南航双语矩阵论 matrix theory第一章部分题解
- 格式:doc
- 大小:206.00 KB
- 文档页数:2
1.按通常矩阵的加法及数与矩阵的乘法,下列数域F 上方阵集合是否构成F 上的线性空间:(1)全体形如⎪⎪⎭⎫ ⎝⎛b a-a 0的二阶方阵的集合; (2)全体n 阶对称(或反对称、上三角)矩阵的集合; (3){|0,}n n V X AX X F ⨯==∈(A 为给定的n 阶方阵).解:(1)设⎪⎪⎭⎫ ⎝⎛=111b a-a 0α⎪⎪⎭⎫ ⎝⎛-=222a 0b a β⎪⎪⎭⎫⎝⎛-=3330b a a γ ①αββα+=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=+111222212121222111b a -a 0a 00a 0b a -a 0b a b b a a a a b a ②)(0b a -a 0000a 0b a -a 0)(323232111321321321333212121333222111γβαγβα++=⎪⎪⎭⎫⎝⎛+--++⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛++---++=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=++b b a a a a b b b a a a a a a b a a b b a a a a b a a b a③存在零向量V ∈0,使得对每个V a ∈,a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+111111b a -a 00000b a -a 00④对每个V a ∈,存在负向量a -,使得0b -a a -0b a -a 0)(111111=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=-+a a再令F y x ∈,⑤αα)(b a -a 0xyb xya -xya 0yb ya -ya 0b a -a 0)(111111111111xy xy x y x y x =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛= ⑥αα=⎪⎪⎭⎫⎝⎛=111b a -a 011⑦βαβαx x b a xb xb xa xa xa xa b b a a a a x b a x x +=⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛+--+=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛=+222111212121212121222111a 0b a -a 000a 0b a -a 0)(⑧ya xa yb xb yaxa ya xa y x y x +=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+--+=⎪⎪⎭⎫ ⎝⎛+=+111111*********yb ya -ya 0xb xa -xa 00b a -a 0)()(α所以全体形如⎪⎪⎭⎫⎝⎛b a -a 0的二阶方阵的集合构成F 上的线性空间。
南航矩阵论课后习题答案南航矩阵论课后习题答案矩阵论是数学中的一个重要分支,广泛应用于各个领域,包括物理学、工程学、计算机科学等等。
南航的矩阵论课程是培养学生数学思维和解决实际问题的重要环节。
在课后习题中,学生需要运用所学的矩阵理论知识,解答各种问题。
下面是南航矩阵论课后习题的一些答案和解析。
1. 已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求A的逆矩阵。
解析:要求一个矩阵的逆矩阵,需要先判断该矩阵是否可逆。
一个矩阵可逆的充要条件是其行列式不为零。
计算矩阵A的行列式,得到det(A) = -3。
因此,矩阵A可逆。
接下来,我们可以使用伴随矩阵法求解逆矩阵。
首先,计算矩阵A的伴随矩阵Adj(A),然后将其除以行列式的值,即可得到逆矩阵。
计算得到A的伴随矩阵为Adj(A) = [-3 6 -3; 6 -12 6; -3 6 -3]。
最后,将伴随矩阵除以行列式的值,即可得到矩阵A的逆矩阵A^-1 = [-1 2 -1; 2 -4 2; -1 2 -1]。
2. 已知矩阵A = [2 1; 3 4],求A的特征值和特征向量。
解析:要求一个矩阵的特征值和特征向量,需要先求解其特征方程。
特征方程的形式为|A - λI| = 0,其中A为给定矩阵,λ为特征值,I为单位矩阵。
计算得到特征方程为|(2-λ) 1; 3 (4-λ)| = (2-λ)(4-λ) - 3 = λ^2 - 6λ + 5 = 0。
解这个二次方程,得到特征值λ1 = 1,λ2 = 5。
接下来,我们可以求解对应于每个特征值的特征向量。
将特征值代入(A - λI)x = 0,即可求解出特征向量。
对于特征值λ1 = 1,解得特征向量x1 = [1; -1];对于特征值λ2 = 5,解得特征向量x2 = [1; 3]。
3. 已知矩阵A = [1 2; 3 4],求A的奇异值分解。
解析:奇异值分解是将一个矩阵分解为三个矩阵的乘积:A = UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。
《矩阵论》复习提纲与习题选讲Chapter1 线性空间和内积空间内容总结:z 线性空间的定义、基和维数;z 一个向量在一组基下的坐标;z 线性子空间的定义与判断;z 子空间的交z 内积的定义;z 内积空间的定义;z 向量的长度、距离和正交的概念;z Gram-Schmidt 标准正交化过程;z 标准正交基。
习题选讲:1、设表示实数域3]x [R R 上次数小于3的多项式再添上零多项式构成 的线性空间(按通常多项式的加法和数与多项式的乘法)。
(1) 求的维数;并写出的一组基;求在所取基下的坐标;3]x [R 3]x [R 221x x ++ (2) 在中定义3]x [R , ∫−=11)()(),(dx x g x f g f n x R x g x f ][)(),(∈ 证明:上述代数运算是内积;求出的一组标准正交基;3][x R (3)求与之间的距离;221x x ++2x 2x 1+−(4)证明:是的子空间;2][x R 3]x [R (5)写出2[][]3R x R x ∩的维数和一组基;二、 设22R ×是实数域R 上全体22×实矩阵构成的线性空间(按通常矩阵的加 法和数与矩阵的乘法)。
(1) 求22R ×的维数,并写出其一组基;(2) 在(1)所取基下的坐标; ⎥⎦⎤⎢⎣⎡−−3111(3) 设W 是实数域R 上全体22×实对称矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。
证明:W 是22R ×的子空间;并写出W 的维数和一组基;(4) 在W 中定义内积, )A B (tr )B ,A (T =W B ,A ∈求出W 的一组标准正交基;(5)求与之间的距离; ⎥⎦⎤⎢⎣⎡0331⎥⎦⎤⎢⎣⎡−1221 (6)设V 是实数域R 上全体22×实上三角矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。
证明:V 也是22R ×的子空间;并写出V 的维数和一组基;(7)写出子空间的一组基和维数。
NUAALet 3P (the vector space of real polynomials of degree less than 3) defined by(())'()''()p x xp x p x σ=+.(1) Find the matrix A representing σ with respect to the ordered basis [21,,x x ] for 3P .(2) Find a basis for 3P such that with respect to this basis, the matrix B representing σ is diagonal.(3) Find the kernel (核) and range (值域)of this transformation. Solution: (1)221022x x x x σσσ===+()()() 002010002A ⎛⎫⎪= ⎪ ⎪⎝⎭----------------------------------------------------------------------------------------------------------------- (2)101010001T ⎛⎫ ⎪= ⎪ ⎪⎝⎭(The column vectors of T are the eigenvectors of A)The corresponding eigenvectors in 3P are 1000010002T AT -⎛⎫⎪= ⎪ ⎪⎝⎭(T diagonalizes A ) 22[1,,1][1,,]x x x x T += . With respect to this new basis 2[1,,1]x x +, the representingmatrix of σis diagonal.------------------------------------------------------------------------------------------------------------------- (3) The kernel is the subspace consisting of all constant polynomials.The range is the subspace spanned by the vectors 2,1x x +-----------------------------------------------------------------------------------------------------------------------Let 020012A ⎛⎫⎪= ⎪ ⎪-⎝⎭.(1) Find all determinant divisors and elementary divisors of A .(2) Find a Jordan canonical form of A .(3) Compute At e . (Give the details of your computations.) Solution: (1)110020012I A λλλλ-⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭,(特征多项式 2()(1)(2)p λλλ=--. Eigenvalues are 1, 2, 2.)Determinant divisor of order 1()1D λ=, 2()1D λ=, 23()()(1)(2)D p λλλλ==-- Elementary divisors are 2(1) and (2)λλ-- .---------------------------------------------------------------------------------------------------------------------- (2) The Jordan canonical form is100021002J ⎛⎫ ⎪= ⎪ ⎪⎝⎭--------------------------------------------------------------------------------------------------------------------------(3) For eigenvalue 1, 010010011I A ⎛⎫⎪-=- ⎪ ⎪-⎝⎭ , An eigenvector is 1(1,0,0)T p = For eigenvalue 2, 1102000010I A ⎛⎫⎪-= ⎪ ⎪⎝⎭, An eigenvector is 2(0,0,1)T p =Solve 32(2)A I p p -=, 331100(2)00000101A I p p --⎛⎫⎛⎫⎪ ⎪-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭we obtain that3(1,1,0)T p =-101001010P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭, 1110001010P -⎛⎫⎪= ⎪ ⎪-⎝⎭ 1At J e Pe P -=22210100110001000101000010tt t t e e te e ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭22220000t t t t t t e e e e tee ⎛⎫-⎪= ⎪ ⎪-⎝⎭ --------------------------------------------------------------------------------------------------------------------Suppose that ∈R A and O I A A =--65.(1) What are the possible minimal polynomials of A ? Explain.(2) In each case of part (1), what are the possible characteristic polynomials of A ? Explain.Solution:(1) An annihilating polynomial of A is 256x x --.The minimal polynomial of A divides any annihilating polynomial of A. The possible minimal polynomials are6x -, 1x +, and 256x x --.---------------------------------------------------------------------------------------------------------------(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the characteristic polynomial of A have the same linear factors. Case 6x -, the characteristic polynomial is 3(6)x - Case 1x +, the characteristic polynomial is 3(1)x + Case 256x x --, the characteristic polynomial is 2(1)(6)x x +- or 2(6)(1)x x -+-------------------------------------------------------------------------------------------------------------------Let 120000A ⎛⎫=⎪⎝⎭. Find the Moore-Penrose inverse A +of A .Solution: ()12011200000A PG ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭1()(1,0)T T P P P P +-==, 111()250T T G G GG +-⎛⎫⎪== ⎪ ⎪⎝⎭110112(1,0)2055000A G P +++⎛⎫⎛⎫ ⎪⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭也可以用SVD 求.------------------------------------------------------------------------------------------------------------------Part II (选做题, 每题10分)请在以下题目中(第6至第9题)选择三题解答. 如果你做了四题,请在题号上画圈标明需要批改的三题. 否则,阅卷者会随意挑选三题批改,这可能影响你的成绩.Let 4P be the vector space consisting of all real polynomials of degree lessthan 4 with usual addition and scalar multiplication. Let 123,,x x x be three distinct real numbers. For each pair of polynomials f and g in 4P , define 31,()()i i i f g f x g x =<>=∑.Determine whether ,f g <> defines an inner product on 4P or not. Explain.Let n n A ⨯∈R . Show that if x x A =)(σis the orthogonal projection fromn R to )(A R , then A is symmetric and the eigenvalues ofA are all 1’s and 0’s.n n A ⨯∈C . Show that x x A H is real-valued for all n C x ∈if and only if Ais Hermitian.Let n n B A ⨯∈C , be Hermitian matrices, and A bepositive definite. Show thatAB is similar to BA , and is similar to a real diagonal matrix.若正面不够书写,请写在反面.123()()()x x x x x x ---. Then ,0f f <>=. But 0f ≠. This does not define an inner product. For any x , ()()x x T A R A N A ⊥-∈=, ()x x 0T A A -=. Hence, T T A A A =. Thus. T A A =.From above, we have 2A A =. This will imply that λλ-2is an annihilating polynomial of A. The eigenvalue of A must be the roots of 02=-λλ. Thus, the eigenvalues of A are1’s and 0’s.See Thm 7.1.1, page 182. 也可以用其它方法.Since A is nonsingular, 1()AB A BA A -=. Hence, A is similar to BASince A is positive definite, there is a nonsingular hermitian matrix P such that H A PP =. 1()H H AB PP B P P BP P -==Since H P BP is Hermitian, it is similar to a real diagonal matrix.is similar to H AB P BP , H P BP is similar to a real diagonal matrix. Thus AB is similar to a real diagonal matrix.。
Solution Key (chapter 1)#2. TakeS , 2=. But 2S ∉. If 2S ∈, then there are rational numbers a and b , such that2=0a ≠ and 0b ≠.) This will lead to224232a b ab--=The right hand is a rational number and the left hand side is an irrational number. This is impossible. Thus, S is not closed under multiplication. Hence, S is not a field.#13. (a) Denote the set by S . Take 2()p x x x S =+∈, 2()q x x x S =-+∈.Then ()()2p x q x x S +=∉. S is not closed under addition. Hence, S is not a subspace. (Or: The set S does not contain the zero polynomial, hence, is not a subspace.) (b) Denote the set by S .Take 3()1p x x S =+∈, 3()1p x x S =-+∈. Then ()()2p x q x S +=∉. S is not closed under addition. Hence, S is not a subspace.(Or: The set S does not contain the zero polynomial, hence, is not a subspace.)(d) Denote the set by S . Take ()1p x x S =+∈, ()1p x x S =-+∈, ()()2p x q x S +=∉. S is not closed under addition. Hence, S is not a subspace.#15. (c) Denote the set by S . Take ()p x x S =∈. But ()p x x S -=-∉. Thus, the set S is not closed under scalar multiplication. Hence, S is not a subspace.(e) Denote the set by S . Take ()1p x x S =-∈ ()1q x x S =+∈. But ()()2p x q x x S +=∉. S is not closed under addition. Hence, S is not a subspace.#17. Since 12{,,,}u v v v i s span ∈ for each i , all combinations of 12,,,u u u r are also in 12{,,,}v v v s span . Thus, 12{,,,}u u u r span is a subspace of 12{,,,}v v v s span . Therefore, 12dim({,,,})u u u r span ≤ 12dim({,,,})v v v s span .#25. (a) Let 12(,,,)b b b n B = . Then 12(,,,)b b b n AB A A A = .If AB O =, then b 0i A = for 1,2,,i n = . ()b i N A ∈ for 1,2,,i n = . All lineawr combinations of 12,,,b b b n are also in ()N A . Thus, ()()R B N A ⊂. ()R B is a subspace of ()N A .If ()R B is a subspace of ()N A , then for each column b i of B , we must haveb 0i A =. Hence,12(,,,).b b b n AB A A A O ==(b) By part (a), we know that ()R B is a subspace of ()N A . Thus,()dim(())dim(())r B R B N A =≤. By the rank-nullity theorem, we obtain that()()d i m (())(r B r A N A r A n +≤+= #29. Let,A B S∈. Then ()T T T A B A B A B +=+=+, and ()T T kA kA kA ==. S is closedunder addition and scalar multiplication. Thus, S is a subspace ofn n R ⨯Let ,A B K ∈. Then ()()T T T A B A B A B A B +=+=--=-+, and ()()T T kA kA kA ==-. K is closed under addition and scalar multiplication. Thus, K is a subspace ofn n R ⨯The proof of n n R S K ⨯=⊕.Let .n n A R ⨯∈ Then 11()()22T T A A A A A =++-.1()2T A A + is symmetric and 1()2T A A - is anti-symmetric. This show that n n R S K ⨯=+. Next, we show that the sum S K + is a direct sum. If A S K ∈⋂, then we have both T A A = and T A A =-. This will imply that A A =-. Thus, A must be the zero matrix. This proves that the sum S K + is a direct sum.#32. Let ij E denote the matrix whose (,)i j entry is 1, zero elsewhere. For any()m n ij ij A a C ⨯=∈, where ,ij ij a b are real numbers, A can be written as1111n m n mij ij ij ij j i j i A a E b E =====∑∑.This shows that the matrices{|1,2,,,1,2,,} ij ij E i m j n == forms a spanningset form nC⨯. If1111n mn mijijij ij j i j i a Eb E O=====∑∑, then 0ij ij a = for1,2,,i m= ,1,2,,j n = . Thus, we must have 0ij ij a b ==for 1,2,,i m = , 1,2,,j n = . Therefore,{|1,2,,,1,2,,} ij ij E i m j n == forms a basis for m n C ⨯. The dimension is 2mn .。
矩阵论作业答案与提示第一章(P41-P44)8提示:设044332211=+++ααααx x x x ,解得04321====x x x x ,因此4321,,,αααα线性无关.10(1)提示:考虑n 阶反对称矩阵构成的线性空间V .设ij α是处的元素为1,处的元素为-1,而其余元素均为零的n 阶反对称矩阵(),则),(j i ),(i j j i <n n n 2n ,123112,,,,,,,−ααααL L L A ij 线性无关.又若V a α∈=)(,则有∑≤<≤=nj i ijija A 1α,即A 可以由n n n n ,1223112,,,,,,,−αααααL L L 线性表示,因此.2)1(12)2()1()dim(−=+++−+−=n n n n V L 同理,若V 是n 阶对称矩阵构成的线性空间,则.2)1()dim(+=n n V 12提示:设A x x x x =+++44332211αααα,解得1,1,3,24321−===−=x x x x ,因此A 在基4321,,,αααα下的坐标是.)1,1,3,2(T −−18提示:(1)对任意P ,,∈∈k W Y X ,直接验证W kX Y X ∈+,.(2)在中取向量W )(i i e diag =α,其中表示第i 个分量为1,其余分量为零的n 维行向量,,则i e n i ,,2,1L =n ααα,,,21L 线性无关.又若,则由W x X n n ij ∈=×)(XA AX =得到,即)(0j i x ij ≠=),,,(2211nn x x x diag X L =.于是∑==ni i ii x X 1α,即X 可由n ααα,,,21L 线性表示.因此n ααα,,,21L 是的一组基,而.W n W =)dim(19(1)提示:设},{},,{212211ββααspan V span V ==,则},,,{212121ββααspan V V =+.由于121,,βαα是向量组2121,,,ββαα的极大线性无关组,所以,而3)dim(21=+V V 121,,βαα是21V V +的一组基.接下来,求的维数和基.设21V V I 21V V I ∈α,则有24132211ββαααk k k k −−=+=,从而024132211=+++ββααk k k k .解这个向量方程得到:,,3,4,4321k k k k k k k k =−=−==其中k 是任意常数.此时,)4,3,2,5()3()4(2121T k k k −−−=−=−=ββααα即.于是})4,3,2,5{(21T span V V −−−=I 1)dim(21=V V I ,而是的一组基. T )4,3,2,5(−−−21V V I 21提示:设,)1,,1,1(,)1,1,0,,0(,)0,,1,1,0(,)0,,0,1,1(121Tn T n T T L L L L =−=−=−=−αααα则},,,{},{},,,,{112121211n n n n span V V span V span V ααααααα−−=+==L L .由于n n ααα,,,11−L 线性无关,所以它们构成n R 的一组基,从而.注意到,于是. n R V V =+21}0{21=V V I n R V V =+⋅2124提示:在V 中取向量,1100,0010,0011321⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=ααα 则321,,ααα线性无关,且321αααc b a c c b a a ++=⎟⎟⎠⎞⎜⎜⎝⎛+, 从而,而3)dim(=V 321,,ααα是V 的一组基.定义映射如下:3:R V →σ,)(⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛+c b a c c b a a σ 由于是向量在基T c b a ),,(⎟⎟⎠⎞⎜⎜⎝⎛+=c c b a a α321,,ααα下的坐标,所以σ是V 到3R 的同构映射.27(1)提示:首先将321,,ααα化为标准正交向量组,得到.)2,1,1,2(101,)2,3,3,2(261,)1,2,2,1(101321T T T −−−=−=−=εεε其次,解方程组,求得基础解系,将其单位化,得0321===x x x TT T εεεT )3,2,2,3(4−=αT )3,2,2,3(2614−=ε,则4321,,,εεεε是V 的标准正交基.最后,直接计算,得到311010εεα+=. (2)解答:212321362),31(4103,26,21εεαεεε+=−===x x .。
Solution Key (chapter 1)Exercise 2.The show that this set is not closed under multiplication.TakeS ,2=.But 2S ∉.If 2S ∈rational numbers a and b ,such that2=It is clear that 0a ≠and0b ≠.)This will 224232a b ab --=The right hand is a rational number and the left hand side is an irrational number.This is impossible.Thus,S is not closed under multiplication.Hence,S is not a field.Exercise 7.zx y x +=+)()()()(z x x y x x ++-=++-z x x y x x ++-=++-])[(])[(z 0y 0+=+zy =Exercise 12It is a vector space.A1:A2:,Hence,A3:The existence of the zero element .The zero element must satisfy that for any ,That is for any ,.We obtain that the zero element is A4:The existence of additive inverse.For each ,its additive inverse is ,since.(Note that is the zero element of )M1:M2:M3:M4:Exercise 13.(a)No,it is not a subspace.Denote the set by S .Take 2()p x x x S =+∈,2()q x x x S =-+∈.Then ()()2p x q x x S +=∉.S is not closed under addition.Hence,S is not a subspace.(Or:The set S does not contain the zero polynomial,hence,is not a subspace.)(b)Denote the set by S .(b)Take 3()1p x x S =+∈,3()1p x x S =-+∈.Then ()()2p x q x S +=∉.S is not closed under addition.Hence,S is not a subspace.(Or:The set S does not contain the zero polynomial,hence,is not a subspace.)(c)Yes,it is a subspace.Check that this set is closed under addition and scalar multiplication.(d)No,it is not a subspace.Denote the set by S .Take ()1p x x S =+∈,()1p x x S =-+∈,()()2p x q x S +=∉.S is not closed under addition.Hence,S is not a subspace.Exercise 15.(a)Yes,it is a subspace.Check that this set is closed under addition and scalar multiplication.(b)Yes,it is a subspace.Check that this set is closed under addition and scalar multiplication.(c)Denote the set by S .Take ()p x x S =∈.But (1)()p x x S -=-∉.Thus,the set S is not closed under scalar multiplication.Hence,S is not a subspace.(d)Yes,it is a subspace.Check that this set is closed under addition and scalar multiplication.(e)Denote the set by S .Take ()1p x x S =-∈()1q x x S =+∈.But ()()2p x q x x S +=∉.S is not closed under addition.Hence,S is not a subspace.Exercise 17.Since 12{,,,}u v v v i s span ∈ for each i ,all combinations of 12,,,u u u r are also in12{,,,}v v v s span .Thus,12{,,,}u u u r span is a subspace of 12{,,,}v v v s span .Therefore,12dim({,,,})u u u r span ≤ 12dim({,,,})v v v s span .Exercise 19By Taylor expansion formula()110(1)()32(1)!j n n j j f f x x x j --==+=-∑22(1)(2)512(1)(1)(1)2!n n n x x --=⋅+-⋅-+-+ 12(1)(2)()(1)2(1)!j n n n n j x x j ----+-++- The coordinate vector is 2(1)(2)2(1)(2)()5,2(1),,,,,2)Tn n n n n j n ------ (Exercise 22Use the definition of the transition matrix.111011001⎛⎫ ⎪ ⎪ ⎪⎝⎭Exercise 25.(b)Let 12(,,,)b b b n B = .Then 12(,,,)b b b n AB A A A = .If AB O =,then b 0i A =for 1,2,,i n = .()b i N A ∈for 1,2,,i n = .All linear combinations of 12,,,b b b n are also in ()N A .Thus,()()R B N A ⊂.()R B is a subspace of ()N A .If ()R B is a subspace of ()N A ,then for each column b i of B ,we must haveb 0i A =.Hence,12(,,,).b b b n AB A A A O == (b)By part (a),we know that ()R B is a subspace of ()N A .Thus,()dim(())dim(())r B R B N A =≤.By the rank-nullity theorem,we obtain that ()()dim(())()r B r A N A r A n+≤+=Exercise 26.(a)Hint:First,show that each column vector of C is a linear combination of the column vectors of A.Then,linear combinations of the column vectors of C are linear combinations of the column vectors of A.(b)Hint:First,show that each row vector of C is a linear combination of the row vectors of B.Then,linear combinations of the row vectors of C are linear combinations of the row vectors of B.(c)By (a)and (b),()dim(())dim(()()rank C R C R A rank A =≤=And ()dim(())dim(())()T rank C R C R B rank B =≤=Thus,()min{(),()}rank C rank A rank B ≤Exercise 27.(a)Hint:The column vectors of C are linearly independent if and only if the system 0x C =has only the trivial solution (the zero solution).If ()0x AB =,then ()0x A B =.x B must be zero since the column vectors of A are linearly independent.Thar is,0x B =.Since the column vectors of B are linearly independent,x must be zero.(b)Hint:T T T C B A =.Column vectors of T A are linearly independent.Column vectors of T B are linearly independent.The row vectors of C are linearly independent if and only if the column vectors of T C are linearly independent.Then apply part(a).Exercise 29.Let ,A B S ∈.Then ()T T T A B A B A B +=+=+,and ()T T kA kA kA ==.S is closed under addition and scalar multiplication.Thus,S is a subspace of n nR ⨯Let ,A B K ∈.Then ()()T T T A B A B A B A B +=+=--=-+,and ()()T T kA kA kA ==-.Kis closed under addition and scalar multiplication.Thus,K is a subspace of n n R ⨯The proof of n n R S K ⨯=⊕.Let .n n A R ⨯∈Then 11()()22T T A A A A A =++-.1()2T A A +is symmetric and 1()2T A A -is anti-symmetric.This show that n n R S K ⨯=+.Next,we show that the sum S K +is a direct sum.If A S K ∈⋂,then we have both TA A =and TA A =-.This will imply that A A =-.Thus,A must be the zero matrix.This proves that the sum S K +is a direct sum.Exercise 32.Let ij E denote the matrix whose (,)i j entry is 1,zero elsewhere.ij F denote the matrix whose (,)i j entry is 1-,zero elsewhere.Forany ()m n ij ij A a C ⨯=+∈,where ,ij ij a b are real numbers,A can be written as1111n m n mij ij ij ij j i j i A a E b F =====+∑∑∑∑.This shows that the matrices {,|1,2,,,1,2,,} ij ij E F i m j n == forms a spanning set for m n C ⨯.If 1111n m n m ij ij ij ij j i j i a E b F O ====+=∑∑∑∑,then 0ij ij a =for 1,2,,i m = ,1,2,,j n = .Thus,we must have 0ij ij a b ==for 1,2,,i m = ,1,2,,j n = .Therefore,{,|1,2,,,1,2,,} ij ij E F i m j n == forms a basis for m nC ⨯.Thedimensionis 2mn .Note that,all coefficients of linear combinations must be real numbers because theunderlying field is the real number field.。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。