当前位置:文档之家› 变电站消弧线圈的运行维护与故障处理

变电站消弧线圈的运行维护与故障处理

变电站消弧线圈的运行维护与故障处理
变电站消弧线圈的运行维护与故障处理

变电站消弧线圈的运行维护与故障处理

摘要:本文分析了10kV中性点不接地系统的特点,以及系统对地电容电流超标的

危害,阐述了自动跟踪消弧线圈成套装置的工作原理和性能特点,结合工作经验,详述了消弧线圈运行要求及维护注意事项,以供参考。

关键词:变电站;消弧线圈核心故障。

在变电站系统中,10kV侧为中性系统,其路线通过树木,气候潮湿,单相接

地故障多发生。按照规定,单相接地故障允许继续运行,但电容电流会急剧增加,在电容电流大于10 a后,可以产生3.5倍的相电压电弧过电压,造成局部放电设

备损坏的绝缘。为了解决这一问题,在变电站低压侧安装消弧线圈是一种有效的

措施。

1.消弧线圈的工作原理

消弧线圈是一种可调节的电感线圈,有段铁芯与间隙。其自身的伏安特性不

容易饱和,在间隙铁芯线圈中,电弧抑制线圈的线圈和核心浸在绝缘油中,结构

与变压器相似。当电弧抑制线圈容量的正常工作时,IL提供了感应电流,并将电

容电流的系统与Ic的反方向的电流系统相对应,最大偏移量在系统电容电流中,

有效地消除了电容电流的危害。无载电缆和消弧线圈电容电流:

Ic = 0.1 * UP * L (2,1)

式中:UP- grid line电压(kV);L -电缆长度(公里)。

当使用消弧线圈时,补偿的优化模式通常是使用[2],即电容电流Ic小于感应电

流的运行方式。当Ic - IL < 0,Ic - IL││Id或更少,在规定范围内,消弧线圈没有调档。

如果地面电容发生变化,上述条件不满足,则应调整消弧线圈的接头,直至满足

上述条件。

电弧抑制线圈容量的测定。

3 Q = K * UP/Ic) (2 - (2)

式中:K-系数,超补偿1.35;Q-消弧线圈容量,kVA。

2.110kV变电站运行常见问题

110kV变电站是现在运用最为广泛的电压,因而保证变电站正常作业非常重要。这就需要剖析存在的各种问题,进而有用的进行改善和完善。整体而言,110kv变电

站常见问题有如下几个方面。

2.1合闸熔断器的时间上存在问题

应当按照有关规定,如果开关熔断器删除后必须进行维护,操作主要是担心这样

的人员将保险丝起飞后,只要行剩下的路有人在断路器操作,有可能损坏运营商,所

以保险丝的保养和维修注意误操作,给运营商带来伤害,甚至危及生命安全的。可

从规则中得知,只要断路器断开后,隔离开关操作必须开关保险丝断路器,防止

隔离开关上的操作者,并在距离内关闭断路器,造成隔离开关和误操作事故。

2.2母线上的问题

母线是变电站电压分布设备连接的各个级别的集合、分配和传输功率,以及

变压器和其他电气设备以及相应的配电设备连接,主要是用裸线或电缆的矩形或

圆形截面。动力装置和变电站总线是电力系统的主要组成部分。母线在发生故障时,总线连接所有部件将是短期或长期的动力,特别是当母线变电站故障的中心

发生时,也可能损坏系统的稳定性,造成严重后果。

2.3电力变压器故障

变压器是电力系统中一个特别重要的设备,因为变压器本身仍然是设备,所

消弧线圈检修质量与工作标准

消弧线圈检修质量与工作标准 1 总则 1.1 为了保证电网安全可靠运行,提高消弧线圈装置的检修质量,使检修工作制度化、规范化,特制定本规范。 1.2 本规范是依据国家、行业有关标准、规程和规范,并结合近年来市供电有限公司输变电设备评估分析、生产运行分析以及现场运行经验而制定的。 1.3 本规范规定了消弧线圈装置运行和日常维护所必须注意的事项。 1.4 本规范适用于市供电有限公司系统内的 l0kV 消弧线圈装置的检修工作。 2 引用标准 2.1 以下为本规范引用的标准、规程和导则,但不限于此。 国家电网公司 2005[173 号 ] 文 国家电网公司《10kV~66kV 消弧线圈技术标准、规定汇编》 3 检查项目及处理 消弧线圈装置的检查周期取决于消弧线圈装置性能状况、运行环境、以及历年运行和预防性试验等情况。所提出的检查维护项目是消弧线圈装置在正常工作条件下,应进行的工作。 3.1 绕组检查及绝缘测试。绕组无变形、倾斜、位移、幅向导线无弹出,匝间绝缘无损伤;各部分垫块无位移、松动、排列整齐,压紧装置无松动;导线接头无发热脱焊。 3.2 引线检查。引线排列整齐,多股引线无断股;引线接头焊接良好;表面光滑、无毛刺、清洁;外包绝缘厚度符合要求,包扎良好、无变形、脱落、变脆、破损;引线与绝缘支架固定应外垫绝缘纸板,引线绝缘无卡伤;引线间距离及对地距离符合要求。 3.3 绝缘支架检查。无破损、裂纹、弯曲变形及烧伤痕迹,否则应予更换,绝缘支架的固定螺栓紧固,有防松螺母。 3.4 压钉检查。压钉紧固,防松螺母紧锁。 3.5 分接开关检查。对无载分接开关要求转动部分灵活,无卡塞现象,中轴无渗漏;主触头表面清洁,有无烧伤痕迹。对有载分解开关参照DLIT 574 —1995《有载分接开关运行维修导则》。

消弧消谐装置与接地变

消弧消谐装置与接地变

接地变的作用 接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。 三相接地变:接地变压器的作用是在系统为△型接线或Y型接线,中性点无法引出时,引出中性点用于加接消弧线圈或电阻,此类变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替所用变,从而节省投资费用。 单相接地变:单相接地变主要用于有中性点的发电机、变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。 扩展阅读:我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。 但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。 1)单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2)由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路。 3)产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。即当系统发生接地故障时,在绕组中将流过正序、负序和零序电流,该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。由于很多接地变只提供中性点接地小电阻,而不需带负载,所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,

消弧线圈工作原理及应用

消弧线圈工作原理及应用 目录 摘要 (2) 一、引言 (3) 二、消弧线圈作用原理与特征 (4) 三、消弧线圈自动补偿的应用 (7) 四、消弧线圈接地系统小电流接地选线 (8) 五、消弧线圈的故障处理方法与技术 (11) 六、结束语 (13) 参考文献 (14) 谢辞 (15)

摘要 本文通过对配电系统中性点接地方式和配电网中正常及发生故障时电容电流的分析,阐述了中性点经消弧线圈接地方式在目前配电网系统中应用的必要性,并从消弧线圈的工作原理,使用条件,容量选择,注意事项和故障处理等方面进行了探讨,同时也对目前国内消弧线圈装置进行了简单介绍。 关键词:接地;中性点;消弧线圈;电弧;补偿;

一、引言 目前,在我国目前配电网系统中,单相接地故障是出现概率最大的一种,并且大部分是可恢复性的故障,6~35 kV电力系统大多为非有效接地系统,由于非有效接地系统的中性点不接地,即使发生单相接地故障,但是三相线电压依然处于对称状态,所以仍能保持不间断供电,这是中性点不接地系统电网的一大优点,但当供电线路较长时,单相接地电流容易超过规范规定值,造成接地故障处出现持续电弧,一旦不能及时熄灭,可能发展成相间短路;其次,当发生间歇性弧光接地时,易产生弧光接地过电压,从而波及整个电网。为了解决这些问题,选择在系统中性点装设消弧线圈接地已经被证实是一项有效的措施,对电网的安全运行至关重要。 二、消弧线圈作用原理与特征 2.1各类中性点接地方式及优缺点介绍 我国目前中性点的运行方式主要有两种: a)中性点直接接地系统 直接接地系统主要用在110KV及以上的供电系统和低压380V系统。直接接地系统发生单相接地故障时由于故障电流较大会使继电保护马上动做切除电源与故障点回路。中性点直接接地系统的优点是发生单相接地时,其它非故障相对地电压不升高,因此可节省一部分绝缘费用,供电方式相对安全。其缺点是发生单相接地故障时,故障电流一般较大,要迅速切除故障回路,影响供电的连续性,从而供电可靠性较差。 b)中性点不接地或经消弧线圈接地

消弧、接地变使用说明书 --中文

Sieyuan? 环氧浇注干式消弧线圈、接地变压器 使 用 说 明 书 思源电气股份有限公司 SIEYUAN ELECTRIC CO.,LTD

警告! 对于消弧线圈: 对短时运行的分接,必须在铭牌所标明的允许运行时间内运行。 对于接地变压器: 额定中性点电流的运行时间不得超过銘牌规定的运行时间。

1 适用范围 本说明书适用于额定容量5000kV A及以下,电压等级35kV及以下的环氧浇注干式消弧线圈(以下简称消弧线圈)以及无励磁调压环氧浇注干式接地变压器(以下简称接地变压器)的运输、储存、安装、运行及维护。 消弧线圈是用来补偿中性点绝缘系统发生对地故障时产生的容性电流的单相电抗器。在三相系统中接在电力变压器或接地变压器的中性点与大地之间。 接地变压器(中性点耦合器)为三相变压器(或三相电抗器),常用来为系统不接地的点提供一个人工的可带负载的中性点,以供系统接地用。该产品中性点连接到消弧线圈或电阻,然后再接地。可带有连续额定容量的二次绕组,可作为站(所)用电源。 2 执行标准 GB10229 《电抗器》 GB6450 《干式电力变压器》 GB1094 《电力变压器》 IEC289 《电抗器》 3产品型号标志 3.1 消弧线圈 □—□/ □ 电压等级(kV) 额定容量(kVA) 产品型号字母(见下表) 产品型号字母的排列顺序及涵义

3.2 接地变压器 D K S C-□-□/□ 一次额定电压(kV) 二次额定容量(kVA) 一次额定容量(kVA) 浇注“成”型固体 三相 接地变压器 4 使用条件 4.1 安装地点:户内。 4.2 海拔高度:≤1000m。 4.3 环境温度:-25℃~+40℃。 4.4 冷却方式: 空气自冷(AN)和强迫风冷(AF)两种。 4.5 绝缘耐热等级:F级。 4.6 当产品运行在环境温度低于-25℃时,必须加装辅助加热装置,以保证产品在-25℃以上的环境下运行。 4.7 产品四周需保证有良好的通风能力。当产品安装在地下室或其它空间受限制的场所时,应增设散热通风装置,保证有足够的通风量。一般地,每1kW损耗必须有2~4m3/min的通风量。 4.8 若超出以上使用条件时,均应按GB6450《干式电力变压器》的有关规定做适当的定额调整。 5 装卸 5.1 起吊产品可采用起重机、汽车或叉车等设备。 5.2 起吊有包装箱产品时: 5.2.1 对于起吊毛重≤3000kg的6、10kV产品,应在包装箱的四下角枕木处挂钢丝绳起吊; 5.2.2 对于起吊毛重>3000kg或35kV的产品,应将包装箱上盖去掉,直接起吊产品; 5.2.3 对于毛重≤3000kg的产品,可以使用叉车,装卸或短距离运输。其余情况下,严禁使用叉车进行以上操作。

消弧线圈工作原理分析

、消弧线圈的工作原理 配电系统是直接为用户生产生活提供电能支持的系统,其功能是把变电站或小型发电厂的电力输送给每一个用户,并在必要的地方转换成为适当的电压等级。国内外对于提高以可靠性和经济性为主要内容的配电网运行水平非常重视。影响配电系统运行水平的因素主要有网架结构、设备、控制策略和线路等,选择适当的中性点接地方式是最重要和最灵活的提高配电网可靠性和经济性的方法之一,因此进一步研究中性点运行方式对于提高配电系统运行水平有重要意义,中性点运行方式选择是一个重要且涉及面很广的综合技术经济问题,其方式对配电系统过电压、 可靠性、继电保护整定、电磁干扰、人身和设备安全等影响很大。 电力系统中中性点是指Y型连接的三相电,中间三相相连的一端。而电力系统中中性点接地方式主要分为中性点直接接地和中性点不直接接地或中性点经消弧线圈接地。两种接地方式各自优缺点:中性点不接地系统单相接地时,由于没有形成短路回路,流入接地点的电流是非故障相的电容电流之和,该值不大,且三相线电压不变且对称,不必切除接地相,允许继续运行,因此供电可靠性高,但其它两条完好相对地电压升到线电压,是正常时的V 3倍,因此绝缘水平要求高,增加绝缘费用,对无线通讯有一定影响。 中性点经消弧线圈接地系统单相接地时,除有中性点不接地系统的优点外,还可以减少接地电流,通过消弧线圈的感性补偿,熄灭接地电弧,但接地点的接地相容性电流为 3 倍的未接地相电容电流,随着网络的延伸,接地电流增大以致使接地电弧不能自行熄灭而引起弧光接地过电压,甚至发展成系统性事故,对无线通讯影响较大。 中性点直接接地系统单相接地时,发生单相接地时,其它两完好相对地电压不升高,因此绝缘水平要求低,可降低绝缘费用,但短路电流大,要迅速切除故障部分,对继电保护的要求高,从而供电可靠性差,对无线通讯影响不大。 随着社会经济的迅猛发展,电力系统的重要性日益凸显。因而近几年电网的安全可靠运行倍受关注。在电力系统中发生几率最大的故障类型为单相接地故障。而在发生故障后及时确定及切断线路故障则显得尤为重要 配电网中主要采用第二种中性点接地方式。但是以前以架空线路为主的配电网采

接地变、消弧线圈安装作业指导书

彩虹桥66kV变电站新建工程 接地变、消弧线圈安装作业指导书 启辰电力工程有限责任公司 彩虹桥66kV变电站新建工程施工项目部

批准: 日期: 年月日审核: 日期: 年月日编写: 日期: 年月日 目录

1. 适用范围 (1) 2. 编写依据 (1) 3. 作业流程 (2) 3.1作业(工序)流程图 (2) 图3-1作业流程图 (2) 4. 安全风险辨析与预控 (2) 注:对存在风险且控制措施完善填写“√”,存在风险而控制措施未完善填写“×”,不存在风险则填写“―”,未检查项空白。 (2) 5. 作业准备 (3) 5.1 人员配备 (3) 5.2 主要工器具及仪器仪表配置 (3) 6.作业方法 (3) 6.1施工准备 (3) 6.2设备基础安装及检查 (3) 6.3设备开箱检查 (3) 6.4开关柜安装 (4) 6.4.1开关柜及柜内设备与各构件间连接应牢固; (4) 7. 质量控制措施 (4)

1. 适用范围 本作业指导书适用于110kV电压等级以下的作业施工,频率为50Hz油浸式、干式互感器、避雷器及支柱绝缘子安装作业,其它电压等级可参照执行。 式、SF 6 2. 编写依据

3. 作业流程 3.1作业(工序)流程图 图3-1作业流程图 4. 安全风险辨析与预控 施工单位检查人:监理单位检查人: 日期:日期: 注:对存在风险且控制措施完善填写“√”,存在风险而控制措施未完善填写“×”,不存在风

险则填写“―”,未检查项空白。 5. 作业准备 5.1 人员配备 5.2 主要工器具及仪器仪表配置 6.作业方法 6.1施工准备 6.1.1技术准备:按规程、厂家安装说明书、图纸、设计要求及施工措施对施工人员进行技术交底,交底要有针对性; 6.1.2人员组织:技术负责人:邹宏;安装负责人:张文革;安全质量负责人:季鹏;和工作人员郑凤海、于宏伟、曲久利、; 6.1.3机具的准备:按施工要求准备机具并对其性能及状态进行检查和维护; 6.2设备基础安装及检查 6.2.1根据设备到货的实际尺寸,核对土建基础是否符合要求,包括位置、尺寸等,底架横向中心线误差不大于10mm,纵向中心线偏差相间中心偏差不大于5 mm。 6.2.2设备底座基础安装时,要对基础进行水平调整及对中,可用水平尺调整,用粉线和卷尺测量误差,以确保安装位置符合要求,要求水平误差≤2mm,中心误差≤5mm。 6.3设备开箱检查 6.3.1接地变、消弧线圈柜卸车就位过程中应采取防震、防潮、防止框架变形和漆面受损等安全

10kV~66kV消弧线圈装置运行规范标准

目录 第一章总则 1 第二章引用标准 1 第三章设备的验收 2 第四章设备运行维护管理8 第五章运行巡视检查项目及要求12 第六章缺陷管理及异常处理15 第七章培训要求18 第八章设备技术管理20 第九章备品备件管理22 第十章更新改造22 第一章总则 第一条为完善消弧线圈装置设备管理机制,使其达到制度化、规化,保证设备安全、可靠和经济运行,特制定本规。 第二条本规是依据国家和行业有关标准、规程、制度及《国家电网公司变电站管理规》,并结合近年来国家电网公司输变电设备评估分析、生产运行情况分析以及设备运行经验而制定。 第三条本规提出了对10kV~66kV消弧线圈装置在设备投产、验收、检修、运行巡视和维护、缺陷和事故处理、运行和检修评估分析、改造和更新、培训以及技术资料档案的建立与管理等提出了具体规定。 第四条本规适用于国家电网公司所属围10kV~66kV消弧线圈装置的运行管理工作。

第二章引用标准 第五条以下为本规引用的标准、规程和导则,但不限于此。 GB10229-1988 电抗器 GB1094.1-1996 电力变压器第1部分总则 GB1094.2-1996 电力变压器第2部分温升 GB1094.3-2003 电力变压器第3部分绝缘水平、绝缘试验和外绝缘空气间隙GB1094.5-2003 电力变压器第5部分承受短路的能力 GB1094.10-2003 电力变压器第10部分声级测定 GB6451-1999 三相油浸电力变压器技术参数和要求 GB6450-1986 干式电力变压器 CEEIA104-2003 电力变压器质量评价导则 GB/T14549-1993 电能质量公用电网谐波 GB/T17626-1998 电磁兼容试验和测量技术 GB50150-1991 电气装置安装工程电气设备交接试验标准 GBJ148-1990 电气装置安装工程电力变压器、油浸电抗器、互感器施工及验收规 DL/T 572-1995 电力变压器运行规程 DL/T 573-1995 电力变压器检修导则 DL/T 574-1995 有载分接开关运行维修导则 DL/T 596-1996 电力设备预防性试验规程 GB/T 16435.1—1996 远动设备及系统接口 (电气特性) 国家电网公司变电站管理规 第三章设备的验收

SC-XHDCZ调匝式消弧线圈技术使用说明书

SC-XHDCZ型调匝式消弧线圈自动跟踪 补偿成套装置 使用说明书 保定双成电力科技有限公司

目录 一、概述 (1) 二、产品特点 (1) 三、产品型号说明 (2) 四、性能指标 (2) 五、工作原理 (2) 六、装置总体构成 (4) (一)接地变压器 (5) (二)调匝式消弧线圈 (5) (三)微机控制器 (5) (四)阻尼电阻箱 (9) 七、接地选线单元 (9) 八、并联中电阻 (10) 九、控制器操作说明 (11) 十、控制器接线 (21) 十一、成套装置选型 (23) 十二、成套装置安装 (23) 十三、订货须知 (25) 十四、产品保修 (25)

一、概述 对于不同电压等级的电力系统,其中性点的接地方式是不同的,根据我国国情,我国6~66kV配电系统中主要采用小电流接地运行方式。为了有效防止系统弧光接地,消除接地故障,提高供电质量,按照国家对过电压保护设计规范新规程规定,电网电容电流超过10A时,均应安装消弧线圈装置。由于中性点经消弧线圈接地的电力系统接地电流小,其对附近的通信干扰小也是这种接地方式的一个优点。以前我国电网普遍采用手动调匝式消弧线圈,由于不能实时监测电网的电容电流,其主要缺陷表现在以下两个方面:(1)调节不方便,需要装置退出运行才能进行调节。 (2)判断困难,无法对系统运行状态做出准确判断,因此很难保证失谐度和中性点位移电压满足要求。 我公司所研制生产的SC-XHDCZ调匝式消弧线圈装置,该成套装置采用标准的工业级计算机系统,总线式结构,多层电路板设计,全彩色大屏幕液晶屏,全汉字显示。具有运行稳定可靠、显示直观,抗干扰能力强等特点,同时系统具有完善的参数设置及信息查询功能。该系统克服了以前各消弧线圈装置调节范围小的缺陷,能够进行全面调节。 该装置采用残流增量法和有功功率法等先进算法,对高压接地线路进行选线,选线准确、迅速。 本产品广泛应用于电力供电行业、发电厂、冶金、矿山、煤炭、造纸、石油化工等大型厂矿企业的变配电站,适用电压等级6~110KV,是老式消弧线圈理想的更新换代产品,同时也是新建变电站接地补偿及选线装置的首选配套产品。 二、产品特点 (一)控制器采用工业级计算机平台,双CPU架构,多层电路板处理,运行稳定可靠。 (二)采用全彩色液晶全中文显示,参数显示、设置及查询方便直观。 (三)调节准确、速度快,且调节范围宽,可在0~100%额定电流全范围调节。 (四)内嵌高压接地选线模块,采用残流增量法及有功功率法,使选线快速准确。 (五)设有RS232及RS485通讯接口,可实现与上位机的通讯,达到信号的远距离传送。 (六)可实现单相接地故障的声光控报警功能。 (七)设有标准并口打印机,可实现数据打印,接地信息打印。 (八)具有一控二功能,可实现同一系统内两套消弧线圈随系统运行情况自动变换。

主变压器消弧线圈的运行维护与故障措施

主变压器消弧线圈的运行维护与故障措施 发表时间:2020-01-16T13:45:51.870Z 来源:《基层建设》2019年第28期作者:凃建 [导读] 摘要:随着社会经济的发展和科学技术的进步,人们的生活质量得到了巨大的提升,电力需求量也在不断的增加,从而给现阶段的电力运行带来了一定的压力,因此要进一步加强对电力系统的建设,保证电力系统在实际运行过程中不会出现故障。 国网凉山供电公司四川凉山 615000 摘要:随着社会经济的发展和科学技术的进步,人们的生活质量得到了巨大的提升,电力需求量也在不断的增加,从而给现阶段的电力运行带来了一定的压力,因此要进一步加强对电力系统的建设,保证电力系统在实际运行过程中不会出现故障。电力系统是由多个部分组成的,每个部分都对电力系统的正常运行有着巨大的作用和影响,主变压器消弧线圈就是电力系统的重要组成部分,因此在线圈实际运行的过程中,工作人员要能够极大对消弧线圈正常运行的检查力度,本文主要对现阶段主变压器消弧线圈的运行维护与故障措施进行详细的分析。 关键词:主变压器;消弧线圈;运行维护;故障措施 1 引言 消弧线圈是电力系统内非常重要的电力设施之一,主变压器消弧线圈的外形与单相变压器的外形非常相似,对于消弧线圈而言,大多数的消弧线圈都是应用于中性点不接地的电网系统中的。消弧线圈的内部有一个具有间隙的铁芯电线感圈,这样电感电流就能够从消弧线圈的内部流过,能够对电网的电容电流起到一定的补偿作用。除此之外,还能够在一定程度上消除接地点产生的电弧影响。因此,在电力系统日常运行的过程中,在对系统内的设施装置进行日常维护时,要能够加大对主变压器消弧线圈的维护力度,一旦发现消弧线圈存在安全隐患,就需要立即上报并采取措施解决,避免影响的进一步扩大。 2 主变压器消弧线圈的运行维护 (1)在消弧线圈的日常运行过程中,运维检修人员应该给予消弧线圈维护工作足够的重视,要能够对线圈中产生的电流和电容、电感和电流进行专业的检测,除此之外还需要对消弧线圈档位所处的位置,以及线圈上运行温度的指示装置进行全面的监测。同时,为了使消弧线圈的稳定运行得到保障,还需要对消弧线圈的油位置、油颜色进行监测,一旦发现油位置变化幅度大且油的颜色有着非常明显的改变,则需要对消弧线圈进行及时的检测,确保其没有发生漏油问题。 (2)在主变压器消弧线圈的日常运行中,如果消弧线圈不存在接地故障问题的话,则消弧线圈的运行是没有声音的,同样消弧线圈的隔离开关也是不存在接触问题的,接地装置的接地指示灯也是处于熄灭状态的。所以,如果运行维护人员在对主变压器消弧线圈进行日常维护时,只要发现上述指标不符合规范,则就意味着消弧线圈可能存在接地故障,则需要立即采取措施进行处理。 (3)如果在运行维护的过程中,发现消弧线圈出现接地故障问题,电力企业的运维检修人员首先要做的,就是对消弧线圈内的油温进行检测,观察消弧线圈内的油温是否超过95摄氏度,同时补偿度有没有达到规范要求,并判断在消弧线圈实际运行过程中是否存在其他类型的异常声响,并对线圈内阻尼电阻的温度进行判别。除此之外,运维人员还要能够对消弧线圈的接地总时长进行详细的记录,要保证总时长低于设备铭牌上的限制时间,如果发现消弧线圈的接地时间过长,则需要立即将存在问题的线路切断。 (4)当电力系统处于运行状态时,运行维护工作人员要能够加强低中性点位移电压的监测,一旦发现位移电压超过合理数值范围,同时主变压器消弧线圈上的接地指示灯处于长亮状态的话,则运行维护工作人员要能够按照一定的操作规范,来对其进行及时的处理,并对存在问题的位置进行检测。 (5)在现阶段消弧线圈实际运行的过程中,分接头的调整可以通过三种方法来实现,分别是投运、停止以及直接用手操作,但是需要注意的是,在对消弧线圈的分接头进行调整之前,需要先对电网的运行状态进行检查,确定其是否存在单相接地问题,同时还需要对电网的接地电流进行检测,只有当接地电流小于10A时,才能够开展进一步的运维检修工作。 图一消弧线圈接地系统故障选线方法 (6)如果运行维护人员在对消弧线圈的运行状况进行检测时,如果发现处于运行状态的线圈,其内部存在不正常的声响或者是出现类似放电的声音,这时就需要立即采取措施,将发生故障的接地线路位置切断,之后在停止消弧线圈的运行,在消弧线圈完全停止运行之后,就能够采取专业的方法对线圈本体进行故障检测。除此之外,如果运行维护工作人员在检修的过程中,发现消弧线圈出现冒烟问题,则需要立即使用断路器,将消弧线圈的上级电源切断,避免影响的进一步扩大。 (7)消弧线圈运行维护人员,在将消弧线圈从主变压器上的中性点,移动到其他位置时,在移动之前首选要做的就是将隔离开关打开,然后在开展投切操作,但是在投切操作开展过程中需要注意,不能将消弧线圈移接到多个主变压器的中性点位置处。 (8)当运行维护人在检修的过程中,发现消弧线圈上存在的问题,并采取措施对问题进行处理时,要能够采取专业的操作方法,首先将消弧线圈上的隔离开关拨动到打开位置处,紧接着停止主变压器的运行,而送电操作则恰好与上述操作相反。如果系统在实际运行的过程中出现单相接地故障的话,运行维护人员一定要注意,不能随意改变母线上的档位。 3 消弧线圈的动作故障处理 如果电网在实际运行的过程中,出现单相接地、串联谐振以及中性点位移电压超过规定值的问题的话,消弧线圈就会立即做出动作,会点亮警示牌并发出警报声,同时中性点位移电压表以及补偿电流的数值都会在一定程度上增大,消弧线圈本身的指示灯也会长亮。如果出现单相接地故障的话,则绝缘监视电压表指示接地相低压为0,而未接地的两相低压则会升高至线电压。如果在运行维护的过程中,出现上述类型的故障,运维检修人员则要按照下述内容来进行故障处理。 首先需要对消弧线圈的信号动作进行确认,在确认无误之后,需要对接地相别、接地性质以及消弧线圈的实际运行状况,进行及时的

kV消弧线圈接地变成套装置、消弧线圈、接地变压器

(20015年版) 10kV消弧线圈接地变成套装置、消弧线圈、 接地变压器 通用技术规范 (编号:1013001/002/003-0010-00) 本规范对应的专用技术规范目录

标准技术规范使用说明 1、本标准技术规范分为通用部分、专用部分。 2、项目单位根据需求选择所需设备的技术规范,技术规范通用部分条款及专用部分固化的参数原则上不能更改。 3、项目单位应按实际要求填写“项目需求部分”。如确实需要改动以下部分,项目单位应填写专用部分“表6项目单位技术差异表”并加盖该网、省公司物资部(招投标管理中心)公章,与辅助说明文件随招标计划一起提交至招标文件审查会: ①改动通用部分条款及专用部分固化的参数; ②项目单位要求值超出标准技术参数值; ③需要修正污秽、温度、海拔等条件。 经标书审查会同意后,对专用部分的修改形成“项目单位技术差异表”,放入专用部分表6中,随招标文件同时发出并视为有效,否则将视为无差异。 4、对扩建工程,项目单位应在专用部分提出与原工程相适应的一次、二次及土建的接口要求。 5、技术规范的页面、标题、标准参数值等均为统一格式,不得随意更改。 6、投标人逐项响应技术规范专用部分中“1标准技术参数表”、“2项目需求部分”和“3投标人响应部分”三部分相应内容。填写投标人响应部分,应严格按招标文件技术规范专用部分的“招标人要求值”一栏填写相应的投标人响应部分的表格。投标人还应对项目需求部分的“项目单位技术偏差表”中给出的参数进行响应。“项目单位技术偏差表”与“标准技术参数表”和“使用条件表”中参数不同时,以偏差表给出的参数为准。投标人填写技术参数和性能要求响应表时,如有偏差除填写“表

消弧线圈原理及 (2)

自动控制消弧线圈 继电保护所保护四班 范永德

消弧线圈的作用 消弧线圈的作用主要是将系统的电容电流加以补偿,使接地点电 流补偿到较小的数值,防止弧光短路,保证安全供电。降低弧隙电压恢复速度,提高弧隙绝缘强度,防止电弧重燃,造成间歇性接地过电压。中性点不接地系统的特点 选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。 3、系统对地电容电流超标的危害 实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下: (1)当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。

消弧线圈的作用

消弧线圈的作用 一个电网的存在必然存在着漏电.从那里漏的电呢? 电缆对地的电 容!我们知道,我们采用的是50Hz的频率.而且在传输的过程中是没有零线的,主要的目的是为了节约成本!代替零线的自然就是大地. 三相点他们对大地的距离不一样也就是对大地的电容也不一样! 既然电容不一样,那么漏电流也不一样.漏掉的电流跑到那里去了呢? 这要取决于那条线路距离大地最近.因为漏掉的电流要跑到另外的 线路中!假如A失去电流,那么B或者C就得到电流!容性电流=A- B|A-C 线路越长容性电流就越大!容性电流越大,当发生接地的时候弧光 就不容易熄灭!通过引入消弧线圈来保证整个变电站的接地时候的电流<5A就可以消灭接地弧光!当然:引入消弧线圈后,变电站的系 统有可能是过补(电感电流大于电容电流)或者是欠补(电感电流小于电容电流)但绝对不能相同(电感电流等于电容电流)!

消弧线圈接地方式

长期以来,我国6~35KV(含66KV)的电网大多采用中性点不接地的运行方式。此类运行方式的电网在发生单相接地时,故障相对地电压降为零,非故障相的对地电压将升高到线电压(UL),但系统的线电压维持不变。因此国家标准规定这类电网在发生单相接地故障后允许短时间(2小时)带故障运行,所以大大提高了该类电网的供电的可靠性。 现有的运行规程规定:“中性点非有效接地系统发生单相接地故障后,允许运行两小时”,但规程未对“单相接地故障”的概念加以明确界定。如果单相接地故障为金属性接地,则故障相的电压降为零,其余两健全相对地电压升高至线电压,这类电网的电气设备在正常情况下都应能承受这种过电压而不损坏。但是,如果单相接地故障为弧光接地,则会在系统中产生最高值达3.5倍相电压的过电压,这样高的过电压如果数小时作用于电网,势必会造成电气设备内绝缘的积累性损伤,如果在健全相的绝缘薄弱环节造成绝缘对地击穿,将会引发成相间短路的重大事故。 一、相接地电容电流的危害 中性点不接地的高压电网中,单相接地电容电流的危害主要体现在以下四个方面: 1.弧光接地过电压的危害 当电容电流一旦过大,接地点电弧不能自行熄灭。当出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3~5倍或更高,它遍布于整个电网中,并且持续时间长,可达几个小时,它不仅击穿电网中的绝缘薄弱环节,而且对整个电网绝缘都有很大的危害。 2.造成接地点热破坏及接地网电压升高 单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入大地后由于接地电阻的原因,使整个接地网电压升高,危害人身安全。 3.交流杂散电流危害 电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃瓦斯爆炸等,可能造成雷管先期放炮,并且腐蚀水管、气管等。 4.接地电弧引起瓦斯煤尘爆炸 二、消弧线圈的作用 电网安装消弧线圈后,发生单相接地时消弧线圈产生电感电流,该电感电流补偿因单相接地而形成的电容电流,使得接地电流减小,同时使得故障相恢复电压速度减小,治理电容电流过大所造成的危害。同时由于消弧线圈的嵌位作用,它可以有效的防止铁磁谐振过电压的发生概率。 三、消弧线圈接地方式存在的一些问题:

国家电网公司变电运维通用管理规定 第15分册 消弧线圈运维细则

国家电网公司变电运维通用管理规定第15分册消弧线圈运维细则 国家电网公司 二〇一六年十二月

目录 前言.............................................................................................................................................. II 1 运行规定 (1) 1.1 一般规定 (1) 1.2 紧急停运规定 (1) 2 巡视及操作 (1) 2.1 巡视 (1) 2.2 操作 (3) 3 维护 (3) 3.1 红外检测 (3) 3.2 吸湿器维护 (4) 3.3 更换消弧线圈成套柜外交流空开 (4) 4 典型故障和异常处理 (4) 4.1 消弧线圈保护动作处理 (4) 4.2 消弧线圈、接地变压器着火处理 (4) 4.3 接地告警处理 (5) 4.4 有载拒动告警处理 (5) 4.5 位移过限告警处理 (6) 4.6 并联电阻异常处理 (6) 4.7 频繁调档处理 (6)

前言 为进一步提升公司变电运检管理水平,实现变电管理全公司、全过程、全方位标准化,国网运检部组织26家省公司及中国电科院全面总结公司系统多年来变电设备运维检修管理经验,对现行各项管理规定进行提炼、整合、优化和标准化,以各环节工作和专业分工为对象,编制了国家电网公司变电验收、运维、检测、评价、检修管理通用细则和反事故措施(以下简称“五通一措”)。经反复征求意见,于2017年1月正式发布,用于替代国网总部及省、市公司原有相关变电运检管理规定,适用于公司系统各级单位。 本细则是依据《国家电网公司变电运维通用管理规定》编制的第15分册《消弧线圈运维细则》,适用于35kV及以上变电站消弧线圈。 本细则由国家电网公司运维检修部负责归口管理和解释。 本细则起草单位:国网福建电力。 本细则主要起草人:陈余航、张丰、苏祖礼、梁宏池、纪锡亮、涂恩来、吴勇昊、陈晔。

细说--接地变、消弧线圈及自动补偿装置的原理和选择

接地变、消弧线圈及自动补偿装置的原理和选择 1问题提出 随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。 210kV中性点不接地系统的特点 选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。 3系统对地电容电流超标的危害 实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下: 3.1当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。 3.2配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。 3.3当有人误触带电部位时,由于受到大电流的烧灼,加重了对触电人员的伤害,甚至伤亡。 3.4当配电网发生单相接地时,电弧不能自灭,很可能破坏周围的绝缘,发展成相间短路,造成停电或损坏设备的事故;因小动物造成单相接地而引起相间故障致使停电的事故也时有发生。 3.5配电网对地电容电流增大后,对架空线路来说,树线矛盾比较突出,尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。 4单相接地电容电流的计算 4.1空载电缆电容电流的计算方法有以下两种: (1)根据单相对地电容,计算电容电流(见参考文献2)。 Ic=√3×UP×ω×C×103(4-1) 式中:UP━电网线电压(kV) C━单相对地电容(F) 一般电缆单位电容为200-400pF/m左右(可查电缆厂家样本)。 (2)根据经验公式,计

主变低压侧中性点“接地变 消弧线圈”接线方式改为“接地变 小电阻”的必要性和可行性调研

主变低压侧中性点“接地变+消弧线圈”接线方式改为“接地变+小电阻”的必要性和可行性调研 当中性点不接地系统发生单相接地故障时线电压三角 形保持对称,对用户继续工作影响不大,并且电容电流比 较小一些,瞬时性的接地故障能够自行消失这对提高供电 可靠性,减少停电事故是非常有效的。从我们(50MW)电站的情况来说,运行环境并不是很恶劣,出线缆也并不是很多,只有三条出线缆路,如果要改为经小电阻接地的话, 那每次接地发生瞬间就会跳闸,造成供电可靠性就会下降;消弧线圈接地改成小电阻接地,主要是由于运行的线路比 较长,翻山越岭经常坐着受到天气的状况影响或者说线路 比较多,两个小时之内查不到接地,只是这种情况下才应 该改,别的情况下不应该改,如就只是接地电流比较大可 以选择并联消弧线圈的这种方式来消除,暂时不应该用接 地电阻。因为有两点:一是我站(50MW)电站线缆距离短;二是出线缆并不多,也不受天气状况的影响,线缆接地比 较好查。 随着电力事业日益的壮大和发展,这种方式已不满足电 网要求,现在的电网中电缆电路增多,电容电流增大;此 时接地电阻不可能瞬间熄灭,就会产生(1)电弧接地过电压,一但时间过长会对电气设备的绝缘造成极大的危害, 在绝缘薄弱处形成击穿,造成重大损失。(2)电弧造成空

气离解,破坏周围空气的绝缘,容易发生相间短路。严重 威胁电网设备的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电压、电流,使接地保护可靠动作,为了解决这样的办法,接地 变就人为制造了一个中性点接地电阻,它的接地电阻一般 很小。另外接地变压器有电磁特性,对正序、负序电流呈 高阻抗,绕组中流过很小的励磁电流。由于每个铁芯柱上 两段绕组绕向相反,同心柱上量绕组流过相等的零序电流 呈低阻抗,零序电流在绕组上的压降很小。即当系统发生 接地故障时,在绕组中将流过正序、负序和零序电流。该 绕组对正序和负序电流呈现高阻抗,面对零序电流来说, 由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。由于很多 接地变压器只提供中性点接地小电阻,而不需带负载。所 以很多接地变压器是属于无二次的,接地变压器在电网正 常运行时,接地变压器相当于空载状态。但是,当电网发 生故障时,只是在短时间内通过故障电流,中性点经小电 阻接地电网发生单相接地故障时,高灵敏度的零序保护判 断并短时切除故障线路,接地变压器只在接地故障至故障 线路零序保护动作切除故障线路这段时间内起作用。

接地变压器简称接地变

接地变压器简称接地变,根据填充介质,接地变可分为油式和干式;根据相数,接地变可分为三相接地变和单相接地变。 三相接地变:接地变压器的作用是在系统为△型接线或Y型接线中性点无法引出时,引出中性点用于加接消弧线圈或电阻,此类变压器采用Z型接线(或称曲折型接线),与普通变压器的区别是,每相线圈分成两组分别反向绕在该相磁柱上,这样连接的好处是零序磁通可沿磁柱流通,而普通变压器的零序磁通是沿着漏磁磁路流通,所以Z型接地变压器的零序阻抗很小(10Ω左右),而普通变压器要大得多。按规程规定,用普通变压器带消弧线圈时,其容量不得超过变压器容量的20%。Z型变压器则可带90% ~100%容量的消弧线圈,接地变除可带消弧圈外,也可带二次负载,可代替所用变,从而节省投资费用。 单相接地变:单相接地变主要用于有中性点的发电机、变压器的中性点接地电阻柜,以降低电阻柜的造价和体积。 扩展阅读:我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式。电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果。 1)单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。 2)由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路。3)产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸。这些后果将严重威胁电网设备的绝缘,危及电网的安全运行。 为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。接地变压器(简称接地变)就在这样的情况下产生了。接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。另外接地变有电磁特性,对正序负序电流呈高阻抗,绕组中只流过很小的励磁电流。由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。即当系统发生接地故障时,在绕组中将流过正序、负序和零序电流,该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。由于很多接地变只提供中性点接地小电阻,而不需带负载,所以很多接地变就是属于无二次的。接地变在电网正常运行时,接地变相当于空载状态。但是,当电网发生故障时,只在短时间内通过故障电流。中性点经小电阻接地电网发生单相接地故障时,高灵敏度的零序保护判断并短时切除故障线路,接地变只在接地故障至故障线路零序保护动作切除故障线路这段时间内起作用,中性点接地电阻和接地变才会通过零序电流。 根据上述分析,接地变的运行特点是;长时空载,短时过载。 接地变是人为的制造一个中性点,用来连接接地电阻。当系统发生接地故障时,对正序负序电流呈高阻抗,对零序电流呈低阻抗性使接地保护可靠动作。

变电所设计中接地变、消弧线圈及自动补偿装置的原理和选择

1问题提出 随着城市建设发展的需要和供电负荷的增加,许多地方正在城区建设 110/10kV终端变电所,一次侧采用电压110kV进线,随着城网改造中杆线下地,城区10kV出线绝大多数为架空电缆出线,10kV配电网络中单相接地电容电流将急剧增加,根据国家原电力工业部《交流电气装置的过电压保护和绝缘配合》规定,3—66KV系统的单相接地故障电容电流超过10A时,应采用消弧线圈接地方式。一般的110/10kV变电所,其变压器低压侧为△接线,系统低压侧无中性点引出,因此,在变电所设计中要考虑10kV接地变、消弧线圈和自动补偿装置的设置。 2 10kV中性点不接地系统的特点 选择电网中性点接地方式是一个要考虑许多因素的问题,它与电压等级、单相接地短路电流数值、过电压水平、保护配置等有关。并直接影响电网的绝缘水平、系统供电的可靠性和连续性、主变压器和发电机的安全运行以及对通信线路的干扰。10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员一般在2小时内选择和排除接地故障,保证连续不间断供电。 3系统对地电容电流超标的危害 实践表明中性点不接地系统(小电流接地系统)也存在许多问题,随着电缆出线增多,10kV配电网络中单相接地电容电流将急剧增加,当系统电容电流大于10A后,将带来一系列危害,具体表现如下: 3.1当发生间歇弧光接地时,可能引起高达3.5倍相电压(见参考文献1)的弧光过电压,引起多处绝缘薄弱的地方放电击穿和设备瞬间损坏,使小电流供电系统的可靠性这一优点大受影响。 3.2 配电网的铁磁谐振过电压现象比较普遍,时常发生电压互感器烧毁事故和熔断器的频繁熔断,严重威胁着配电网的安全可靠性。 3.3 当有人误触带电部位时,由于受到大电流的烧灼,加重了对触电人员的伤害,甚至伤亡。 3.4 当配电网发生单相接地时,电弧不能自灭,很可能破坏周围的绝缘,发展成相间短路,造成停电或损坏设备的事故;因小动物造成单相接地而引起相间故障致使停电的事故也时有发生。 3.5 配电网对地电容电流增大后,对架空线路来说,树线矛盾比较突出,尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。

相关主题
文本预览
相关文档 最新文档