选取方法。 2、 学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。 3、 学习放大电路的电压放大倍数和最大不失真输出电压的分析方法 4、 学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。 一、实验内容 确定并调整放大电路的静态工作点。 为了稳定静态工作点,必须满足的两个条件: 条件一:I 1>>I BQ I 1=(5~10)I B 条件二:V B >>V BE V B =3~5V 由 B BE B E EQ CQ V V V R I I -= =计算出Re 再选定I 1,由 21 (5~10)B B b BQ V V R I I = = 计算出R b2 再由 11 (5~10)B CC B b BQ Vc c V V V R I I --= = 计算出R b1 FREQ = 3.5k VAMPL = 4m VOFF = 0 设置的参数如图所示,输出波形为:

Time 0s 50us 100us 150us 200us 250us 300us 350us 400us 450us 500us V(C2:2) V(C1:1) -400mV -200mV 0V 200mV 从输出波形可以看出没有出现失真,故静态工作点设置的合适。 改变电路参数: FREQ = 3.5k VAMPL = 40m VOFF = 0 此时得到波形为:

Time 0s 50us 100us 150us 200us 250us 300us 350us 400us 450us 500us V(C2:2) V(C1:1) -4.0V -2.0V 0V 此时出现饱和失真。 当RL 开路时(设RL=1MEG Ω)时: FREQ = 3.5k VAMPL = 40m VOFF = 0 输出波形为:

模电仿真实验报告

模电仿真实验报告

实验一单级放大电路 (3) 动态仿真一: (4) 动态仿真二: (4) 动态仿真三: (6) 思考题: (7) 实验二射极跟随器 (8) 测量电压放大倍数: (10) 测量输入电阻: (10) 测量输出电阻: (11) 思考题: (12) 实验三负反馈放大电路 (13) 思考题: (15) 实验四差动放大电路 1、调节放大器零点 (17) 2、测量差模放大电路 (18) 3、测量共模电压放大倍数 (19) 思考题: (19) 实验五 OTL功率放大器 1、静态工作点的调整 (21) 2、最大不失真输出功率 (21) 3、效率η (21) 4、输入灵敏度 (22) 5、频率响应的测试 (22) 思考题: (22) 实验六集成运算放大器运用的测量 (23) 1、按如下所示输入电路 (23) 2、静态测试,记录集成电路的各管脚直流电压 (23) 3、最大功率测试 (23) 4、频率响应测试 (24) 5、放大倍数测量 (24) 实验七波形发生器应用的测量 (24) (A)正弦波发生器 (24) (B)方波发生器 (26) (C)三角波和方波发生器 (28)

实验一 单级放大电路 R25.1kΩ 5%R61.5kΩ5% R41.8kΩ5% R320kΩ5% R1 51kΩ5% C110μF C210μF R5 100kΩ Key=A 10 % Q12N2222A V110mVrms 1kHz 0° V212 V C347μF 14 8 7XMM1 R7 100Ω5%690 5 3 仿真数据单位:V 计算数据单位:V 基极 集电极 发射极 Vbe Vce Rp 2.83387 6.12673 2.20436 0.62951 3.92237 10K Ω

multisim仿真实验报告格式

模拟电子技术课程 电流负反馈偏置的共发射极放大电路仿真实验报告学号:王海洋姓名:5090309560 一、本仿真实验的目的 1.研究在电流负反馈偏置的共发射极放大电路中各个电路元件参数与电路中电 压增益A us=v o/v s、输入电阻R i、输出电阻R o以及低频截止频率f L的关系; 2.进一步理解三极管的特性以及电流负反馈偏置的共发射极放大电路的工作原 理; 3.进一步熟悉Multisim软件的使用方法。 二、仿真电路 图1 电流负反馈偏置的共发射极放大电路 注:在此电路中,三极管为BJT-NPN-VRTUAL*,设置参数为BF=100,RB=100Ω(即设置晶体管参数为β=100,r bb’=100Ω)。

三、仿真内容 1.计算电路的电压增益A us=v o/v s,输入电阻R i及输出电阻R o; 2.研究耦合电容、旁路电容对低频截止频率f L的影响: 1)令C2,C E足够大,计算由C1引起的低频截止频率f L1; 2)令C1,C E足够大,计算由C2引起的低频截止频率f L2; 3)令C1,C2足够大,计算由C E引起的低频截止频率f L3; 4)同时考虑C1,C2,C E时的低频截止频率f L; 3.采用图1所示的电路结构,使用上述给定的晶体管参数,设R L=3kΩ,R S=100 Ω,设计其它电路元件参数,满足下列要求:A us≥40,f L≤80Hz。 四、仿真结果 1.计算电路的电压增益A us=v o/v s,输入电阻R i及输出电阻R o; 仿真电路如图2所示: 图2 测量结果如下所示: 1)Vs有效值为5mv,频率为60Hz: 测得A us=-29.2,R i=5.60kΩ,R o=3.35 kΩ。 2)Vs有效值为5mv,频率为100Hz: 测得A us=-43.5,R i=3.89kΩ,R o=3.33kΩ。 3)Vs有效值为5mv,频率为1kHz: 测得A us=-76.1,R i=2.27kΩ,R o=3.31kΩ。 4)Vs有效值为5mv,频率为1kHz: 测得A us=-77.1,R i=2.25kΩ,R o=3.30kΩ。

模拟电子秤仿真实验报告

阿坝师范高等专科学校电子信息工程系课程设计模拟电子秤仿真设计 学生姓名樊益明 专业名称计算机控制技术 班级计控班 学号20113079 阿坝师范高等专科学校电子信息工程系 二○一三年四月

模拟电子秤设计报告 一、设计原理及要求 设计原理: 电子秤系统设计框图大致如图 1 所示: 四个定值电阻加一 个电位器,模拟应 变式传感器,采 集微小的电压信号 利用差分放大电 路,对采集到的微小 电压放大到0~~5V 51单片机:处理和控制单元,整个模拟 仿真的灵魂原件。1、将ADC0832 转化来 的数据处理后存放在重量(Wight )并用 LCD 显示;2、将键盘输入的数据赋给单 价(Price);3、将总价(Total_price ) 计算出来,并显示 图 1 系统整体设计框图 设计要求: 1、要求单价由键盘输入; 2、重量的精度能够达到十分之一千克; 3、按键有提示音; 4、有去皮的功能; ADC0832:8位2进 制模数转换器;将放大 的电压信号转化为数值 信号,方便单片机的处 MM74C92:2 键盘解码器, 方便了对4x4 键盘的扫描。 键盘的作用主 要在单价的输 入上。

二、主要硬件及仿真软件 硬件: (一)、ADC0832 ADC0832 是一种8 位分辨率、双通道A/D 转换芯片。由于它体积小,兼容性,性价比高而深受单片机爱好者及企业欢迎。图 2.1为ADC0832 在Proteus中的逻辑符号 图 2.1 ADC0832 逻辑符号 芯片接口说明: CS 片选使能,低电平芯片使能; CH0 模拟输入通道0,或作为IN+/- 使用。 CH1 模拟输入通道1,或作为IN+/- 使用。 GND 芯片参考0 电位(地)。 DI 数据信号输入,选择通道控制。 DO 数据信号输出,转换数据输出。 CLK 芯片时钟输入。 Vcc/REF 电源输入及参考电压输入(复用)。 单片机对ADC0832 的控制原理: 正常情况下ADC0832 与单片机的接口应为 4 条数据线,分别是CS、CLK 、DO、DI但由于DO 端与DI 端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO 和DI 并联在一根数据线上使用。(见图 3.6)当ADC0832 未工作时其CS 输入端应为高电平,此时芯片禁用,CLK 和DO/DI 的电平可任意。当要进行A/D 转换时,须先将CS 使能端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK 输入时钟脉冲,DO/DI 端则使用DI 端输入通道功能选择的数据信号。在第 1 个时钟脉冲的下沉之前DI 端必须是高电平,表示启始信号。在第2、3 个脉冲下沉之前DI 端应输入 2 位数据用于选择通道功 能,其功能项见表1。

multisim仿真实验报告

实验一单级放大电路 一、实验目得 1、熟悉multisim软件得使用方法 2、掌握放大器得静态工作点得仿真方法,及对放大器性能得影响。 MULTISIM 仿真实验报告 3、学习放大器静态工作点、电压放大倍数,输入电阻、输出电阻得仿真方法,了解共射级电路得特性. 二、虚拟实验仪器及器材 双踪示波器信号发生器交流毫伏表数字万用表 三、实验步骤 1、仿真电路图 E级对地电压 25、静态数据仿真

仿真数据(对地数据)单位;V 计算数据单位;V 基级集电极发射级Vbe Vce RP 2、834 6、126 2、204 0、633、922 10k 26、动态仿真一 1、单击仪表工具栏得第四个,放置如图,并连接电路. V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 R7 5.1kΩ XSC1 A B Ext Trig + + _ _+_ 6 1 9 2、双击示波器,得到如下波形

5、她们得相位相差180度。27、动态仿真二 1、删除负载电阻R6 V1 10mVrms 1kHz 0° R1 100kΩ Key=A 10 % R2 51kΩ R3 20kΩ R4 5.1kΩ Q1 2N2222A R5 100Ω R6 1.8kΩ C1 10μF C2 10μF C3 47μF 3 7 V2 12 V 4 5 2 XSC1 A B Ext Trig + + _ _+_ 6 1 9 2、重启仿真。 仿真数据(注意填写单位) 计算 Vi有效值Vo有效值Av

相关主题
文本预览
相关文档 最新文档