当前位置:文档之家› 初中数学证明题常见辅助线作法规律

初中数学证明题常见辅助线作法规律

初中数学证明题常见辅助线作法规律
初中数学证明题常见辅助线作法规律

初中数学证明题常见辅助线作法记忆歌诀

及几何规律汇编

人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

初中几何常见辅助线作法歌诀

人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

三角形

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

四边形

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

辅助线,是虚线,画图注意勿改变。

假如图形较分散,对称旋转去实验。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

线、角、相交线、平行线

规律1.如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一

条直线,一共可以画出1

2

n(n-1)条.

规律2.平面上的n条直线最多可把平面分成〔1

2

n(n+1)+1〕个部分.

规律3.如果一条直线上有n个点,那么在这个图形中共有线段的条数为1

2

n(n-1)条.

规律4.线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半.

例:如图,B在线段AC上,M是AB的中点,N是BC的中点.

求证:MN =1

2

AC

证明:∵M是AB的中点,N是BC的中点

∴AM = BM =1

2

AB ,BN = CN =

1

2

BC

N

M C

B

A

∴MN = MB+BN = 12AB + 12BC = 1

2

(AB + BC) ∴MN =

12

AC 练习:1.如图,点C 是线段AB 上的一点,M 是线段BC 的中点.

求证:AM =

1

2

(AB + BC)

2.如图,点B 在线段AC 上,M 是AB 的中点,N 是AC 的中点.

求证:MN =

1

2

BC

3.如图,点B 在线段AC 上,N 是AC 的中点,M 是BC 的中点. 求证:MN = 1

2

AB

规律5.有公共端点的n 条射线所构成的交点的个数一共有

1

2

n(n -1)个. 规律6.如果平面内有n 条直线都经过同一点,则可构成小于平角的角共有2n (n -1)

个.

规律7. 如果平面内有n 条直线都经过同一点,则可构成n (n -1)对对顶角.

规律8.平面上若有n (n ≥3)个点,任意三个点不在同一直线上,过任意三点作三角

形一共可作出

1

6

n (n -1)(n -2)个. 规律9.互为邻补角的两个角平分线所成的角的度数为90o . 规律10.平面上有n 条直线相交,最多交点的个数为

1

2

n(n -1)个. 规律11.互为补角中较小角的余角等于这两个互为补角的角的差的一半.

规律12.当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,

同旁内角的角平分线互相垂直.

例:如图,以下三种情况请同学们自己证明.

H G F

E D B C A H G

F

E D B C A H G

F

E D B

C A M

C

B

A

N M C

B A

N M

C

B A

规律13.已知A B ∥DE,如图⑴~⑹,规律如下:

规律14.成“8”字形的两个三角形的一对内角平分线相交所成的角等

于另两个内角和的一半.

例:已知,BE 、DE 分别平分∠ABC 和∠ADC ,若∠A = 45o ,∠C = 55o ,求∠E 的度数.

解:∠A +∠ABE =∠E +∠ADE ①

∠C +∠CDE =∠E +∠CBE ②

①+②得 ∠A +∠ABE +∠C +∠CDE =∠E +∠ADE +∠E +∠CBE

∵BE 平分∠ABC 、DE 平分∠ADC , ∴∠ABE =∠CBE ,∠CDE =∠ADE ∴2∠E =∠A +∠C

∴∠E =

1

2

(∠A +∠C) ∵∠A =45o ,∠C =55o ,

∴∠E =50o

1()∠ABC+∠BCD+∠CDE=360?

E D C B

A +=∠CDE ∠ABC ∠BCD 2()E D C B

A -=∠CDE ∠ABC ∠BCD 3()

E

D C B

A -=∠CDE ∠ABC ∠BCD 4()

E

D C

B

A +=∠CDE ∠ABC ∠BCD 5()

E D

C

B A

+=∠CDE ∠ABC ∠BCD 6()E C

B

A

N

M

E D

B

C

A

三角形部分

规律15.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两

点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题.

例:如图,已知D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.

证法(一):将DE 向两边延长,分别交AB 、AC 于M 、N

在△AMN 中, AM + AN >MD +DE +NE ①

在△BDM 中,MB +MD >BD ② 在△CEN 中,CN +NE >CE ③ ①+②+③得 AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE

∴AB +AC >BD +DE +CE

证法(二)延长BD 交AC 于F ,延长CE 交BF 于G, 在△ABF 和△GFC 和△GDE 中有, ①AB +AF >BD +DG +GF ②GF +FC >GE +CE ③DG +GE >DE ∴①+②+③有

A B +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +CE

注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或

与求证有关的量)移到同一个或几个三角形中去然后再证题.

练习:已知:如图P 为△ABC 内任一点, 求证:

1

2

(AB +BC +AC)<PA +PB +PC <AB +BC +AC 规律16.三角形的一个内角平分线与一个外角平分线相交所成的锐角,等于第三个内

角的一半.

例:如图,已知BD 为△ABC 的角平分线,CD 为△ABC 的外角∠ACE 的平分线,它与BD

的延长线交于D. 求证:∠A = 2∠D

证明:∵BD 、CD 分别是∠ABC 、∠ACE 的平分线 ∴∠ACE =2∠1, ∠ABC =2∠2 ∵∠A = ∠ACE -∠ABC ∴∠A = 2∠1-2∠2

又∵∠D =∠1-∠2

F G

N M E

D

B

A 2

1E D

B A

∴∠A =2∠D

规律17. 三角形的两个内角平分线相交所成的钝角等于90o加上第三个内角的一半.

例:如图,BD、CD分别平分∠ABC、∠ACB,求证:∠BDC = 90o+1

2

∠A

证明:∵BD、CD分别平分∠ABC、∠ACB ∴∠A+2∠1+2∠2 = 180o

∴2(∠1+∠2)= 180o-∠A①

∵∠BDC = 180o-(∠1+∠2)

∴(∠1+∠2) = 180o-∠BDC②

把②式代入①式得

2(180o-∠BDC)= 180o-∠A

即:360o-2∠BDC =180o-∠A

∴2∠BDC = 180o+∠A

∴∠BDC = 90o+1

2

∠A

规律18. 三角形的两个外角平分线相交所成的锐角等于90o减去第三个内角的一半.

例:如图,BD、CD分别平分∠EBC、∠FCB,求证:∠BDC = 90o-1

2

∠A

证明:∵BD、CD分别平分∠EBC、∠FCB

∴∠EBC = 2∠1、∠FCB = 2∠2

∴2∠1 =∠A+∠ACB ①

2∠2 =∠A+∠ABC ②

①+②得

2(∠1+∠2)= ∠A+∠ABC+∠ACB+∠A

2(∠1+∠2)= 180o+∠A

∴(∠1+∠2)= 90o+1

2

∠A

∵∠BDC = 180o-(∠1+∠2)

∴∠BDC = 180o-(90o+1

2

∠A)

∴∠BDC = 90o-1

2

∠A

规律19. 从三角形的一个顶点作高线和角平分线,它们所夹的角等于三角形另外两个角差(的绝对值)的一半.

例:已知,如图,在△ABC中,∠C>∠B, AD⊥BC于D, AE平分∠BAC.

求证:∠EAD = 1

2

(∠C-∠B)

D

C

B

A

2

1

2

1

F

E

D

C

B

A

A

证明:∵AE 平分∠BAC

∴∠BAE =∠CAE =

1

2

∠BAC ∵∠BAC =180o

-(∠B +∠C) ∴∠EAC =

12

〔180o

-(∠B +∠C)〕 ∵AD ⊥BC

∴∠DAC = 90o

-∠C ∵∠EAD = ∠EAC -∠DAC

∴∠EAD =

12

〔180o -(∠B +∠C)〕-(90o

-∠C) = 90o -12

(∠B +∠C)-90o

∠C

= 1

2

(∠C -∠B)

如果把AD 平移可以得到如下两图,FD ⊥BC 其它条件不变,结论为∠EFD =

1

2

(∠C -∠B). 注意:同学们在学习几何时,可以把自己证完的题进行适当变换,从而使自己通

过解一道题掌握一类题,提高自己举一反三、灵活应变的能力.

规律20.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直

接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.

例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC

证法(一):延长BD 交AC 于E ,

∵∠BDC 是△EDC 的外角,

∴∠BDC >∠DEC

同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD

∴∠BDF +∠CDF >∠BAD +∠CAD

A

B

C

D

E F

F

C

B

A

A

B

C D

E D C B A

即:∠BDC >∠BAC

规律21.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,

求证:BE +CF >EF 证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC

在△BDE 和△NDE 中,

DN = DB ∠1 = ∠2

ED = ED ∴△BDE ≌△NDE

∴BE = NE

同理可证:CF = NF

在△EFN 中,EN +FN >EF ∴BE +CF >EF

规律22. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形.

例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF

证明:延长ED 到M ,使DM = DE ,连结CM 、FM

△BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD

∴△BDE ≌△CDM ∴CM = BE

又∵∠1 = ∠2,∠3 = ∠4

∠1+∠2+∠3 + ∠4 = 180o

∴∠3 +∠2 = 90o

即∠EDF = 90

o

∴∠FDM = ∠EDF = 90o

△EDF 和△MDF 中 ED = MD ∠FDM = ∠EDF

DF = DF ∴△EDF ≌△MDF ∴EF = MF

∵在△CMF 中,CF +CM >MF BE +CF >EF

(此题也可加倍FD ,证法同上)

43

21N

F E D

B A M

A B

C D E F

12345

规律23. 在三角形中有中线时,常加倍延长中线构造全等三角形. 例:已知,如图,AD 为△ABC 的中线,求证:AB +AC >2AD

证明:延长AD 至E ,使DE = AD ,连结BE

∵AD 为△ABC 的中线 ∴BD = CD 在△ACD 和△EBD 中

BD = CD ∠1 = ∠2

AD = ED

∴△ACD ≌△EBD

∵△ABE 中有AB +BE >AE ∴AB +AC >2AD

规律24.截长补短作辅助线的方法

截长法:在较长的线段上截取一条线段等于较短线段; 补短法:延长较短线段和较长线段相等. 这两种方法统称截长补短法.

当已知或求证中涉及到线段a 、b 、c 、d 有下列情况之一时用此种方法: ①a>b

②a±b = c ③a±b = c±d

例:已知,如图,在△ABC 中,AB >AC ,∠1 = ∠2,P 为AD 上任一点,

求证:AB -AC >PB -PC

证明:⑴截长法:在AB 上截取AN = AC ,连结PN

在△APN 和△APC 中, AN = AC

∠1 = ∠2

AP = AP ∴△APN ≌△APC ∴PC = PN ∵△BPN 中有PB -PC <BN ∴PB -PC <AB -AC

⑵补短法:延长AC 至M ,使AM = AB ,连结PM 在△ABP 和△AMP 中 AB = AM ∠1 = ∠2 AP = AP

∴△ABP ≌△AMP 12E D

C B A

P 12

N D

B A

A B C D

2

1P

∴PB = PM

又∵在△PCM 中有CM >PM -PC ∴AB -AC >PB -PC

练习:1.已知,在△ABC 中,∠B = 60o

,AD 、CE 是△ABC 的角平分线,并且它们交于点

O

求证:AC = AE +CD 2.已知,如图,AB ∥CD ∠1 = ∠2 ,∠3 = ∠4.

求证:BC = AB +CD

规律25.证明两条线段相等的步骤:

①观察要证线段在哪两个可能全等的三角形中,然后证这两个三角形全等。 ②若图中没有全等三角形,可以把求证线段用和它相等的线段代换,再证它们所在的三角形全等.

③如果没有相等的线段代换,可设法作辅助线构造全等三角形.

例:如图,已知,BE 、CD 相交于F ,∠B = ∠C ,∠1 = ∠2,求证:DF = EF

证明:∵∠ADF =∠B +∠3

∠AEF = ∠C +∠4 又∵∠3 = ∠4

∠B = ∠C ∴∠ADF = ∠AEF 在△ADF 和△AEF 中 ∠ADF = ∠AEF ∠1 = ∠2

AF = AF ∴△ADF ≌△AEF ∴DF = EF

规律26.在一个图形中,有多个垂直关系时,常用同角(等角)的余角相等来证明两个

角相等.

例:已知,如图Rt △ABC 中,AB = AC ,∠BAC = 90o

,过A 作任一条直线AN ,作BD ⊥

AN 于D ,CE ⊥AN 于E ,求证:DE = BD -CE

证明:∵∠BAC = 90o

, BD ⊥AN

∴∠1+∠2 = 90o ∠1+∠3 = 90o

∴∠2 = ∠3

∵BD ⊥AN CE ⊥AN

∴∠BDA =∠AEC = 90o

在△ABD 和△CAE 中,

4321F

E

D C

B A

A

43

21E

D

C

B A

∠BDA =∠AEC ∠2 = ∠3 AB = AC

∴△ABD ≌△CAE

∴BD = AE 且AD = CE ∴AE -AD = BD -CE ∴DE = BD -CE

规律27.三角形一边的两端点到这边的中线所在的直线的距离相等. 例:AD 为△ABC 的中线,且CF ⊥AD 于F ,BE ⊥AD 的延长线于E

求证:BE = CF 证明:(略)

规律28.条件不足时延长已知边构造三角形. 例:已知AC = BD ,AD ⊥AC 于A ,BCBD 于B

求证:AD = BC

证明:分别延长DA 、CB 交于点E

∵AD ⊥AC BC ⊥BD

∴∠CAE = ∠DBE = 90o

在△DBE 和△CAE 中 ∠DBE =∠CAE

BD = AC ∠E =∠E

∴△DBE ≌△CAE

∴ED = EC ,EB = EA

∴ED -EA = EC - EB ∴AD = BC

规律29.连接四边形的对角线,把四边形问题转化成三角形来解决问题. 例:已知,如图,AB ∥CD ,AD ∥BC 求证:AB = CD

证明:连结AC (或BD )

∵AB ∥CD ,AD ∥BC ∴∠1 = ∠2

在△ABC 和△CDA 中, 2

1D

B A

F

E

O

E

D

B

A 43

21D C

B

A

∠1 = ∠2 AC = CA ∠3 = ∠4 ∴△ABC ≌△CDA

∴AB = CD

练习:已知,如图,AB = DC ,AD = BC ,DE = BF , 求证:BE = DF

规律30.有和角平分线垂直的线段时,通常把这条线段延长。可归结为“角分垂等腰归”.

例:已知,如图,在Rt △ABC 中,AB = AC ,∠BAC = 90o

,∠1 = ∠2 ,CE ⊥BD 的延

长线于E

求证:BD = 2CE

证明:分别延长BA 、CE 交于F

∵BE ⊥CF

∴∠BEF =∠BEC = 90o

在△BEF 和△BEC 中 ∠1 = ∠2 BE = BE ∠BEF =∠BEC

∴△BEF ≌△BEC

∴CE = FE =

12

CF ∵∠BAC = 90o

, BE ⊥CF

∴∠BAC = ∠CAF = 90o

∠1+∠BDA = 90o

∠1+∠BFC = 90o

∠BDA = ∠BFC 在△ABD 和△ACF 中 ∠BAC = ∠CAF ∠BDA = ∠BFC AB = AC

∴△ABD ≌△ACF ∴BD = CF ∴BD = 2CE

练习:已知,如图,∠ACB = 3∠B ,∠1 =∠2,CD ⊥AD 于D ,

2

1

E

F

D

C B A

E

F

D

C B A

求证:AB -AC = 2CD

规律31.当证题有困难时,可结合已知条件,把图形中的某两点连接起来构造全等三角

形.

例:已知,如图,AC 、BD 相交于O ,且AB = DC ,AC = BD ,

求证:∠A = ∠D 证明:(连结BC ,过程略)

规律32.当证题缺少线段相等的条件时,可取某条线段中点,为

证题提供条件.

例:已知,如图,AB = DC ,∠A = ∠D 求证:∠ABC = ∠DCB

证明:分别取AD 、BC 中点N 、M , 连结NB 、NM 、NC (过程略)

规律33.有角平分线时,常过角平分线上的点向角两边做垂线,利用角平分线上的点到

角两边距离相等证题.

例:已知,如图,∠1 = ∠2 ,P 为BN 上一点,且PD ⊥BC 于D ,AB +BC = 2BD ,

求证:∠BAP +∠BCP = 180o

证明:过P 作PE ⊥BA 于E ∵PD ⊥BC ,∠1 = ∠2 ∴PE = PD

在Rt △BPE 和Rt △BPD 中 BP = BP PE = PD

∴Rt △BPE ≌Rt △BPD ∴BE = BD

∵AB +BC = 2BD ,BC = CD +BD ,AB = BE -AE ∴AE = CD

∵PE ⊥BE ,PD ⊥BC

∠PEB =∠PDC = 90o

在△PEA 和△PDC 中 PE = PD

O

A B D

C

B

A D

2

1D

C

B A

N P

E D C B

A 2

1

∠PEB =∠PDC

AE =CD

∴△PEA≌△PDC

∴∠PCB = ∠EAP

∵∠BAP+∠EAP = 180o

∴∠BAP+∠BCP = 180o

练习:1.已知,如图,PA、PC分别是△ABC外角∠MAC与∠NCA的平分线,它们交于P,PD⊥BM于M,PF⊥BN于F,求证:BP为∠MBN的平分线

2. 已知,如图,在△ABC中,∠ABC =100o,∠ACB = 20o,CE是∠ACB的平分

线,D是AC上一点,若∠CBD = 20o,求∠CED的度数。

规律34.有等腰三角形时常用的辅助线

⑴作顶角的平分线,底边中线,底边高线

例:已知,如图,AB = AC,BD⊥AC于D,

求证:∠BAC = 2∠DBC

证明:(方法一)作∠BAC的平分线AE,交BC于E,则∠1 = ∠2 = 1

2

∠BAC

又∵AB = AC

∴AE⊥BC

∴∠2+∠ACB = 90o

∵BD⊥AC

∴∠DBC+∠ACB = 90o

∴∠2 = ∠DBC

∴∠BAC = 2∠DBC

(方法二)过A作AE⊥BC于E(过程略)(方法三)取BC中点E,连结AE(过程略)

F

M

N

P

B

A

D

E

D C

B

A

2

1

E D C

B

A

⑵有底边中点时,常作底边中线

例:已知,如图,△ABC 中,AB = AC ,D 为BC 中点,DE ⊥AB 于E ,DF ⊥AC 于F ,

求证:DE = DF 证明:连结AD.

∵D 为BC 中点, ∴BD = CD

又∵AB =AC

∴AD 平分∠BAC ∵DE ⊥AB ,DF ⊥AC ∴DE = DF

⑶将腰延长一倍,构造直角三角形解题

例:已知,如图,△ABC 中,AB = AC ,在BA 延长线和AC 上各取一点E 、F ,使AE

= AF ,求证:EF ⊥BC

证明:延长BE 到N ,使AN = AB,连结CN,则AB = AN = AC

∴∠B = ∠ACB, ∠ACN = ∠ANC

∵∠B +∠ACB +∠ACN +∠ANC = 180o

∴2∠BCA +2∠ACN = 180o

∴∠BCA +∠ACN = 90o

即∠BCN = 90

o ∴NC ⊥BC

∵AE = AF

∴∠AEF = ∠AFE

又∵∠BAC = ∠AEF +∠AFE ∠BAC = ∠ACN +∠ANC ∴∠BAC =2∠AEF = 2∠ANC ∴∠AEF = ∠ANC ∴EF ∥NC ∴EF ⊥BC

⑷常过一腰上的某一已知点做另一腰的平行线

例:已知,如图,在△ABC 中,AB = AC ,D 在AB 上,E 在AC 延长线上,且BD = CE ,

连结DE 交BC 于F 求证:DF = EF 证明:(证法一)过D 作DN ∥AE ,交BC 于N ,则∠DNB = ∠ACB ,∠NDE = ∠E ,

∵AB = AC , ∴∠B = ∠ACB ∴∠B =∠DNB ∴BD = DN

F

E D

C B A

N

F

E B A D

A D

A

又∵BD = CE ∴DN = EC

在△DNF 和△ECF 中 ∠1 = ∠2 ∠NDF =∠E DN = EC

∴△DNF ≌△ECF ∴DF = EF

(证法二)过E 作EM ∥AB 交BC 延长线于M,则∠EMB =∠B (过程略)

⑸常过一腰上的某一已知点做底的平行线

例:已知,如图,△ABC 中,AB =AC ,E 在AC 上,D 在BA 延长线上,且AD = AE ,

连结DE

求证:DE ⊥BC

证明:(证法一)过点E 作EF ∥BC 交AB 于F ,则

∠AFE =∠B

∠AEF =∠C

∵AB = AC ∴∠B =∠C ∴∠AFE =∠AEF ∵AD = AE

∴∠AED =∠ADE

又∵∠AFE +∠AEF +∠AED +∠ADE = 180o

∴2∠AEF +2∠AED = 90o

即∠FED = 90o

∴DE ⊥FE 又∵EF ∥BC ∴DE ⊥BC

(证法二)过点D 作DN ∥BC 交CA 的延长线于N ,(过程略) (证法三)过点A 作AM ∥BC 交DE 于M ,(过程略)

⑹常将等腰三角形转化成特殊的等腰三角形------等边三角形

例:已知,如图,△ABC 中,AB = AC ,∠BAC = 80o

,P 为形内一点,若∠PBC =

10o ∠PCB = 30o

求∠PAB 的度数.

解法一:以AB 为一边作等边三角形,连结CE

则∠BAE =∠ABE = 60o

AE = AB = BE ∵AB = AC

∴AE = AC ∠ABC =∠ACB

N M

F

E D C

B A

∴∠AEC =∠ACE

∵∠EAC =∠BAC-∠BAE = 80o-60o = 20o

∴∠ACE = 1

2

(180o-∠EAC)= 80o

∵∠ACB= 1

2

(180o-∠BAC)= 50o

∴∠BCE =∠ACE-∠ACB

= 80o-50o = 30o

∵∠PCB = 30o

∴∠PCB = ∠BCE

∵∠ABC =∠ACB = 50o, ∠ABE = 60o

∴∠EBC =∠ABE-∠ABC = 60o-50o =10o ∵∠PBC = 10o

∴∠PBC = ∠EBC

在△PBC和△EBC中

∠PBC = ∠EBC

BC = BC

∠PCB = ∠BCE

∴△PBC≌△EBC

∴BP = BE

∵AB = BE

∴AB = BP

∴∠BAP =∠BPA

∵∠ABP =∠ABC-∠PBC = 50o-10o = 40o

∴∠PAB = 1

2

(180o-∠ABP)= 70o

解法二:以AC为一边作等边三角形,证法同一。

解法三:以BC为一边作等边三角形△BCE,连结AE,则EB = EC = BC,∠BEC =∠EBC = 60o

∵EB = EC

∴E在BC的中垂线上

同理A在BC的中垂线上

∴EA所在的直线是BC的中垂线

∴EA⊥BC

∠AEB = 1

2

∠BEC = 30o =∠PCB

P

E

C

B

A

P

E

C

B

A

由解法一知:∠ABC = 50o

∴∠ABE = ∠EBC -∠ABC = 10o

=∠PBC ∵∠ABE =∠PBC,BE = BC,∠AEB =∠PCB ∴△ABE ≌△PBC ∴AB = BP

∴∠BAP =∠BPA

∵∠ABP =∠ABC -∠PBC = 50o -10o = 40o

∴∠PAB =

12(180o -∠ABP) = 12

(180o -40o )= 70o

规律35.有二倍角时常用的辅助线

⑴构造等腰三角形使二倍角是等腰三角形的顶角的外角

例:已知,如图,在△ABC 中,∠1 = ∠2,∠ABC = 2∠C ,

求证:AB +BD = AC

证明:延长AB 到E ,使BE = BD ,连结DE

则∠BED = ∠BDE ∵∠ABD =∠E +∠BDE ∴∠ABC =2∠E ∵∠ABC = 2∠C

∴∠E = ∠C

在△AED 和△ACD 中 ∠E = ∠C ∠1 = ∠2

AD = AD ∴△AED ≌△ACD ∴AC = AE ∵AE = AB +BE ∴AC = AB +BE 即AB +BD = AC

⑵平分二倍角

例:已知,如图,在△ABC 中,BD ⊥AC 于D ,∠BAC = 2∠DBC

求证:∠ABC = ∠ACB

证明:作∠BAC 的平分线AE 交BC 于E ,则∠BAE = ∠CAE = ∠DBC

∵BD ⊥AC

∴∠CBD +∠C = 90o

∴∠CAE +∠C= 90

o

∵∠AEC= 180o -∠CAE -∠C= 90o

∴AE ⊥BC

2

1E

D C B A

D

A

∴∠ABC +∠BAE = 90o

∵∠CAE +∠C= 90o

∠BAE = ∠CAE ∴∠ABC = ∠ACB

⑶加倍小角

例:已知,如图,在△ABC 中,BD ⊥AC 于D ,∠BAC = 2∠DBC

求证:∠ABC = ∠ACB

证明:作∠FBD =∠DBC,BF 交AC 于F (过程略)

规律36.有垂直平分线时常把垂直平分线上的点与线段两端点连结起来.

例:已知,如图,△ABC 中,AB = AC ,∠BAC = 120o

,EF 为AB 的垂直平分线,EF 交

BC 于F ,交AB 于E

求证:BF =

12

FC 证明:连结AF ,则AF = BF

∴∠B =∠FAB ∵AB = AC ∴∠B =∠C

∵∠BAC = 120o

∴∠B =∠C ∠BAC =

12

(180o -∠BAC) = 30o

∴∠FAB = 30

o

∴∠FAC =∠BAC -∠FAB = 120o -30o =90o

又∵∠C = 30o

∴AF =

12FC ∴BF =12

FC

练习:已知,如图,在△ABC 中,∠CAB 的平分线AD 与BC 的垂直平分线DE 交于点D ,

DM ⊥AB 于M ,DN ⊥AC 延长线于N 求证:BM = CN

F D C

B A F

E

C

B

A

A

规律37. 有垂直时常构造垂直平分线.

例:已知,如图,在△ABC 中,∠B =2∠C ,AD ⊥BC 于D

求证:CD = AB +BD 证明:(一)在CD 上截取DE = DB ,连结AE ,则AB = AE

∴∠B =∠AEB ∵∠B = 2∠C ∴∠AEB = 2∠C

又∵∠AEB = ∠C +∠EAC ∴∠C =∠EAC ∴AE = CE

又∵CD = DE +CE ∴CD = BD +AB

(二)延长CB 到F ,使DF = DC ,连结AF 则AF =AC (过程略)

规律38.有中点时常构造垂直平分线.

例:已知,如图,在△ABC 中,BC = 2AB, ∠ABC = 2∠C,BD = CD

求证:△ABC 为直角三角形

证明:过D 作DE ⊥BC ,交AC 于E ,连结BE ,则BE = CE ,

∴∠C =∠EBC ∵∠ABC = 2∠C ∴∠ABE =∠EBC

∵BC = 2AB ,BD = CD

∴BD = AB

在△ABE 和△DBE 中

AB = BD

∠ABE =∠EBC BE = BE

∴△ABE ≌△DBE ∴∠BAE = ∠BDE

∵∠BDE = 90o

E

D

C

B

A

F

D

C

B

A

E D

C B

A

初中几何辅助线大全-最全

三角形中作辅助线的常用方法举例 一、延长已知边构造三角形: 例如:如图7-1:已知AC =BD ,AD ⊥AC 于A ,BC ⊥BD 于B , 求证:AD =BC 分析:欲证 AD =BC ,先证分别含有AD ,BC 的三角形全等,有几种方案:△ADC 与△BCD ,△AOD 与△BOC ,△ABD 与△BAC ,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角。 证明:分别延长DA ,CB ,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD (已知) ∴∠CAE =∠DBE =90° (垂直的定义) 在△DBE 与△CAE 中 ∵?? ???=∠=∠∠=∠)()() (已知已证公共角AC BD CAE DBE E E ∴△DBE ≌△CAE (AAS ) ∴ED =EC EB =EA (全等三角形对应边相等) ∴ED -EA =EC -EB 即:AD =BC 。 (当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件。) 二 、连接四边形的对角线,把四边形的问题转化成为三角形来解决。 三、有和角平分线垂直的线段时,通常把这条线段延长。 例如:如图9-1:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 分析:要证BD =2CE ,想到要构造线段2CE ,同时 A E F A B C D E 1 7-图O

CE 与∠ABC 的平分线垂直,想到要将其延长。 证明:分别延长BA ,CE 交于点F 。 ∵BE ⊥CF (已知) ∴∠BEF =∠BEC =90° (垂直的定义) 在△BEF 与△BEC 中, ∵ ?? ???∠=∠=∠=∠)() () (21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BEC (ASA )∴CE=FE= 2 1 CF (全等三角形对应边相等) ∵∠BAC=90° BE ⊥CF (已知) ∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中 ?? ? ??∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC ∴△ABD ≌△ACF (AAS )∴BD =CF (全等三角形对应边相等) ∴BD =2CE 四、取线段中点构造全等三有形。 例如:如图11-1:AB =DC ,∠A =∠D 求证:∠ABC =∠DCB 。 分析:由AB =DC ,∠A =∠D ,想到如取AD 的中点N ,连接NB ,NC ,再由SAS 公理有△ABN ≌△DCN ,故BN =CN ,∠ABN =∠DCN 。下面只需证∠NBC =∠NCB ,再取BC 的中点M ,连接MN ,则由SSS 公理有△NBM ≌△NCM ,所以∠NBC =∠NCB 。问题得证。 证明:取AD ,BC 的中点N 、M ,连接NB ,NM ,NC 。则AN=DN ,BM=CM ,在△ABN 和△DCN 中 ∵ ?? ???=∠=∠=)() () (已知已知辅助线的作法DC AB D A DN AN 1 11-图D C B A M N

初中数学辅助线大全-详细例题付答案之欧阳歌谷创编

初中数学辅助线大全 详细例题付 答案 欧阳歌谷(2021.02.01) [引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。下面我们分别举例加以说明。 [例题解析] 一、倍角问题 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 求证:∠DBC=1 2∠BAC. 分析:∠DBC 、∠BAC 可利用 三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关 系。 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90° -1 2 ∠BAC 。

∵BD ⊥AC 于D ∴∠BDC=90 ° ∴∠DBC=90°-∠C=90°-(90° -1 2∠BAC)= 1 2 ∠BAC 即∠DBC= 1 2∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ?∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把?∠A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。 证法二:如图2,作AE ⊥BC 于E ,则∠EAC+ ∵AB=AC ∴∠EAG=1 2∠BAC ∵BD ⊥AC 于 D ∴∠DBC+∠C=90 ° ∴∠EAC=∠DBC (同角的余角相等) 即∠DBC=1 2∠BAC 。 证法三:如图3,在AD 上取一点E ,使DE=CD 连接BE ∵BD ⊥AC ∴BD 是线段CE 的垂直平分线 ∴BC=BE ∴∠BEC=∠C ∴∠EBC=2∠DBC=180° -2∠C ∵AB=AC

初中数学常见辅助线做法

初中数学常用辅助线 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形, 添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律 可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三 角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线 组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关 系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三 角形斜边上中线基本图形。

(5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 *(7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角

初中数学常见辅助线的添加方法

初中数学常见辅助线的 添加方法 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

中考数学复习专题 ——几何论证题中辅助线的添加方法 例1: ADBC 中AB ∥CD ,底角∠ABC=450 AC 、BD 交于点O ,且∠BOC=1200 分析:在已知条件中,底角∠ABC=450,有的同学想到延长两腰,出现一个等腰直角三角形。而在本题中这样添辅助线,反而增加解题困难,因为 ∠BOC=1200 的条件不能很好的运用。故本题添辅助线时,应考虑过上底顶点D (或A )作对角线的平行线,把梯形问题转化为平行四边形及顶角为1200的等腰三角形问题,而解等腰三角形时,常添的辅助线是作底上的高,这样不难求BC AD 的比值。 证明:过D 点作DF ∥AC 交BC 的延长线于F ,作DE ⊥BC 于E AD ∥BC AD=CF AC ∥DF ??ACFD 平行四边形 AC=DF 等腰梯形ABCD ? DB=AC ?BD=DF AC ∥DF ?∠BDF=∠BOC=1200 DE ⊥BF ∠BDE=600 ? BE=EF ?BE=EF=a 3 ∠BED=900 设a DE =

DE ⊥BC a CE DE == a AD CF )13(-== ∠BCD=450 EF=a 3 a CE BE BC )13(+=+= PQ 是线段AB 的中垂线, OD ⊥BC OD 的中点 是线段AB 的中垂线,同学们肯定想到连结AC 运用线段中垂线性质,但证明此题这样的添线与其它已知条件的应用没有多大关系,这种添线不能解答本题,而图中出现“母子三角形”,使我们想到能否运用三角形相似及线段成比例来解本题。而要证CM ⊥AD ,从图中观察到如能证得∠1=∠A ,那么CM ⊥AD 即可成立;而∠A 除了在Rt △AON 中,它还在△AOD 中,若把∠1也放到与△AOD 相似的三角形中,结论就可成立。因此构筑一个与△AOD 相似的三角形是本题解答的关键。而已知条件M 是OD 的中点,想到增添中点(或添平行线)的方法,故取OC 的中点为G ,想法证明△AOD ∽ △CGM 。通过基本图形分析,发现∠2=∠3,故∠AOD=∠CGM 。因此证:GM CG OD AO =是本题又一关键。 证明:取OC 的中点为G ,连GM, ∵PQ 是AB 的中垂线, ∴∠BOC=900设OA=OB=a ,OD=b . ∵OD ⊥BC, ∴∠CDO=∠ODB=900

初中数学中考几何如何巧妙做辅助线大全

初中数学中考几何如何巧妙做辅助线大全人教版北师大初中数学中考几何如何巧妙做辅 助线大全 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 一(添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90?;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”~这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等 第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 1

出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当

初中数学几何图形的辅助线添加方法大全

初中数学添加辅助线的方法汇总 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。”

托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。 六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦成立。 如遇平行弦,则平行线间的距离相等,所夹的弦亦相等,距离和所夹的弦都可视为辅助线,反之,亦成立。 有时,圆周角,弦切角,圆心角,圆内角和圆外角也存在因果关系互相联想

初中几何常见辅助线作法50种

初中常见辅助线作法 任何几何题目都需分析题目条件和结论找到解题思路,本讲从常见的条件和结论出发说明50种辅助线作法,分三角形部分、四边形部分、解直角三角形部分、圆。每种辅助线作法均配备了例题和练习。 三角形部分 1.在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某 边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题. 例:如图,已知D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE . 证法(一):将DE 向两边延长,分别交AB 、AC 于M 、N 在△AMN 中, AM + AN >MD +DE +NE ① 在△BDM 中,MB +MD >BD ② 在△CEN 中,CN +NE >CE ③ ①+②+③得 AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +CE 证法(二)延长BD 交AC 于F ,延长CE 交BF 于G , 在△ABF 和△GFC 和△GDE 中有, ①AB +AF >BD +DG +GF ②GF +FC >GE +CE ③DG +GE >DE ∴①+②+③有 AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +CE 注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证 有关的量)移到同一个或几个三角形中去然后再证题. 练习:已知:如图P 为△ABC 内任一点, 求证: 1 2 (AB +BC +AC )<P A +PB +PC <AB +BC +AC 2.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来, 可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题. 例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC 证法(一):延长BD 交AC 于E , F G N M E D C B A

最新初中-数学几何图形的辅助线添加方法大全

最新初中-数学几何图形的辅助线添加方法 大全 作辅助线的基本方法 一:中点、中位线,延长线,平行线。 如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的。 二:垂线、分角线,翻转全等连。 如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生。其对称轴往往是垂线或角的平分线。 三:边边若相等,旋转做实验。 如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生。其对称中心,因题而异,有时没有中心。故可分“有心”和“无心”旋转两种。 四:造角、平、相似,和、差、积、商见。 如遇条件中有多边形的两边相等或两角相等,欲证线段或角的和差积商,往往与相似形有关。在制造两个三角形相似时,一般地,有

两种方法:第一,造一个辅助角等于已知角;第二,是把三角形中的某一线段进行平移。故作歌诀:“造角、平、相似,和差积商见。” 托列米定理和梅叶劳定理的证明辅助线分别是造角和平移的代表) 五:两圆若相交,连心公共弦。 如果条件中出现两圆相交,那么辅助线往往是连心线或公共弦。六:两圆相切、离,连心,公切线。 如条件中出现两圆相切(外切,内切),或相离(内含、外离),那么,辅助线往往是连心线或内外公切线。 七:切线连直径,直角与半圆。 如果条件中出现圆的切线,那么辅助线是过切点的直径或半径使出现直角;相反,条件中是圆的直径,半径,那么辅助线是过直径(或半径)端点的切线。即切线与直径互为辅助线。 如果条件中有直角三角形,那么作辅助线往往是斜边为直径作辅助圆,或半圆;相反,条件中有半圆,那么在直径上找圆周角——直角为辅助线。即直角与半圆互为辅助线。 八:弧、弦、弦心距;平行、等距、弦。 如遇弧,则弧上的弦是辅助线;如遇弦,则弦心距为辅助线。 如遇平行线,则平行线间的距离相等,距离为辅助线;反之,亦

初中数学圆的辅助线八种作法

中考数学圆的辅助线 在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。 1.有弦,可作弦心距 在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。求证:PO 平分∠APD 。 分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE ≌△OPF ,得出PO 平分∠APD 。 证法1:作OE ⊥AB 于E ,OF ⊥CD 于F AC=BD => = => = => AB=CD AB ( BD , ( CD ( D C A 图 1 AC ( AC ( BD ( AB ( CD (

=> OE=OF ∠OEP=∠OFP=90° => △OPE ≌△OPF 0OP=OP =>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证PO 平分∠APD ,即证 ∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线 即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OPA ≌△OPD 。 证法2:连结OA ,OD 。 ∠CAP=∠BDP ∠APC=∠DPB =>△ACP ≌△DBP AC=BD =>AP=DP OA=OD =>△OPA ≌△OPD =>∠OPA=∠OPD =>PO 平分∠APD OP=OP D C A 图1-1

初二数学辅助线常用做法及例题(含答案)

D C B A 常见的辅助线的作法 总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线 合一”的性质解题 2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3.角平分线在三种添辅助线 4.垂直平分线联结线段两端 5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长, 6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形 7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可 以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。从而为证明全等三角形创造边、角之间的相等条件。 8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或 40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二 条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。 常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。 1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变 换中的“对折”法构造全等三角形. 2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的 思维模式是全等变换中的“旋转” 法构造全等三角形. 3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂 线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。(3)可以在该角的两边上,距离角的顶点相等长度的位置上截取二点,然后从这两点再向角平分线上的某点作边线,构造一对全等三角形。 4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平 移”或“翻转折叠” 5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条 线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目. 6) 已知某线段的垂直平分线,那么可以在垂直平分线上的某点向该线段的两个端点作连 线,出一对全等三角形。 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答 一、倍长中线(线段)造全等 例1、已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________. 解:延长AD 至E 使AE =2AD ,连BE ,由三角形性质知 AB-BE <2AD

初中数学常见辅助线添加口诀

初中数学常见辅助线添加口诀 说几何很困难,难点就在辅助线。 辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭经验。 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。 圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。 要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆 如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。 解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。 分析综合方法选,困难再多也会减。 虚心勤学加苦练,成绩上升成直线 添辅助线有二种情况: (1)按定义添辅助线: 如证明二直线垂直可延长使它们相交后证交角为90°, 证线段倍半关系可倍线段取中点或半线段加倍, 证角的倍半关系也可类似添辅助线 ………… (2)按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

初中数学几何题常见辅助线作法

几何常见辅助线口诀 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,倍长中线得全等。四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为三角或平四。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。圆形 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径联。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。

由角平分线想到的辅助线 一、截取构全等 如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。 分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于一点来证明。自已试一试。 二、角分线上点向两边作垂线构全等 如图,已知AB>AD, ∠BAC=∠FAC,CD=BC。求证:∠ADC+∠B=180 分析:可由C向∠BAD的两边作垂线。近而证∠ADC与∠B之和为平角。 三、三线合一构造等腰三角形 如图,AB=AC,∠BAC=90 ,AD为∠ABC的平分线,CE⊥BE.求证: BD=2CE。

八年级数学三角形辅助线大全(精简、全面)

三角形作辅助性方法大全 1.在利用三角形的外角大于任何和它不相邻的内角证明角的不等关系时,如果直接证不出来,可连结两点或延长某边,构造三角形,使求证的大角在某个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题. 例:已知D 为△ABC 内任一点,求证:∠BDC >∠BAC 证法(一):延长BD 交AC 于E , ∵∠BDC 是△EDC 的外角, ∴∠BDC >∠DEC 同理:∠DEC >∠BAC ∴∠BDC >∠BAC 证法(二):连结AD ,并延长交BC 于F ∵∠BDF 是△ABD 的外角, ∴∠BDF >∠BAD 同理∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC 2.有角平分线时常在角两边截取相等的线段,构造全等三角形. 例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4, 求证:BE +CF >EF 证明:在DA 上截取DN = DB ,连结NE 、NF ,则DN = DC 在△BDE 和△NDE 中, DN = DB ∠1 = ∠2 ED = ED ∴△BDE ≌△NDE ∴BE = NE 同理可证:CF = NF 在△EFN 中,EN +FN >EF ∴BE +CF >EF 3. 有以线段中点为端点的线段时,常加倍延长此线段构造全等三角形. 例:已知,如图,AD 为△ABC 的中线,且∠1 = ∠2,∠3 = ∠4,求证:BE +CF >EF 证明:延长ED 到M ,使DM = DE ,连结CM 、FM △BDE 和△CDM 中, BD = CD ∠1 = ∠5 ED = MD ∴△BDE ≌△CDM ∴CM = BE 又∵∠1 = ∠2,∠3 = ∠4 ∠1+∠2+∠3 + ∠4 = 180o F A B C D E D C B A 43 21N F E D C B A

2020年中考数学复习: 圆中常见辅助线的作法 专题练习题

圆中常见辅助线的作法 1.如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为( ) A.15° B.18° C.20° D.28° 2.如图所示,AB是⊙O的弦,OH⊥AB于点H,点P是优弧上一点,若AB=23,OH=1,则∠APB的度数是( ) A.60° B.50° C.40° D.30° 3.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,OP=3,则⊙O的半径为( ) A.10 B.8 C.5 D.3 4.如图所示,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长是( ) A.2 5 B. 5 C.213 D.13 5.如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若CD=8,OP=3,则⊙O的半径为( )

A.10 B.8 C.5 D.3 6. 如图所示,已知:AB是⊙O的直径,点C、D在⊙O上,∠ABC=50°,则∠D 为( ) A.50° B.45° C.40° D.30° 7.如图,半圆O的直径AB=10,弦AC=6,AD平分∠BAC,则AD的长为( ) A.8 B.5 5 C.5 D.45 8. 如图所示,在半径为5的⊙O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为( ) A.3 B.4 C.3 2 D.42 9.如图,AB是⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°.若点M、N分别是AB、BC的中点,则MN长的最大值是 . 10.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O 的切线,切点为F.若∠ACF=65°,则∠E= . 11. 已知:AB是⊙O的直径,点C,D在⊙O上,∠ABC=50°,则∠D= .

初中数学常见辅助线的添加方法

中考数学复习专题 ——几何论证题中辅助线的添加方法 例1: 如图:等腰梯形ADBC 中AB ∥CD ,底角∠ABC=450 对角线AC 、BD 交于点O ,且∠BOC=1200 求: BC AD 的值 分析:在已知条件中,底角∠ABC=450,有的同学想到延长两腰,出现一个 等腰直角三角形。而在本题中这样添辅助线,反而增加解题困难,因为 ∠BOC=1200 的条件不能很好的运用。故本题添辅助线时,应考虑过上底顶点D (或A )作对角线的平行线,把梯形问题转化为平行四边形及顶角为1200的等 腰三角形问题,而解等腰三角形时,常添的辅助线是作底上的高,这样不难求BC AD 的比值。 证明:过D 点作DF ∥AC 交BC 的延长线于F ,作DE ⊥BC 于E AD ∥BC AD=CF AC ∥DF ??ACFD 平行四边形 AC=DF 等腰梯形ABCD ? DB=AC ?BD=DF AC ∥DF ?∠BDF=∠BOC=1200 DE ⊥BF ∠BDE=600 ? BE=EF ?BE=EF=a 3 ∠BED=900 设a DE = DE ⊥BC a CE DE == a AD CF )13(-== ? ? ∠BCD=450 EF=a 3 a CE BE BC )13(+=+= ? 32)13()13(-=+-=a a BC AD .

例 如图:已知直线PQ 是线段AB 的中垂线, C 是OQ 上的任意一点,若OD ⊥BC 于D ,M 是OD 的中点 求证:CM ⊥AD 分析:在已知条件中,PQ 是线段AB 的中垂线,同学们肯定想到连结AC 运用线段中垂线性质,但证明此题这样的添线与其它已知条件的应用没有多大关系,这种添线不能解答本题,而图中出现“母子三角形”,使我们想到能否运用三角形相似及线段成比例来解本题。而要证CM ⊥AD ,从图中观察到如能证得∠1=∠A ,那么CM ⊥AD 即可成立;而∠A 除了在Rt △AON 中,它还在△AOD 中,若把∠1也放到与△AOD 相似的三角形中,结论就可成立。因此构筑一个与△AOD 相似的三角形是本题解答的关键。而已知条件M 是OD 的中点,想到 增添中点(或添平行线)的方法,故取OC 的中点为G ,想法证明△AOD ∽ △CGM 。通过基本图形分析,发现∠2=∠3,故∠AOD=∠CGM 。因此证:GM CG OD AO =是本题又一关键。 证明:取OC 的中点为G ,连GM, ∵PQ 是AB 的中垂线, ∴∠BOC=900设OA=OB=a ,OD=b . ∵OD ⊥BC, ∴∠CDO=∠ODB=900 ∵∠4+∠3=900,∠3+∠B=900 . ∴∠4=∠B ,△COD ∽△OBD . ∴b a OD OB CD OC ==,G 、M 为OC 、OD 的中点. ∴OC=2CG ,CD=2GM.. ∴OD OA b a OD OB GM CG ===22,△AOD ∽△CGM . 1=∠A. ∵∠A+∠ANO=900 ∴∠1+∠CNH=900 即∠NHC=900,CM ⊥AD.

(完整版)初中数学_巧添辅助线__解证几何题

巧添辅助线 解证几何题 [引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以 归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。值得注意的是辅助线的添加目的与已知条件和所求结论有关。 一、倍角问题 研究∠α=2∠β或∠β=1 2 ∠α问题通称为倍角问题。倍角问题分两种情形: 1、∠α与∠β在两个三角形中,常作∠α的平分线,得∠1=1 2 ∠α,然后证明∠1=∠β;或把 ∠β翻折,得∠2=2∠β,然后证明∠2=∠α(如图一) 2、 ∠α与∠β在同一个三角形中,这样的三角形常称为倍角三角形。倍角三角形问题常用构 造等腰三角形的方法添加辅助线(如图二) [例题解析] 例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。 求证:∠DBC= 1 2 ∠BAC. 分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C ,可利用 三角形内角和来沟通∠DBC 、∠BAC 和∠C 的关系。 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90°-12 ∠BAC 。 ∵BD ⊥AC 于D ∴∠BDC=90 ° ∴∠DBC=90° -∠C=90° -(90° - 12∠BAC)= 1 2 ∠BAC 即∠DBC= 1 2 ∠BAC 分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ?∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把?∠ A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。 证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°

初中数学常见辅助线添加方法

初中数学常见辅助线添加方法我们在解数学几何题时经常会用到辅助线。如果题目给出的条件不够,则需要通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题。这便是辅助线的作用。一条巧妙的辅助线能够使一道难题迎刃而解。 添辅助线的2种情况 一、按定义添辅助线 如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 二、按基本图形添辅助线 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: 1.平行线是个基本图形。当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线。 2.等腰三角形是个简单的基本图形。当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得 等腰三角形。

3.等腰三角形中的重要线段是个重要的基本图形。出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 4.直角三角形斜边上中线基本图形。出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 5.三角形中位线基本图形。几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 6.全等三角形。全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添

初中数学中考几何巧妙做辅助线大全

初中数学中考几何如何巧妙做辅助线大全

————————————————————————————————作者:————————————————————————————————日期:

人教版北师大初中数学中考几何如何巧妙做辅 助线大全 人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。 一.添辅助线有二种情况: 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形:

出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线

初中数学辅助线的添加方法【压轴题必备】

初中数学辅助线的添加方法【压轴题必备】 一、添辅助线有二种情况 1、按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2、按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形: 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形: 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可

相关主题
文本预览
相关文档 最新文档