当前位置:文档之家› 细菌纤维素复合材料的发酵制备研究

细菌纤维素复合材料的发酵制备研究

细菌纤维素复合材料的发酵制备研究
细菌纤维素复合材料的发酵制备研究

细菌纤维素的研究进展

细菌纤维素的研究进展 摘要:细菌纤维素是一种天然的生物高聚物,具有生物活性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超精细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。概括细菌纤维素的性质,发酵过程,改性方法以及在生物医学材料上的应用。 关键词:细菌纤维素;改性;生物医学材料;应用 0 前言 细菌合成纤维素是在1886年由Brown首次报道的,是胶膜醋酸菌A.xylium 在静置培养时于培养基表面形成的一层白色纤维状物质。后来在许多革兰氏阴性细菌,如土壤杆菌、致瘤农杆菌和革兰氏阳性菌如八叠球菌中也发现了细菌纤维素的产生。细菌纤维素与天然纤维素结构非常相似,都是由葡萄糖以β一1,4一糖苷键连接而成的高分子化合物,此外,细菌纤维素相对于传统的纤维素资源又有其优势,如加工时不用去木质素,可合成高质量的纸张或者加工成任何形状的无纺织物,还可通过发酵条件的改变控制合成不同结晶度的纤维素,从而可根据需要合成不同结晶度的纤维素。 从纤维素的发现至今已有一百多年的历史,但由于无合适的实验手段以及纤维素的产量较低,因此多年来一直未受到足够重视。近十几年来随着分子生物学的发展和体外无细胞体系的应用,细菌纤维素的生物合成机制已有了很深人的研究,同时在细菌纤维素的应用方面也有了很大进展。 1.细菌纤维素的结构特点和理化特性 1.1化学特性 经过长期的研究发现,BC和植物纤维素在化学组成和结构上没有明显的区别,均可以视为是由很多D-吡喃葡萄糖苷彼此以(1-4)糖苷键连接而成的线型高分子,相邻的吡喃葡萄糖的6个碳原子不在一个平面上,而是呈稳定的椅式立体结构。

聚丙烯微晶纤维素复合材料的制备与性能研究

聚丙烯/微晶纤维素复合材料 的制备与性能研究 摘要 聚丙烯(PP)/微晶纤维素(MCC)复合材料是以PP为基体和新型绿色环保材料。由于MCC是亲水的极性材料,而PP是疏水的非极性材料,两者的相容性较差,复合材料中加入相容剂和MCC硅烷化处理是改善两者相容性的两种可行的途径。本文通过万能试验机、冲击试验机、偏光显微镜测试PP/MCC复合材料的力学性能和其结晶形貌,并且用美国TA公司生产的示差扫描量热分析仪和热重分析仪研究复合材料的热稳定性和结晶性能。通过对比分析不同处理方法对材料性能的影响,得出以下结果: (1)复合材料的拉伸强度,冲击强度随MCC含量的增加而降低,加入相容剂后,复合材料的拉伸强度,弯曲强度、冲击强度和硬度值都有明显的提高,MCC的热分解温度也有所提高,并且复合材料的残碳率比不加增容剂的高3%左右。 (2)随着改性MCC含量的增加,复合材料的拉伸强度和冲击强度降低,弯曲强度提高,并且强度上要高于微晶处理的MCC/PP复合材料,断裂伸长率有显著的降低。改性MCC的热分解温度比MCC高20~25℃,改性后的复合材料的结晶度和熔融温度随改性MCC含量的增加而提高。 (3)未经处理的PP/MCC复合材料的结晶形貌要优于处理后的复合材料。随着MCC含量的增多,大量模糊的折射光斑在MCC周围生成。 关键词:聚丙烯;微晶纤维素;聚丙烯接枝马来酸酐;复合材料;表面改性

ABSTRACT Polypropylene (PP) / microcrystalline cellulose (MCC) composite is a new type of green environmental protection material based on PP.Since MCC is a hydrophilic material, and PP is a hydrophobic non polar material, the compatibility of the two is poor, and the addition of the compatible agent and MCC silane treatment is the two possible ways to improve the compatibility of the two.The universal mechanical performance testing machine, impact testing machine, polarized light microscopy PP/MCC composite and its crystal morphology, and TA are shown by differential scanning calorimetry and thermal gravimetric analyzer to study composite thermal stability and crystallization properties.By comparing and analyzing the effect of different treatment methods on the properties of the materials, the following results are obtained. (1)The tensile strength of the composite material, impact strength increased with the content of MCC decreased after adding compatibilizer. The tensile strength of the composite, flexural strength, impact strength and hardness values are significantly improved and thermal decomposition temperature of the MCC also increased and residual carbon composite rate without compatibilizer of up to 3%. (2)Along with the changes of the MCC content increasing, the tensile strength and impact strength of the composite decreased, improve flexural strength and strength to higher than microcrystalline processing MCC/PP composite, the

细菌纤维素

细菌纤维素 摘要:细菌纤维素是一种新型的生物纳米材料材料,具有广泛的发展前景.本文从细菌纤维素的组成和结构入手,列举了细菌纤维素合成研究过程中的方法,并进一步对细菌纤维素在环境中的应用进行阐述,最后对未来细菌纤维素发展趋势作出了展望。 关键词:细菌纤维素,纳米材料,应用 众所周知,纤维素是自然界中最丰富且具有生物可降解性的天然高分子材料,是高分子化学诞生和发展阶段的主要研究对象之一。在当今世界面临人口、资源、环境和粮食四大问题的情况下,大力开发取之不尽用之不竭的天然高分子材料造福于人类,具有重要战略意义。 目前,人类获得纤维素的途径主要通过树木、棉花等职务光合作用合成和微生物合成。为了区别于植物来源的纤维素,称微生物合成的纤维素为微生物纤维素或者是细菌纤维素(简称BC)。细菌纤维素最初在1886年,用英国科学家Brown AJ利用化学分析方法确定。当时他发现在传统酿造液表面生成的类似凝胶半透明膜状物质为纤维素,在光学显微镜下观察到发酵生产的菌膜中存在菌体[1]。自然界中有少数细菌可以产生纤维素,其镇南关木醋菌属中的木醋杆菌(简称Ax)合成纤维素的能力最强,最具有大规模生产的能力。Ax合成细菌纤维素在纯度、抗拉强度、杨氏模量等理化性能方面均优于植物纤维素,且具有较强的生物性,在自然界中可以直接降解,是一种环境友好,性能优异型材料[2]。近年来引起了人们广泛的研究兴趣和关注。 1.细菌纤维素的结构和特性 1.1细菌纤维素的结构 经过长期的研究发现,细菌纤维素和植物纤维素在化学组成和结构上没有明显的区别,都可视为D-吡喃葡萄糖单体以糖苷键连接而成的直链多糖,直链间彼此平行,不呈螺旋结构,无分支结构,又称β-1, 4-葡聚糖。但相邻的吡喃葡萄糖的6个碳原子并不在同一平面上,而是呈稳定的椅状立体结构,数个邻近的β-1, 4-葡聚糖通过分子链内与链间的氢键作用形成稳定的不溶于水的聚合物[3]。 1.2细菌纤维素的性质 1.2.1 细菌纤维素的独特性质 细菌纤维素和植物或海藻产生的天然纤维素具有相同的分子结构单元, 但细菌纤维素纤维却有许多独特的性质。①细菌纤维素与植物纤维素相比无木质素、果胶和半纤维素等伴生产物,具有高结晶度(可达95%,植物纤维素的为65%)和高的聚合度(DP值2 000~8 000); [4]②超精细网状结构。细菌纤维素纤维是由直径3~4 纳米的微纤组合成40~60 纳米粗的

细菌纤维素-纳米银复合材料的制备及其抗菌性能研究

细菌纤维素/纳米银复合材料的制备及其抗菌性能研究 摘要:细菌纤维素(bacterial cellulose, bc)是一种由微生物合成的高纯度纤维素,超细纤维网络结构使其具有高比表面积、高持水能力以及良好的生物相容性和生物可降解性,被认为是一种潜在的“理想”医用敷料材料。然而,细菌纤维素本身不具有抗菌性能,难以应对细菌感染的伤口。纳米银是一种广谱抗菌剂。因此本文以细菌纤维素为模板,采用环境友好的化学还原剂抗坏血酸为还原剂,原位制备细菌纤维素/纳米银复合材料。同时分别采用抑菌圈法和最小抑菌浓度法对复合物的抗菌效果进行评价。 关键词:细菌纤维素纳米银抗菌创伤敷料 一、引言 细菌纤维素是一种由微生物合成的高纯度纤维素,其微纤维直径只有40-60nm,是自然界中天然存在的精细纳米材料。超细纤维网络结构使其具有高比表面积、高持水能力以及良好的生物相容性和生物可降解性,被称作“大自然赋予人类的天然生物医用材料”[1]。大量研究和临床试验表明,细菌纤维素基创伤敷料对于烧伤烫伤以及慢性溃疡疾病具有良好的治愈效果,是一种极具潜力的“理想”创伤敷料材料[2]。 然而,细菌纤维素本身不具有抗菌性能,难以应对细菌感染的伤口。金属银及其化合物是目前最常用的无机抗菌剂,尤其适用于治疗烧伤烫伤以及慢性溃疡创伤[3]。因此,以细菌纤维素为载体负载纳米银粒子将有望获得具有高效保湿抗菌功能的“理想”医用创伤敷料。孙

东平等以细菌纤维素为载体,甲醛为还原剂采用液相化学还原法合成载银细菌纤维素复合材料,所得银纳米粒子平均粒径在45nm左右,对大肠杆菌、酵母菌和白色念珠菌等都有理想的抗菌效果[4]。marques等分别以细菌纤维素和普通植物纤维为基体,采用nabh4原位还原agno3的方法在纤维素膜上合成纳米银单质,结果表明细菌纤维素纤维的银负载量可达到植物纤维的50倍以上,并且对ag+具有更持久的控释作用,是一种良好的纳米银合成基质[5]。上述研究大多采用nabh4、甲醛等化学试剂为还原剂,这些试剂通常具有较高的人体毒性,反应结束后很难解决试剂在纤维膜内的残留问题,尤其不适合应用于生物医用材料产品的制备。据此,我们提出,以细菌纤维素为模板,摒弃有毒化学还原试剂,采用环境友好的抗坏血酸为还原剂,原位制备细菌纤维素/纳米银复合材料。 二、材料与方法 (一)实验材料 木醋杆菌(acetobacter xylinum):本实验室保藏。agno3、抗坏血酸购买于国药集团化学试剂有限公司。其它试剂若无特殊说明,均为市场可售。 (二)细菌纤维素膜的制备和纯化 以木醋杆菌为菌种,将活化后的菌种接种至种子培养液中,在30℃和160rpm的摇床中培养24h。按6%的接种量接种于发酵培养基中,30℃恒温培养箱中静置培养8 d,得细菌纤维素膜。培养基组成为麦芽糖25g/l,蛋白胨3g/l,酵母浸膏5g/l,ph值为5.0,121℃灭菌

细菌纤维素

改性纤维素在卫生领域的研究及应 用情况 (昆明理工大学化学工程学院轻化工程2010级肖任) 摘要: 纤维素是自然界最丰富的自然资源,在未来对于解决人类面临的能源、资源、和环境污染等问题方面有非常重要的作用,但是纤维素分子中由于高密度的氢键影响作用,使之在医疗卫生领域等方面受到了很大的限制。综述近年来通过对纤维素化学改性合成可以得到纤维素衍生物在医疗卫生方面的应用。其中,细茵纤维素是一种天然的生物高聚物,具有生物活性、生物可降解性、生物适应性,具有独特的物理、化学和机械性能,例如高的结晶度、高的持水性、超细纳米纤维网络、高抗张强度和弹性模量等,因而成为近年来国际上新型生物医学材料的研究热点。概括细茵纤维素的性质、研究历史以及在生物医学材料上的应用,重点阐述细茵纤维素在组织工程支架、人工血管、人工皮肤和治疗皮肤损伤方面的应用以及当前研究现状。 关键词:纤维素、细茵纤维素、组织工程支架、人工血管、人工皮肤、化学改性、 医疗卫生 Modified cellulose in health field research and should use situation Cellulose is the most abundant natural resources of nature, in the future to solve human beings are facing with the energy, resources, and environment pollution and so on has a very important role, but cellulose molecules due to the high density of hydrogen bond effect, make in the medical and health fields was much limited. Recent advances in chemical modification of cellulose by synthesis can get cellulose derivatives in medical applications. Among them, the fine wormwood cellulose is a kind of natural biopolymer, with biological activity, biodegradable property, biological adaptability, has a unique physical, chemical and mechanical properties, such as high degree of crystallinity, high water binding capacity, ultrafine nano fiber network, a high strength and modulus of elasticity, etc., and become in recent years international new biomedical materials research hot spot. The nature of the cellulose in fine wormwood, historical study and the application of biomedical materials, the paper fine wormwood cellulose in tissue engineering scaffolds, artificial blood vessels, artificial skin and the treatment of skin damage and the application of the current research status. Keywords: cellulose, fine wormwood cellulose, tissue engineering scaffolds, artificial blood vessels, artificial skin, chemical modification, medical and health 细菌纤维素( bacterial cellulose,简称 B C) 又称为微生物纤维素( microbial cellulose ) ,不仅是地球上除植物纤维素之外的另一类由细菌合成的天然惰性材料,而且是世界上公认的性能优异的新型生物学材料。能够产生纤维素的细菌【1】主要有A c e t o b a c t e r ,R h i z o b i u m,A g r o b a c t e r i u m和S a r c i n a等,其中研究最多、产量最高的是A c e t o b a c t e r x y l i n u m( A .x y l i n u m,木醋杆菌) 。从纤维素的分子组成看,B c和植物纤维一样都是由B - D- 葡萄糖通过B .1 ,4 精苷键结合成的直链,直链间彼此平行,不呈螺旋构象,无分支结构,又称为 B - 1 ,4.葡聚糖。但从物理、化学、

细菌纤维素-纳米银复合材料的制备及其抗菌性能研究

细菌纤维素/纳M银复合材料地制备及其抗菌性能研究摘要:细菌纤维素

伤敷料.孙东平等以细菌纤维素为载体, 甲醛为还原剂采用液相化 学还原法合成载银细菌纤维素复合材料,所得银纳M粒子平均粒径在45nm左右,对大肠杆菌、酵母菌和白色念珠菌等都有理想地抗菌效果[4].marques 等分别以细菌纤维素和普通植物纤维为基体, 采用nabh4原位还原agno3地方法在纤维素膜上合成纳M银单质,结果表明细菌纤维素纤维地银负载量可达到植物纤维地50 倍以上, 并且对ag+具有更持久地控释作用,是一种良好地纳M银合成基质[5].上述研究大多采用nabh4、甲醛等化学试剂为还原剂,这些试剂通常具有较高地人体毒性, 反应结束后很难解决试剂在纤维膜内地残留问题, 尤其不适合应用于生物医用材料产品地制备. 据此, 我们提出, 以细菌纤维素为模板, 摒弃有毒化学还原试剂, 采用环境友好地抗坏血酸为还原剂,原位制备细菌纤维素/纳M银复合材料. 二、材料与方法 <一)实验材料 木醋杆菌vacetobacter xylinum ):本实验室保藏.agno3、抗坏血酸购买于国药集团化学试剂有限公司. 其它试剂若无特殊说明, 均为市场可售. <二)细菌纤维素膜地制备和纯化 以木醋杆菌为菌种, 将活化后地菌种接种至种子培养液中, 在 30C和160rpm地摇床中培养24h.按6%地接种量接种于发酵培养基中,30 C恒温培养箱中静置培养8 d,得细菌纤维素膜.培养基组成为麦芽糖25g/l,蛋白胨3g/l,酵母浸膏5g/l,ph值为5.0,121 C

细菌纤维素的研究近况综述

﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡ 关于细菌纤维素研究现状 的综述 院系: 材料科学与工程学院 材料0707班 姓名: 秦 伟 学号: 20070236 指导教师: 彭碧辉 老师 设备

细菌纤维素研究现状 [摘要]: 本文从细菌纤维素的合成入手,列举了细菌纤维素合成研究过程中的研究点,其中包括了对合成过程的研究、发酵工艺及设备的改进以及细菌纤维素复合材料的研究等,最后对未来细菌纤维素发展趋势作出了展望。 [关键词]:细菌纤维素;发酵工艺;细菌纤维素复合材料 The Bacterial cellulose research situation [abstrcat]: From the synthesis of bacterial cellulose, liststhe synthesis process of bacterial cellulose research points,including the synthesis process of the research, the fermentation process and equipment improvement and bacterial cellulose composites for future research, development trend of bacterial cellulose is forecasted. [key words]: bacteria cellulose; Fermentation; bacteria cellulose composites 细菌纤维素发现至今已有100多年的历史,由于对其物理特性了解不够充分,以致应用受到限制。最近十几年,随着对其生物合成机制的深入了解以及发酵条件的改善,加速了细菌纤维素的工业应用。

细菌纤维素

摘要 细菌纤维素是一种天然的生物高聚物,不仅具有生物活性、生物可降解性、生物适应性,而且具有独特的物理、化学和机械性能,简要介绍细菌纤维素的基本性质,系统地介绍了细菌纤维素的生物合成与调节,发酵工艺条件控制以及在生物医学材料上的应用。与细菌纤维素培养方法采用不同的培养方法,如静态培养和动态培养,利用醋酸菌可以得到不同高级结构的纤维素。通过调节培养条件,也可得到化学性质有差异的细菌纤维素。 关键词:细菌纤维素,特征,培养方式,生物医学应用 Abstract Bacterial cellulose is a kind of natural biopolymer, not only has the bioactivity, biodegradability, biocompatibility, and has unique physical, chemical and mechanical properties, the basic properties of bacterial cellulose were briefly introduced, systematically introduced bacterial cellulose biosynthesis and regulation, fermentation process control and in biomedical materials applications. Different methods were used in the culture of bacterial cellulose, such as static and dynamic culture. Bacterial cellulose with different chemical properties can be obtained by adjusting the culture conditions. Keywords:BC, Feature, Training mode, biomedical applications

细菌纤维素研究新进展

细菌纤维素研究新进展 杨礼富 (中国热带农业科学院橡胶研究所 农业部热带作物栽培生理学重点开放实验室 儋州 571737) 摘要:综述细菌纤维素的结构和性质、生物合成和分泌的过程与调控以及影响合成的因素。 细菌纤维素的化学构成与天然纤维素相近,但又有其特殊性。参与纤维素合成的酶有8 种,其中纤维素合成酶是合成纤维素的关键酶和特征酶,环二鸟苷酸系统是研究得比较透 彻的纤维素合成调节系统。培养基组成、发酵工艺和设备都会影响细菌纤维素的产量。深 入研究细菌纤维素的合成和调节机制有助于揭示植物纤维素的生物合成机理和促进细菌纤 维素的大规模商业化应用。 关键词:细菌纤维素,合成,分泌,应用 中图分类号:Q93 文献标识码:A 文章编号:025322654(2003)0420095204 细菌纤维素是由部分细菌产生的一类高分子化合物,最早由英国科学家Brown在1886年发现,他在静置条件下培养醋杆菌时,发现培养基的气2液表面形成一层白色的凝胶状薄膜,经过化学分析,确定其成分是纤维素。为了与植物来源的纤维素相区别,将其称之为“微生物纤维素”或“细菌纤维素”。细菌纤维素在物理性质、化学组成和分子结构上与天然(植物)纤维素相近,均是由β21,42葡萄糖苷键聚合而成。近些年来,随着实验手段和技术的不断提高,人们对细菌纤维素的理化特性、生物合成机制和提高产量的途径等进行了比较深入的研究。 1 细菌纤维素的结构和性质 细菌纤维素与高等植物细胞中的纤维素相比,具有特殊的结构特性。细菌纤维素由独特的丝状纤维组成,纤维宽10nm,厚3nm~8nm,每一丝状纤维由一定数量的微纤维组成,微纤维的大小与结晶度有关。细菌纤维素的结构随菌株种类和培养条件的不同而有所变化,搅拌培养时,纤维素的结晶度、聚合度和Ια含量均比静置时的低[1]。 能产生纤维素的细菌种类较多,常见的有:醋酸杆菌属(Acetobacter)、产碱菌属(Alcaligenes)、八叠球菌属(Sarcina)、根瘤菌属(Rhizobium)、假单胞菌属(P seudo2 monas)、固氮菌属(Azotobacter)和气杆菌属(Aerobacter)。其中木醋杆菌(A Xylinum)是最早发现也是研究较为透彻的纤维素产生菌株,可以利用多种底物生长,是目前已知合成纤维素能力最强的微生物菌株,也是研究纤维素生物合成过程和机制的模式菌株。和天然纤维素相比,细菌纤维素具有独特的理化性质和机械性能:(1)具有高结晶度、高聚合度和非常一致的分子取向,并且以单一纤维形式存在,纯度极高;(2)纤维直径在0101μm~011μm之间,抗拉力强度高,扬氏模量高达115×1010Pa,并且纤维素的机械性能与菌株种类、发酵方式和处理方式(加热、加压)关系不大;(3)有极强的持水性和透水透气性,能吸收60~700倍于其干重的水分;(4)具有生物可降解性,是环境友好产品[2]。 收稿日期:2002206224,修回日期:2002209230

相关主题
文本预览
相关文档 最新文档