1--二次函数的概念、图象和性质
- 格式:pdf
- 大小:553.48 KB
- 文档页数:9
4.2.2 二次函数的性质与图象1.二次函数的概念函数y =ax 2+bx +c (a ≠0)叫做二次函数,其定义域为R . 2.二次函数的性质与图象思考:由函数y=ax2(a≠0)的图象作怎样的变换就能得到函数y=a(x+h)2+k(a≠0)的图象?[提示]y=a(x+h)2+k(a≠0)的图象可以看作由y=ax2的图象平移得到的,h决定了二次函数图象的左右平移,而且“h正左移,h负右移”;k决定了二次函数图象的上下平移,而且“k正上移,k负下移”.1.二次函数y=4x2-mx+5的图象的对称轴为直线x=-2,则当x=1时,y的值为()A.-7B.1C.17D.25D[因为函数y=4x2-mx+5的图象的对称轴为直线x=-2,所以m8=-2,即m=-16,所以y=4x2+16x+5,所以当x=1时,y=25.] 2.函数y=-2(x+1)2+8的最值情况是()A.最小值是8,无最大值B.最大值是-2,无最小值C.最大值是8,无最小值D.最小值是-2,无最大值C[y=-2(x+1)2+8的图象开口向下,所以当x=-1时取最大值8,无最小值.]3.把函数y=x2-2x的图象向右平移2个单位,再向下平移3个单位所得图象对应的函数解析式为________.y=x2-6x+5[将函数y=x2-2x的图象平移后,得到的解析式为y=(x-2)2-2(x-2)-3=x2-6x+5.]4.已知函数f(x)=(m-1)x2-2mx+3是偶函数,则f(x)在(-∞,0)上________(填“单调递增”或“单调递减”).单调递增[因为f(x)=(m-1)x2-2mx+3是偶函数,所以2m=0,即m=0,所以f(x)=-x2+3,因为二次函数对应的抛物线开口向下,所以f(x)=-x2+3在(-∞,0)上单调递增.]【例1】()A B C D(2)函数y=x2+m的图象向下平移2个单位,得到函数y=x2-1的图象,则实数m=________.(3)当m为何值时,函数y=(2-m)xm2+m-4+(m+8)x是二次函数?(1)D(2)1[(1)A图,a<0,c<0,-b2a<0,∴b<0,∴abc<0,不合题意.B图,a<0,c>0,-b2a>0,∴b>0,∴abc<0,不合题意.C图,a>0,c<0,-b2a<0,∴b>0,∴abc <0,不合题意.D 图,a >0,c <0,-b2a >0,∴b <0,此时abc >0满足题意,故选D. (2)y =x 2-1的图象向上平移2个单位,得到函数y =x 2+1的图象,则m =1.](3)解:由二次函数的定义知⎩⎨⎧2-m ≠0,m 2+m -4=2,即⎩⎨⎧m ≠2,m 2+m -6=0,解得⎩⎨⎧m ≠2,m =-3或m =2,所以m =-3.所以当m =-3时,函数y =(2-m )xm 2+m -4+(m +8)x 为二次函数.观察图象主要是把握其本质特征:开口方向决定a 的符号,在y 轴上的交点决定c 的符号(值),对称轴的位置决定-b2a 的符号.另外,还要注意与x 轴的交点,函数的单调性等,从而解决其他问题.1.在同一直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( )A BC DD [当m >0时,函数y =mx +m 递增,且在y 轴上的截距为正,函数y =-mx 2+2x +2的图象开口向下,对称轴在y 轴右侧.当m <0时,函数y =mx +m 递减,且在y 轴上的截距为负,函数y =-mx 2+2x +2的图象开口向上,对称轴在y 轴左侧.满足上述条件的只有D 选项.]【例a 的取值范围是________.(2)若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =2对称,则b =________.(3)已知函数f (x )=-12x 2-3x -52.①求这个函数图象的顶点坐标和对称轴; ②已知f ⎝ ⎛⎭⎪⎫-72=158,不计算函数值求f ⎝ ⎛⎭⎪⎫-52;③不直接计算函数值,试比较f ⎝ ⎛⎭⎪⎫-14与f ⎝ ⎛⎭⎪⎫-154的大小.[思路探究] (1)f (x )的单调性⇒对称轴与区间关系. (2)图象对称⇒对称轴⇒定义域关于对称轴对称.(3)二次函数配方法⇒顶点、对称轴⇒利用对称性求值比较大小. (1)(-∞,-4]∪[1,+∞) (2)10 [(1)f (x )的对称轴方程为x =-(a +1), 又因为f (x )在区间[-2,3]上是单调函数, 所以-(a +1)≤-2或-(a +1)≥3. 解得a ≥1或a ≤-4,所以a 的取值范围是(-∞,-4]∪[1,+∞).(2)由题意可知函数对称轴为2,且a ,b 关于x =2对称,所以⎩⎪⎨⎪⎧-a +22=2,a +b =2×2,解得⎩⎨⎧a =-6,b =10,所以b 的值为10.](3)解:f (x )=-12x 2-3x -52=-12(x 2+6x +5) =-12(x +3)2+2.①顶点坐标为(-3,2),对称轴为x =-3.②f ⎝ ⎛⎭⎪⎫-72=f (-3.5)=f (-3-0.5)=f (-3+0.5)=f ⎝ ⎛⎭⎪⎫-52=158. ③f ⎝ ⎛⎭⎪⎫-154=f ⎝ ⎛⎭⎪⎫-3-34=f ⎝ ⎛⎭⎪⎫-3+34=f ⎝ ⎛⎭⎪⎫-94. ∵-14,-94∈[-3,+∞),而f (x )在[-3,+∞)上是减函数, ∴f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫-94,即f ⎝ ⎛⎭⎪⎫-14<f ⎝ ⎛⎭⎪⎫-154.1.利用二次函数的单调性求参数的取值范围的方法已知函数的单调性,求函数解析式中参数的范围,是函数单调性的逆向思维问题.解答此类问题的关键在于借助函数的对称轴,通过集合间的关系来建立变量间的关系.2.比较二次函数函数值的大小的方法(1)若抛物线开口向上,则离对称轴越近,函数值越小. (2)若抛物线开口向下,则离对称轴越近,函数值越大. 3.二次函数图象的对称轴的三种求法(1)利用配方法求二次函数y =ax 2+bx +c (a ≠0)的对称轴为x =-b 2a . (2)若二次函数f (x )对任意x 1,x 2∈R 都有f (x 1)=f (x 2),则对称轴为x =x 1+x 22.(3)若二次函数y =f (x )对定义域内所有x 都有f (a +x )=f (a -x ),则对称轴为x =a (a 为常数).2.(1)设函数f (x )=x 2+(a -1)x +1.若对任意x 1,x 2∈[3,+∞),x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是________.(2)如果函数f (x )=x 2+bx +c 对任意实数t 都有f (2+t )=f (2-t ),比较f (1),f (2),f (4)的大小.(1)[-5,+∞) [二次函数f (x )=x 2+(a -1)x +1对任意x 1,x 2∈[3,+∞),x 1≠x 2,不等式f(x1)-f(x2)x1-x2>0恒成立,说明f(x)在[3,+∞)上为增函数.又f(x)开口向上,所以-a-12≤3,解得a≥-5,所以a的取值范围是[-5,+∞).](2)解:函数f(x)对任意实数t,都有f(2+t)=f(2-t),所以二次函数的对称轴为x=2,又开口向上并且|1-2|<|4-2|,所以f(2)<f(1)<f(4).[探究问题1.如果一个二次函数的对称轴在一个定区间内,如何求其最值?提示:函数在对称轴处取得最值.2.已知函数f(x)=-x2+4x+a(x∈[0,1]),若f(x)有最小值-2,求f(x)的最大值.提示:∵f(x)=-x2+4x+a开口向下,对称轴x=2,∴f(x)在[0,1]上单调递增,最小值为f(0)=a=-2,最大值为f(1)=-1+4+a=1.【例3】已知二次函数f(x)=x2-2x+2.(1)当x∈[0,4]时,求f(x)的最值;(2)当x∈[2,3]时,求f(x)的最值.[思路探究]首先用配方法确定抛物线的顶点坐标或对称轴,再看各区间内是否包含对称轴(数值),从而确定各区间的性质后求其最值.[解]f(x)=x2-2x+2=(x-1)2+1.∴抛物线的对称轴为x=1.(1)∵x=1∈[0,4],∴当x=1时,f(x)有最小值,f(x)min=f(1)=1.∵f(0)=2<f(4)=10,∴当x=4时,f(x)有最大值,f(x)max=f(4)=10.(2)∵x=1∉[2,3].∴f(x)在[2,3]上是单调增函数.∴当x=2时,f(x)有最小值,f(x)min=f(2)=2,当x =3时,f (x )有最大值,f (x )max =f (3)=5.(变条件)本题中解析式不变,求“当x ∈[t ,t +1]时,f (x )的最小值g (t )”. [解] f (x )=x 2-2x +2=(x -1)2+1,顶点坐标为(1,1),当t +1<1,即t <0时,函数在[t ,t +1]上为减函数,g (t )=f (t +1)=t 2+1;当t +1≥1且t <1,即0≤t <1时,g (t )=f (1)=1; 当t ≥1时,函数在[t ,t +1]上为增函数, g (t )=f (t )=t 2-2t +2.∴g (t )=⎩⎨⎧t 2+1(t <0),1(0≤t <1),t 2-2t +2(t ≥1).求二次函数f (x )=ax 2+bx +c (a >0)在[m ,n ]上的最值的步骤: (1)配方,找对称轴; (2)判断对称轴与区间的关系;(3)求最值.若对称轴在区间[m ,n ]外,则f (x )在[m ,n ]上单调,利用单调性求最值;若对称轴在区间[m ,n ]内,则在对称轴处取得最小值,最大值在[m ,n ]端点处取得.1.本节课的重点是二次函数的图象与性质,难点是二次函数性质的应用. 2.本节课要掌握的规律(1)根据函数的解析式确定函数图象. (2)利用函数的性质求参数的范围. (3)求二次函数的最值问题.3.本节课的易混点是当二次函数的对称轴不确定时求函数的区间最值问题.1.思考辨析(1)若函数y =ax 2+bx +c 为奇函数,则a =c =0.( )(2)二次函数y =ax 2+c 在y 轴左侧是减函数,在右侧是增函数.( ) [解析] (1)因为y =ax 2+bx +c 是奇函数,对任意的x 都有2ax 2+2c =0,故函数y =ax 2+bx +c 为奇函数的条件是a =c =0.(2)当a >0时,函数在y 轴左侧是减函数,在右侧是增函数;当a <0时,函数在y 轴左侧是增函数,在右侧是减函数.[答案] (1)√ (2)×2.若一次函数y =ax +b 的图象经过第二、三、四象限,则二次函数y =ax 2+bx 的图象只可能是( )A B C DC [由y =ax +b 的图象经过第二、三、四象限可知a <0,b <0,所以y =ax 2+bx 的图象开口向下、对称轴方程x =-b2a <0,结合图选项可知,选C.]3.函数f (x )=-x 2+2x -3在闭区间[0,3]上的最大值、最小值分别为( ) A .0,-2 B .-2,-6 C .-2,-3D .-3,-6B [∵f (x )=-(x -1)2-2,∴当x =1时有最大值-2,当x =3时有最小值-6.]4.已知函数f (x )=3x 2+2x +1.(1)求这个函数图象的顶点坐标和对称轴; (2)已知f ⎝ ⎛⎭⎪⎫-23=1,不计算函数值求f (0);(3)不直接计算函数值,试比较f ⎝ ⎛⎭⎪⎫-34与f ⎝ ⎛⎭⎪⎫154的大小. [解] f (x )=3x 2+2x +1=3⎝ ⎛⎭⎪⎫x +132+23.(1)顶点坐标为⎝ ⎛⎭⎪⎫-13,23,对称轴是直线x =-13.(2)因为f ⎝ ⎛⎭⎪⎫-23=1,又⎪⎪⎪⎪⎪⎪0-⎝ ⎛⎭⎪⎫-13=13,⎪⎪⎪⎪⎪⎪-23-⎝ ⎛⎭⎪⎫-13=13,所以结合二次函数的对称性可知f (0)=f ⎝ ⎛⎭⎪⎫-23=1.(3)由f (x )=3⎝ ⎛⎭⎪⎫x +132+23知二次函数图象开口向上,且对称轴为x =-13,所以离对称轴越近,函数值越小.又⎪⎪⎪⎪⎪⎪-34-⎝⎛⎭⎪⎫-13<⎪⎪⎪⎪⎪⎪154-⎝ ⎛⎭⎪⎫-13, 所以f ⎝ ⎛⎭⎪⎫-34<f ⎝ ⎛⎭⎪⎫154.。
6.2 二次函数的图像和性质(1)一、学习目标:1、会用列表描点法画二次函数2ax y =的图像;2、理解与二次函数的有关概念(抛物线、对称轴、顶点等 ),体会研究问题的数学途径和方法。
二、学习重点与难点:会画..二次函数2ax y =的图像和理解相关概念是本节课的学习重点也是难点;对二次函数研究的途径和方法的体悟也是本节课的难点三、自学质疑:1.自学指导:本节课的学习和八(上)第五章一次函数P 151-153以及八(下)第九章反比例函数P 65-67有紧密联系,建议你在学习本节时可以“类比..”进行学习! (1).正比例函数、一次函数、反比例函数的图象分别是什么?/i?ct=503316480&z=0&tn=baiduimagedetail&word=%D 5%FD%B1%C8%C0%FD%CD%BC%CF%F1&in=17893&cl=2&lm=-1&st=&pn=3&rn=1&di=68366325015&ln=1025&fr=&fm=rs7&fmq=1331799858504_R&ic=&s=&s e=&sme=0&tab=&width=&height=&face=&is=&istype=2#pn3&-1&di68366325015&objURLhttp%3A%2F%%3A81%2Fsxwsh%2Fupload.ht m%2F2006_11%2F06111413124492.jpg&fromURLhttp%3A%2F%2Fwww.sungange %3A81%2Fsxwsh%2Fshow.aspx%3Fid%3D10%26cid%3D6&W960&H720&T9679&S60&TPjpg/i?ct=503316480&z=0&tn=baiduimagedetail&word=%B7%B4%B1%C8%C0%FD%BA%AF%CA%FD%CD%BC%CF%F1&in=19316&c l=2&lm=-1&st=&pn=4&rn=1&di=19514500185&/i?ct=503316480&z=&tn=baiduimagedetail&word=%D2%BB%B4%CE%BA%AF%CA%FD&in=6428&cl=&lm=-1&st=&pn=76&r n=1&di=129344118315&ln=1990&fr=&fm=&fmq=1331800671707_R&ic=&s=&se=&sme=0&tab=&width=&height=&face=&is=&istype=#pn76&-1&di129344118315&objURLhttp%3A%2F%%2Fmviewimages%2Fimages12%2F242669.jpg&fromURLhttp%3A%2F%%2Fmaterial%2Fzy materialcontent_m104065501.html&W440&H150&T8433&S8&TPjpg2.思考题:1.思考:利用 “描点法”画函数图像要经过哪些步骤?在第一步:“ ” 时,自变量x 的取值需要注意什么?2.思考:二次函数c bx ax y ++=2有很多,课本上从研究2ax y =且1=a 入手的,你是怎样理解的?4.思考:完成课本P10的观察与思考,并把思考的结果记录或划在.....的在课本上!!通过对二次函数22x y x y -==和图像形成过程的研究,你得出哪些结论或有哪些新的发现?/i?ct=503316480&z=&tn=baiduimagedetail&word=%B6%FE%B4%CE%BA%AF%CA%FD&in=7647&cl=&lm=-1&st=&pn=19&rn=1&di=82524554175&ln=1989&fr=&fm=&fmq=1331801588377_R&ic=&s=&se=&sme=0&t ab=&width=&height=&face=&is=&istype=#pn19&-1&di82524554175&objURLh ttp%3A%2F%%3A81%2Fsxlzy5%2Fupload%2F2007_12%2F07122013257764.jpg&fromURLhttp%3A%2F%%3A81%2Fsx lzy5%2Fhtml%2F2008-05%2F1809p7.htm&W941&H1294&T9191&S176&TPjpg5.完成课本P 10练习题我自学时的疑难、困惑 或 发现是:巩固案(1)A 组:⒈分别说出下列函数图像的开口方向、顶点坐标与对称轴:23y x=-, 252y x =, 25y x=, 234y x=-.2.点A (21,b )是抛物线y =x 2上的一点,则b = ;点A 关于y 轴的对称点B 是 ,它在函数 上;点A 关于原点的对称点C 是 ,它在函数 上.3.函数y =x 2的顶点坐标为 .若点(a ,4)在其图象上,则a 的值是 . 4.函数y =x 2与y =-x 2的图象关于 对称,也可以认为y=-x 2,是函数y=x 2的图象绕 旋转得到.5.如图,A 、B 分别为y =x 2上两点,且线段AB ⊥y 轴,若AB =6,则点A 、B 的坐标为B 组1.求直线y=x 与抛物线y=x 2的交点坐标.2.若a >1,点(-a -1,y 1)、(a ,y 2)、(a +1,y 3)都在函数y =x 2的图象上,判断y 1、y 2、y 3的大小关系?四.课堂作业:P19 1。
人教版九年级数学下二次函数知识点总结✧ 相关概念及定义二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). ✧ 二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.几种特殊的二次函数的图像特征如下:抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.a越大开口越小在a 确定的前提下,b 决定了抛物线对称轴的位置. (1)a,b 同号在左,异号在右(2)当对称轴为x=1时2a+b=0当对称轴为x=-1的时候2a-b=0 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 注意当x=1的时候y=a+b+c 当x=-1的时候y=a-b+c 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用待定系数法求二次函数的解析式一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. 顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.✧ 直线与抛物线的交点y 轴与抛物线c bx ax y ++=2得交点为(0, c ).抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx n y ax bx c=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;关于原点对称 2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 关于顶点对称2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.✧ 二次函数图象的平移平移步骤:将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.✧ 根据条件确定二次函数表达式的几种基本思路。
第13讲二次函数的图像与性质知识点一:二次函数的概念及解析式关键点拨与对应举例1.一次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做二次函数.例:如果函数y=(a-1)x2是二次函数,那么a的取值范围是a≠0.【例题1】(2018•奉贤区一模)下列函数中是二次函数的是()A.y=2(x﹣1)B.y=(x﹣1)2﹣x2C.y=a(x﹣1)2D.y=2x2﹣1【例题2】函数的图象是抛物线,则m=.知识点二:二次函数的图象与性质3.二次函数的图象和性质图象(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.失分点警示(2)在自变量限定范围求二次函数的最值时,首先考虑对称轴是否在取值范围内,而不能盲目根据公式求解.例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为.开口向上向下对称轴x=2ba-顶点坐标24,24b ac ba a⎛⎫--⎪⎝⎭增减性当x>2ba-时,y随x的增大而增大;当x<2ba-时,y随x的增大而减小.当x>2ba-时,y随x的增大而减小;当x<2ba-时,y随x的增大而增大.最值x=2ba-,y最小=244ac ba-.x=2ba-,y最大=244ac ba-.考点1 :二次函数的图像(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0)然后以原点为中心对称地选取x值求出函数值,列表.②描点:在平面直角坐标系中描出表中的各点.③连线:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.xyy=ax2+bx+c(a>0)Oxyy=ax2+bx+c(a<0)O【例题剖析】二次函数的图像基本判断【例题1】(2017•河南模拟)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第()象限.A.一B.二C.三D.四【例题2】(2016秋•慈溪市期末)二次函数y=﹣x2﹣2x+3的图象大致是()A.B.C.D.【例题3】(2016秋•路北区期末)抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2【例题4】(2017秋•诸暨市校级期中)函数y=x2+1与y=x2+2的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状【例题剖析】二次函数与一次函数的综合图像判断【模型A】【例题1】(2017秋•肇源县期末)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【例题2】在同一坐标系中,一次函数y=ax+b与二次函数y=ax2+b的大致图象为()A.B.C.D.【模型B】【例题1】已知函数y=ax2+bx+c的图象如图所示,则函数y=ax+b的图象是()A B C D【例题2】(2017•曲江区校级三模)已知二次函数y=a(x﹣1)2+c的图象如图,则一次函数y=ax+c的大致图象可能是()A.B.C.D.【例题3】(2017秋•颍州区期中)一次函数y=ax+b(a≠0,b≠0)的图象如图所示,则二次函数y=bx2+a的大致图象是()A.B.C.D.【模型C】【例题1】当ab>0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.【例题2】(2017•广阳区二模)当ab<0时,y=ax2与y=ax+b的图象大致是()A.B.C.D.【例题3】(2016•重庆校级二模)已知正比例函数y=x与二次函数y=ax2+bx+c 的图象如图所示,则二次函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【例题4】(2016秋•宁海县期中)已知,二次函数y=ax2+bx+c(a≠0)的图象如图所示,当x=2时,y的值为.考点2 :二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左(右)平移|﹣|个单位,再向上或向下平移||个单位得到的.【例题剖析】二次函数的对称轴【例题1】(2017秋•遵义期末)如图,若抛物线y=ax2+bx+c上的P(3,0),Q两点关于它的对称轴x=1对称,则Q点的坐标为()A.(﹣4,0)B.(﹣3,0)C.(﹣2,0)D.(﹣1,0)【例题2】(2017•武侯区模拟)二次函数y=2x2+4x﹣3的图象的对称轴为()A.直线x=2B.直线x=4C.直线x=﹣3D.直线x=﹣1【例题3】(2017秋•潮南区期末)抛物线y=(x+1)2+2的对称轴为,顶点坐标是.【例题剖析】二次函数的顶点【例题1】抛物线y=2x2﹣4的顶点在()A.x轴上B.y轴上C.第三象限D.第四象限【例题2】(2018•崇明县一模)抛物线y=2(x+3)2﹣4的顶点坐标是()A.(3,4)B.(3,﹣4)C.(﹣3,4)D.(﹣3,﹣4)【例题3】(2017•凉山州二模)若k为任意实数,则抛物线y=﹣2(x﹣k)2+k 的顶点在()A.直线y=x上B.直线y=﹣x上C.x轴上D.y轴上【例题4】如果二次函数y=x2﹣8x+m﹣1的顶点在x轴上,那么m=.【例题5】已知二次函数y=ax2﹣2x﹣2(a≠0)图象的顶点为(1,﹣3),则a 的值为()A.﹣2B.﹣1C.2D.1【例题6】(2017•宁波)抛物线y=x2﹣2x+m2+2(m是常数)的顶点在()A.第一象限B.第二象限C.第三象限D.第四象限【例题剖析】二次函数的增减性【例题1】二次函数y=x2﹣(12﹣k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,则k的值应取()A.12B.11C.10D.9【例题2】(2016秋•文安县期末)在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1B.x<1C.x>﹣1D.x<﹣1【例题3】已知二次函数y=﹣3(x﹣h)2+5,当x>﹣2时,y随x的增大而减小,则有()A.h≥﹣2B.h≤﹣2C.h>﹣2D.h<﹣2【例题剖析】二次函数的性质的综合【例题1】(2017•陕西)已知抛物线y=x2﹣2mx﹣4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,﹣5)B.(3,﹣13)C.(2,﹣8)D.(4,﹣20)【例题2】(2017•南雄市模拟)对于二次函数y=2(x﹣1)2﹣8,下列说法正确的是()A.图象的开口向下B.当x=﹣1时,取得最小值为y=﹣8C.当x<1时,y随x的增大而减小D.图象的对称轴是直线x=﹣1【例题3】关于二次函数y=2x2+3,下列说法中正确的是()A.它的开口方向是向下B.当x<﹣1时,y随x的增大而减小C.它的顶点坐标是(2,3)D.当x=0时,y有最大值是3【例题4】对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小,其中正确结论的个数为()A.1B.2C.3D.4【练习1】(2017•大石桥市校级一模)已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:则下列判断中正确的是()x…﹣2012…y…7﹣1﹣2﹣1…A.抛物线开口向下B.抛物线的对称轴是y轴C.x<1时,y随x的增大而减小D.抛物线与y轴交于正半轴【练习2】(2016秋•杭州期末)对于二次函数y=﹣(x﹣4)2+5的图象,有下列说法:①其图象开口向上;②对称轴是直线x=4;③顶点坐标是(﹣4,5);④与y轴的交点坐标是(0,3),其中正确的有()A.1个B.2个C.3个D.4个【练习3】(2017秋•天津月考)已知二次函数y=(x﹣)2+1,下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣;③其图象顶点坐标为(,﹣1);④当x<时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个系数a、b、c a决定抛物线的开口方向及开口大小当a>0时,抛物线开口向上;当a<0时,抛物线开口向下.某些特殊形式代数式的符号:①a±b+c即为x=±1时,y的值;②4a±2b+c即为x=±2时,y的值.③2a+b的符号,需判断对称轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.a、b决定对称轴(x=-b/2a)的位置当a,b同号,-b/2a<0,对称轴在y轴左边;当b=0时,-b/2a=0,对称轴为y轴;当a,b异号,-b/2a>0,对称轴在y轴右边.c决定抛物线与y轴的交点的位置当c>0时,抛物线与y轴的交点在正半轴上;当c=0时,抛物线经过原点;当c<0时,抛物线与y轴的交点在负半轴上.b2-4ac决定抛物线与x轴的交点个数b2-4ac>0时,抛物线与x轴有2个交点;b2-4ac=0时,抛物线与x轴有1个交点;b2-4ac<0时,抛物线与x轴没有交点知识点四:二次函数与一元二次方程以及不等式5.二次函数与一元二次方程二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.当Δ=b2-4ac>0,两个不相等的实数根;当Δ=b2-4ac=0,两个相等的实数根;当Δ=b2-4ac<0,无实根例:已经二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两个实数根为2,1.6.二次函数与不等式抛物线y= ax2+bx+c=0在x轴上方的部分点的纵坐标都为正,所对应的x的所有值就是不等式ax2+bx+c>0的解集;在x轴下方的部分点的纵坐标均为负,所对应的x的值就是不等式ax2+bx+c<0的解集.【例题1】二次函数y=ax2+bx+c(a≠0)的图象如图所示,对于下列结论:①a <0;②b<0;③c>0;④2a+b=0;⑤a﹣b+c<0,其中正确的个数是()A.4个B.3个C.2个D.1个【例题2】(2017秋•遵义期末)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac,②abc<0;③a>c;④4a﹣2b+c<0,其中正确的个数有()A.1个B.2个C.3个D.4个【例题3】(2017秋•定边县期末)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④当x<时,y随x的增大而减小;⑤a+b+c>0.其中正确的有()A.5个B.4个C.3个D.2个【例题4】(2017•黔东南州)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个【例题5】(2017•资阳)如图,抛物线y=ax2+bx+c(a≠0)的顶点和该抛物线与y轴的交点在一次函数y=kx+1(k≠0)的图象上,它的对称轴是x=1,有下列四个结论:①abc<0,②a<﹣,③a=﹣k,④当0<x<1时,ax+b>k,其中正确结论的个数是()A.4B.3C.2D.1【例题6】(2017•黔南州)二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(,﹣2);⑤当x<时,y随x的增大而减小;⑥a+b+c>0正确的有()A.3个B.4个C.5个D.6个【练习1】(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1B.2C.3D.4【练习2】(2017•遵义)如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示.则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④【练习3】(2017•烟台)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;②b2>4ac;③a+b+2c<0;④3a+c<0.其中正确的是()A.①④B.②④C.①②③D.①②③④【练习4】(2017•南充)二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)的图象如图所示,下列结论错误的是()A.4ac<b2B.abc<0C.b+c>3a D.a<b【练习5】(2017•安顺)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c<0;③4a+c<2b;④m(am+b)+b<a(m ≠﹣1),其中结论正确的个数是()A.1B.2C.3D.4考点3 :二次函数图像上的点的坐标特征二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y轴交点的纵坐标是函数解析中的c值.③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.【例题剖析】二次函数的坐标点特征【例题1】抛物线y=2(x+1)2﹣2与y轴的交点的坐标是()A.(0,﹣2)B.(﹣2,0)C.(0,﹣1)D.(0,0)【例题2】若抛物线y=ax2(a≠0)过点(﹣1,3),则a等于()A.3B.﹣3C.﹣D.【例题3】抛物线y=﹣2(x﹣1)2﹣3与y轴的交点坐标为()A.(0,3)B.(0,﹣5)C.(1,﹣3)D.(﹣1,﹣3)【例题4】抛物线y=ax2+bx﹣3经过点(2,4),则代数式8a+4b+1的值为()A.3B.9C.15D.﹣15【例题剖析】二次函数的坐标特征应用【例题1】已知A(﹣1,y1)、B(2,y2)、C(﹣3,y3)在函数y=﹣5(x+1)2+3的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y1【例题2】(2017秋•余姚市期末)已知:点(﹣1,y1),(0,y2),(4,y3)都在抛物线y=ax2﹣2ax+5(a>0)上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y2>y3>y1【例题3】设点A(﹣1,y1)、B(1,y2)、C(2,y3)是抛物线y=﹣2(x﹣1)2+m上的三点,则y1、y2、y3的大小关系正确的是()A.y2>y3>y1B.y1>y2>y3C.y3>y2>y1D.y1>y3>y2【例题4】(2017•连云港)已知抛物线y=ax2(a>0)过A(﹣2,y1)、B(1,y2)两点,则下列关系式一定正确的是()A.y1>0>y2B.y2>0>y1C.y1>y2>0D.y2>y1>0【例题5】(2017•姑苏区校级二模)若点A(﹣4,y1),B(﹣1,y2),C(1,y3)在抛物线y=﹣(x+2)2﹣1上,则()A.y1<y3<y2 B.y2<y1<y3C.y3<y2<y1D.y3<y1<y22.解析式(1)三种解析式:①一般式:y=ax2+bx+c①顶点式:y=a(x-h)2+k(a≠0),其中二次函数的顶点坐标是(h,k);①交点式:y=a(x-x1)(x-x2),其中x1,x2为抛物线与x轴交点的横坐标.(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.【例题1】(2018•静安区一模)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.【例题2】(2017秋•荔湾区期末)已知抛物线y=x2+mx+n的图象经过点(﹣3,0),点(1,0)(1)求抛物线解析式;(2)求抛物线的对称轴和顶点坐标.【例题3】已知二次函数y=(m﹣2)x2+(m+3)x+m+2的图象过点(0,5).(1)求m的值,并写出二次函数的解析式;(2)求出二次函数图象的顶点坐标和对称轴.【例题4】已知抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.【例题5】已知抛物线y=x2﹣bx+2经过点A(﹣2,8).(1)求此抛物线的函数解析式,并写出此抛物线的对称轴.(2)判断点B(﹣1,﹣4)是否在此抛物线上.知识点三 :二次函数的平移4.平移与解析式的关系注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式失分点警示:抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.例:将抛物线y =x 2沿x 轴向右平移2个单位后所得抛物线的解析式是y =(x -2)2.【例题1】 将抛物线y=(x +m )2向右平移2个单位后,对称轴是y 轴,那么m的值是 .【例题2】 抛物线y=2x 2+4向左平移2个单位长度,得到新抛物线的表达式为 .【例题3】 把抛物线y=3x 2先向上平移2个单位,再向右平移3个单位,所得抛物线的解析式是 .【例题4】 如果将抛物线y=x 2﹣2x ﹣1向上平移,使它经过点A (0,3),那么所得新抛物线的表达式是 .平移|k |个单位平移|h |个单位向上(k >0)或向下(k <0)向左(h <0)或向右(h >0)y =a (x -h )2+k 的图象y =a (x -h )2的图象y =ax 2的图象第13讲二次函数的应用知识点一:二次函数的应用关键点拨实物抛物线一般步骤若题目中未给出坐标系,则需要建立坐标系求解,建立的原则:①所建立的坐标系要使求出的二次函数表达式比较简单;①使已知点所在的位置适当(如在x轴,y轴、原点、抛物线上等),方便求二次函数丶表达式和之后的计算求解.①据题意,结合函数图象求出函数解析式;①确定自变量的取值范围;①根据图象,结合所求解析式解决问题.实际问题中求最值①分析问题中的数量关系,列出函数关系式;②研究自变量的取值范围;③确定所得的函数;① 检验x的值是否在自变量的取值范围内,并求相关的值;⑤解决提出的实际问题.解决最值应用题要注意两点:①设未知数,在“当某某为何值时,什么最大(最小)”的设问中,“某某”要设为自变量,“什么”要设为函数;①求解最值时,一定要考虑顶点(横、纵坐标)的取值是否在自变量的取值范围内.结合几何图形①根据几何图形的性质,探求图形中的关系式;②根据几何图形的关系式确定二次函数解析式;③利用配方法等确定二次函数的最值,解决问题由于面积等于两条边的乘积,所以几何问题的面积的最值问题通常会通过二次函数来解决.同样需注意自变量的取值范围.。
22.1二次函数的图象和性质22.1.1二次函数课前预习1.一般地,形如y=ax2+bx+c (a,b,c是常数,a≠0 )的函数叫做二次函数.其中x 是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数、常数项2.二次函数必须同时满足三个条件:(1)函数解析式是整式;(2)化简后自变量的最高次数是 2 ;(3)二次项系数不等于0 ,一次项系数和常数项可以为0,当它们为0时通常省略不写.课堂练习知识点1 二次函数的概念1.若y=(a-3)x2+2x-5是二次函数,则a的取值范围是a≠3 .2.下表函数是否为二次函数?如果是二次函数,请写出它的二次项系数、一次项系数和常数项.3.已知函数y=(a-2)x2+(b+2)x-3.(1)当a,b为何值时,这个函数是一次函数?(2)当a为何值时,这个函数是二次函数?解:(1)当a=2且b≠-2时,函数为一次函数;(2)当a≠2时,函数为二次函数.知识点2 求二次函数的解析式4.在边长为15 cm的正方形铁片中间剪去一个边长是x cm的小正方形铁片,剩下的四方框铁片的面积y(单位:cm2)与x(单位:cm)之间的函数关系为y=-x2+225(0≤x<15).5.国家决定对某药品价格分两次降价,若每次降价的百分率为x,该药品的原价是16元,降价后的价格为y元,则y与x 的函数关系式为( D )A.y=32(1-x)B.y=32(1+x)C.y=16(1+x)2D.y=16(1-x)2【解析】原价为16,第一次降价后的价格为16(1-x),第二次降价是在第一次降价后的基础上再降价,其价格为16(1-x)(1-x)=16(1-x)2.故选D.6.如图,有一个长为24米的篱笆,一面利用墙(墙的最大可用长度为10米)围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米. (1)求S关于x的函数关系式;(2)如果要围成面积为45平方米的花圃,AB的长度为多少米?解:(1)∵AB=x,3x+BC=24,∴BC=24-3x.∴S=AB×BC=x(24-3x)=-3x2+24x.∴S关于x的函数关系式为S=-3x2+24x;(2)当S=45时,-3x2+24x=45.解得x₁=3,x₂=5.又∵BC=24-3x≤10,即x≥14,∴x=5.3答:AB的长度为5米.课时作业1.函数y=2x2,y=x2-2x,S=πr2的共同点是自变量的最高次数为 2 .2.将二次函数y=2(x+2)(x-3)化成一般式为y=2x2-2x-12 ,它的二次项系数为 2 ,一次项系数为-2 ,常数项为-12 .3.下列函数中,是二次函数的有( A )①y=-x2;②y=2-x2;③y=3x2-(3x²+2x-1);④y=ax2+bx+c.xA.①B.①②③④C.①②D.①③④【解析】①符合二次函数的定义;②是分式,不符合二次函数的定义;③化简后为y=-2x+1是一次函数,不符合题意;④中a的值不确定,不能确定是否为二次函数.故选A.4. 若函数y=(3-m)27mx -x+1是二次函数,则m的值为( B )A.3B.-3C.±3D.95.已知一个直角三角形两直角边的和为8,设其中一条直角边为x,则直角三角形的面积y与x之间的函数关系式为( A )x2+4x B.y=-x2+8xA.y=-12x2+4x D.y=x2+8xC.y=126.二次函数y=x2+2x+3中自变量x的取值范围是( B )A.x>0B.x为一切实数C.y>2D.y为一切实数7.一块矩形的草地,长为8 m,宽为6 m,若将长和宽都增加x m,设增加的面积为y m2.(1)求y关于x的函数关系式;(2)若要使草地增加的面积为32 m2,长和宽都增加多少m?解:(1)增加后的长和宽分别是(8+x)m和(6+x)m.根据题意,得y=(8+x)(6+x)-6×8=x2+14x.∴y关于x的函数关系式为y=x2+14x;(2)根据题意,得x2+14x=32.解得x₁=-16(舍去),x₂=2.∴x=2.答:长和宽都增加2 m.8. 某广告公司设计一幅周长为16米的矩形广告牌,广告设计费为每平方米2 000元.设矩形一边长为x米,面积为S平方米.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)设计费能达到24 000元吗?为什么?(3)当x是多少米时,设计费最多?最多是多少元?解:(1)矩形的一边为x米,由周长为16米得矩形的另一边长为(8-x)米.根据题意,得S=x(8-x)=-x2+8x,其中0<x<8;(2)能.理由如下:当设计费为24 000元时,面积为240002000=12(平方米).根据题意,得-x2+8x=12.解得x₁=2,x₂=6.∴当矩形的边长为2米和6米时,设计费能达到24 000元;(3)∵S=-x2+8x=-(x-4)2+16.∴当x=4米时,矩形的面积最大,最大面积为16平方米;此时设计费最多,最多是16×2 000=32 000元.9. 星桥中学2018届九年级毕业生有x人.在毕业晚会上,每两人之间握手一次,x人共握手y次,则y与x之间的函数关系式为( D )A.y=x2+1B.y=x2-xC.y=22x xD.y=12x2-12x10.如图,正方形ABCD的边长为4 cm,动点P,Q同时沿ABC和ADC的路径向点C以1 cm/s的速度运动.设运动时间为x s,四边形PBDQ的面积为y cm2.求y与x(0≤x≤8)之间的函数关系式.解:当0≤x≤4时,y=S△ABD - S△APQ=12×4×4-12×x×x=-12x2+8;当4<x≤8时,y=S△DCB - S△CPQ =12×4×4-12(8-x)×(8-x)=-12x2+8x-24.综上可知:y 与x 之间的函数关系式为y=2218(04),21824(48).2x x x x x -+≤≤-+⎧⎪-⎨⎪≤⎪⎪⎩<。
1 2 中考数学 专题 15 二次函数及其应用(知识点总结+例题讲解)一、二次函数的概念:1.二次函数的概念:(1)一般地,如果 y=ax 2+bx+c(a ,b ,c 是常数,a≠0),那么 y 叫做 x 的二次函数; (2)抛物线 y=ax 2+bx+c(a ,b ,c 是常数,a≠0)叫做二次函数的一般式。
2.二次函数的解析式( 二次函数的解析式有三种形式): (1)一般式:y=ax 2+bx+c(a ,b ,c 是常数,a≠0) (2)顶点式:y=a(x-h)2+k(a ,h ,k 是常数,a≠0) (3)两根式(交点式):y=a(x-x 1)(x-x 2);①已知图像与 x 轴的交点坐标 x 1、x 2,通常选用交点式; 即对应二次方程 ax 2+bx+c=0 有实根 x 和 x 存在; ②如果没有交点,则不能这样表示。
3.用待定系数法求二次函数的解析式:(1)若已知抛物线上三点坐标,可设二次函数表达式为 y =ax 2+bx +c ; (2)若已知抛物线上顶点坐标或对称轴方程,则可设顶点式:y =a(x -h)2+k ,其中对称轴为 x =h ,顶点坐标为(h ,k);(3)若已知抛物线与 x 轴的交点坐标或交点的横坐标,则可采用两根式(交点式):y =a(x -x 1)(x -x 2),其中与 x 轴的交点坐标为(x 1,0),(x 2,0)。
【例题 1】已知二次函数的图象经过(2,10)、(0,12)和(1,9)三点,求二次函数的解析式.【答案】y=2x 2-5x+12【解析】设抛物线的解析式为 y=ax 2+bx+c ,把(2,10)、(0,12)、(1,9)分别代入求出 a ,b ,c 即可.解:设抛物线的解析式为 y=ax 2+bx+c ;⎨ ⎩ ⎧4a + 2b + c = 10 把(2,10)、(0,12)、(1,9)分别代入得⎪c = 12⎪a + b + c = 9 所以,二次函数的解析式为:y=2x 2-5x+12。
1二次函数的概念、图象和性质(拔高练习第1讲)教学目标:1.理解二次函数的概念;2.会求一些简单的实际问题中二次函数的解析式和它的定义域;
3.会用描点法画出2(0)yaxa的图像,并掌握抛物线2yax
图像的基本性质(开口方向和大小、
对称轴、顶点坐标、增减性和对称性);4、会用待定系数法求二次函数解析式。
一、知识精要
一.二次函数概念:1.二次函数的概念:一般地,形如2yaxbxc(abc,,是常数,0a)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a,而bc,可以为零.二次函数的定义域是全体实数.
2.二次函数2yaxbxc的结构特征:
(1)等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.(2)abc,,是常数,a是二次项系数,b是一次项系数,c是常数项.二.二次函数的基本形式
1.二次函数基本形式:2yax的性质:a的绝对值越大,抛物线的开口越小。
2.2yaxc的性质:上加下减
a的符号开口方向顶点坐标对称轴性质0a向上
00,y轴
0x时,y随x的增大而增大;0x时,y随
x的增大而减小;0x时,y有最小值0.
0a向下
00,y轴
0x时,y随x的增大而减小;0x时,y随
x的增大而增大;0x时,y有最大值0.
a的符号开口方向顶点坐标对称轴性质0a向上
0c,y轴
0x时,y随x的增大而增大;0x时,y随
x的增大而减小;0x时,y有最小值c.
0a向下
0c,y轴
0x时,y随x的增大而减小;0x时,y随
x的增大而增大;0x时,y有最大值c.2
3.2
yaxh的性质:左加右减。
4.2
yaxhk的性质:
三.二次函数2yaxbxc
的性质
1.当0a时,抛物线开口向上,对称轴为2
bx
a,顶点坐标为2424bacbaa,.
当2bxa时,y随x的增大而减小;当2bxa时,y随x的增大而增大;2.当0a时,抛物线开口向下,对称轴为2
bx
a,顶点坐标为2424bacbaa,.
当2bxa时,y随x的增大而增大;当2bxa时,y随x的增大而减小;四.二次函数解析式的表示方法1.一般式:2yaxbxc(a,b,c为常数,0a);
2.顶点式:2()yaxhk(a,h,k为常数,0a);3.两根式:12()()yaxxxx(0a,1x,2x是抛物线与x轴两交点的横坐标).
注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x轴有交点,即240bac时,抛物线的解析式才可以用交点式表示.二次函数解
析式的这三种形式可以互化.
五、二次函数图象的平移1.平移步骤:
方法一:
a的符号开口方向顶点坐标对称轴性质0a向上0h,X=h
xh时,y随x的增大而增大;xh时,y随
x的增大而减小;xh时,y有最小值0.
0a向下0h,X=h
xh时,y随x的增大而减小;xh时,y随
x的增大而增大;xh时,y有最大值0.
a的符号开口方向顶点坐标对称轴性质0a向上hk,X=h
xh时,y随x的增大而增大;xh时,y随
x的增大而减小;xh时,y有最小值k.
0a向下hk,X=h
xh时,y随x的增大而减小;xh时,y随
x的增大而增大;xh时,y有最大值k.3
⑴将抛物线解析式转化成顶点式2yaxhk,确定其顶点坐标hk,;
⑵保持抛物线2yax的形状不变,将其顶点平移到hk,处,具体平移方法如下:
2.平移规律在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.概括成八个字“左加右减,上加下减”.方法二:
⑴cbxaxy2沿y轴平移:向上(下)平移m个单位,cbxaxy2变成mcbxaxy2(或mcbxaxy2)
⑵cbxaxy2沿轴平移:向左(右)平移m个单位,cbxaxy2变成cmxbmxay)()(2(或cmxbmxay)()(2)
二、精解名题【知识点1】二次函数的定义和解析式的确定【例1】下列函数中,是二次函数的是.
①142xxy;②22xy;③xxy422;④xy3;
⑤12xy;⑥pnxmxy2;⑦xy4;⑧xy5.【例2】已知一次函数1yx的图像和二次函数2yxbxc
的图像都经过A、B两点,且点A在
y轴上,B点的纵坐标为5;求这个二次函数的解析式。4
【知识点2】求顶点坐标、对称轴【例3】二次函数2yx
的对称轴为_________________;顶点坐标为_______
【例4】二次函数22(1)2yx
的对称轴为_________________;顶点坐标为_______。
【例5】抛物线221yxx
的顶点坐标是()
A.(1,0);B.(–1,0);C.(–2,1);D.(2,–1).
【知识点3】二次函数的图像和性质【例6】如图所示的二次函数2yaxbxc
的图象中,刘星同学观察得出了下面四条信息:(1)
240bac
;(2)1c>;(3)20ab<;(4)0abc<。你认为其中错误
..的
有()A.2个B.3个C.4个D.1个
【例7】二次函数2yaxbxc的图象如图所示,则反比例函数ayx与一次函数ybxc在同一坐标系中的大致图象是().
【例8】函数2yaxbyaxbxc和
在同一直角坐标系内的图象大致是()5
【例9】二次函数cbxaxy2的图象,如图所示,根据图象可得a、b、c与0的大小关系是()A.a>0,b<0,c<0B.a>0,b>0,c>0C.a<0,b<0,c>0D.a<0,b>0,c<0
【例10】已知函数))((bxaxy(其中ab)的图象如下面右图所示,则函数baxy的图象可能正确的是()
第10题图
【知识点4】二次函数的平移【例11】将抛物线y=x2-2x向上平移3个单位,再向右平移4个单位等到的抛物线是___________.
【例12】抛物线322xxy经过怎样平移得到142xxy?
yx11O(A)
yx1-1O(B)yx-1-1O(C)
1-1x
y
O
(D)6
【知识点5】二次函数综合应用【例13】如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2.(1)求直线AD和抛物线的解析式;(2)抛物线的对称轴与x轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出....
点Q点的坐标。
例13题图【知识点6】二次函数实际应用【例14】杭州体博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元,而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(万
元),且2yaxbx;若将创收扣除投资和维修保养费用称为游乐场的纯收费g(万元),g也是关于x
的二次函数.(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)设计开放几个月后,游乐场的纯收费达到最大?几个月后,能收回投资?